_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.16: 544.13

МНОГОМЕРНАЯ МОДЕЛЬ QSPR ДЛЯ РАСЧЕТА КРИТИЧЕСКОГО ДАВЛЕНИЯ НОРМАЛЬНЫХ И ЗАМЕЩЕННЫХ НАФТАЛИНОВ В ФАЗОВЫХ ПЕРЕХОДАХ ПЕРВОГО РОДА

© 2020 г. М. Ю. Доломатов^{*a,b,**}, Э. А. Ковалева^{*a,***}, Н. С. Валеева^{*a,****}, Н. Х. Паймурзина^{*a,****}

а Уфимский государственный нефтяной технический университет, Уфа, 450062, Россия

^b Башкирский государственный университет, Физико-технический институт, Уфа, 450074, Россия *e-mail: mdolomatov@bk.ru

**e-mail: maoiomaiov@bx.ru
**e-mail: kovaleva-ugntu@yandex.ru
***e-mail: valneli@mail.ru
***e-mail: paimurzina@inbox.ru
Поступила в редакцию 15.02.2020 г.
После доработки 15.02.2020 г.
Принята к публикации 14.04.2020 г.

Предложена многомерная модель QSPR для прогноза критического давления нормальных и замещенных нафталинов через комбинации топологических дескрипторов молекулярных графов. Рассмотрены 59 соединений нафталинов, которые случайным образом поделены на базовую и тестовую выборки. При рассмотрении молекул нафталинов предполагалось, что критическое давление определяется дескрипторами, характеризующими разветвленность структуры (индекс Винера) и хюккелевским спектром, учитывающим только взаимодействие соседних атомов (функции собственных значений топологической матрицы). В связи с тем, что при оценке ряда физико-химических свойств соединений энергия межмолекулярных взаимодействий зависит в значительной степени от конкретных размеров молекул и степени их разветвленности, при расчете индекса Винера были учтены кратные связи. Сумма квадратов собственных значений топологической матрицы описывает отклонения хюккелевской энергии электронных состояний от ее среднего значения в молекуле. Выбор квадратов собственных значений молекулярного графа обусловлен следствием из теоремы Хорста Сакса. Дескрипторы, используемые в работе, были рассчитаны по программам пакета Maple 13 и PascalABCNet. Для проверки прогностических возможностей предложенной модели рассчитаны критические давления для соединений не входящих в базовый ряд. Модель QSPR адекватно описывает критическое давление нафталинов в фазовых переходах жидкость-пар, что подтверждают экспериментальные данные и статистическая обработка данных. Полученные результаты могут быть рекомендованы для оценки критического давления известных и вновь синтезированных нафталинов, и использоваться при проведении научных и инженерных расчетов в нефтехимии и технологии сверхкритических флюидов.

Ключевые слова: нафталины, критическое давление, топологические индексы, собственные значения топологической матрицы, индекс Винера

DOI: 10.31857/S0044453720110059

Разнообразные технологии с использованием сверхкритических флюидов все больше распространяются в химической, нефтяной, нефтехимической промышленности [1]. Поэтому прогнозирование критических свойств жидкостей и расчет процессов в сверхкритических условиях приобретают важное значение. Кроме того, прогнозирование критических свойств необходимо в научных и прикладных исследованиях в теплотехнике, энергетике, решении термодинамических задач и т.д.

Критическое давление (P_c) нафталинов необходимо знать для достоверного расчета технологии разделения смесей нафталинов в газовой фазе методом экстракции, адсорбции и ректификации. С качеством информации о критических свойствах органических соединений связана селективность этих технологий.

Существующие методы определения критических параметров основаны на скейлинговой теории фазовых переходов и представлениях универсальности и теории ренормгруппы К. Вильсона [2]. К сожалению, эти подходы для сложных органических веществ не обеспечивают необходимую точность решения задачи прогнозирования критических свойств. Проблема заключается в том, что критические давления зависят не только от критических параметров фазовых переходов, но и от химических факторов взаимодействия, например, от числа углеродных атомов в молекуле [3]. Поэтому перспективу в изучении критических явлений имеет группа методов QSPR [4], основанных на применении структурно-химических дескрипторов-топологических индексов (ТИ) для молекулярных графов (МГ) соединений. Эти дескрипторы используются в прогнозах температуры кипения, плавления и других физико-химических свойств органических веществ [5–7]. Ранее нами было показано, что критические свойства зависят от нескольких дескрипторов [8].

Цель данной работы — разработка модели QSPR для адекватного прогнозирования критического давления углеводородов ряда нафталинов в фазовых переходах жидкость—пар первого рода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данном исследовании изучим 59 нормальных и замещенных нафталинов, которые случайным образом поделим на базовую (39 соединений) и контрольную (20 соединений) выборки.

По аналогии с работой [9] при рассмотрении молекул нафталинов будем предполагать, что критические свойства определяются дескрипторами, характеризующими разветвленность структуры (индекс Винера), и хюккелевским спектром топологической матрицы графа, учитывающей только взаимодействие соседних атомов [6]. Вклад хюккелевских состояний важен, так как в критических условиях происходит отклонение структуры молекул от равновесной конфигурации, которая описывается матрицей расстояний.

Для каждой молекулы рассматриваемых углеводородов составим матрицы расстояний и смежности для расчета ТИ. Ниже представлена нумерация атомов молекулы нафталина:

Индекс Винера [10] рассчитан по уравнению:

$$W = \frac{1}{2} \sum_{u, v \in V(G)}^{n} d_G(u, v),$$
(1)

где V — множество вершин ненаправленного графа G, $d_G(u, v)$ — расстояние между вершинами u и v молекулярного графа (МГ). Так как при оценке ряда физико-химических свойств соединений энергия межмолекулярных взаимодействий зависит в значительной степени от конкретных размеров молекул и степени их разветвленности, при расчете индекса Винера были учтены кратные связи по формуле:

$$d_{ij} = \sum \left(\frac{1}{b} \frac{36}{z_i z_j}\right),\tag{2}$$

где b — кратность связи, равная 1 или 2, в зависимости от того, является ли связь соответственно простой или двойной; z_i , z_j — заряды ядер (в нашем случае равные 6). Суммирование распространяют на все связи, образующие кратчайший путь между *i*-й и *j*-й вершинами.

Характеристический полином матрицы смежности запишем в виде:

$$P(\lambda) = (-1)^n \det(A - \lambda E) =$$

= $\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n,$ (3)

где E – единичная матрица; λ_i , a_i , $i = \overline{1, n}$ – корни, коэффициенты полинома соответственно.

Корни характеристического полинома являются собственными значениями матрицы смежности, которые для π -электронных систем интерпретируются как хюккелевские энергетические уровни электронов в молекуле [11]. Если МГ охватывает все атомы углерода, то очевидно, что спектр собственных значений не имеет такую четкую интерпретацию, как в π -электронных структурах молекул, и отражает взаимодействие только соседних атомов углерода.

Индекс *L* [4] равен сумме степеней всех вершин:

$$L = \sum_{i=1}^{n} \lambda_i^2, \tag{4}$$

где λ_i — собственные значения молекулярного графа.

Выбор квадратов собственных значений МГ обусловлен следствием из теоремы Хорста Сакса [6], согласно которому сумма корней характеристического полинома (3), т.е. сумма собственных значений топологической матрицы молекулы, равна нулю. Ранее было показано, что индекс *L* описывает отклонения хюккелевской энергии электронных состояний от ее среднего значения в молекуле [12].

Для достижения цели в работе использована многофакторная модель, полученная путем аппроксимации расчетных данных с применением многомерной статистики и алгоритмов множественной регрессии.

Значения суммы квадратов собственных значений молекулярных графов (*L*), индекс Винера (W) были рассчитаны с помощью пакета Maple 13 [13] и PascalABCNet [14].

2020

МНОГОМЕРНАЯ МОДЕЛЬ QSPR

	-		-			
N⁰	Соединение, химическая формула	W	L	<i>P</i> _c (спр), атм	<i>P</i> _c (расч), атм	$\Delta, \%$
1	1,4,6-триметилнафталин С13Н14	178.5	28	26.71	26.93	0.818
2	1,2,6-триметилнафталин С13Н14	179	28	26.71	26.94	0.873
3	1,4,5-триметилнафталин С13Н14	174.5	28	26.71	26.81	0.380
4	1,2,4-триметилнафталин С13Н14	174	28	26.71	26.80	0.325
5	1,2,3-триметилнафталин С13Н14	175	28	26.71	26.83	0.434
6	1,2,5-триметилнафталин С13Н14	176	28	26.71	26.86	0.544
7	1,3,5-триметилнафталин С13Н14	177	28	26.71	26.88	0.653
8	1,3,8-триметилнафталин С13Н14	176.5	28	26.71	26.87	0.599
9	1,6,7-триметилнафталин С13Н14	181	28	26.71	27.00	1.092
10	1,2,7-триметилнафталин С13Н14	178.5	28	26.71	26.93	0.818
11	1,3,6-триметилнафталин С13Н14	179.5	28	26.71	26.96	0.927
12	1,3,7-триметилнафталин С13Н14	179.5	28	26.71	26.96	0.927
13	2,3,6-триметилнафталин С13Н14	181.5	28	26.71	27.02	1.146
14	2-бутилнафталин С14Н16	266.5	30	24.98	25.33	1.386
15	1-пропилнафталин С13Н14	196	28	27.56	27.44	0.434
16	1,7-диэтилнафталин С14Н16	236.5	30	24.60	24.45	0.615
17	2,3-диэтилнафталин С14Н16	234.5	30	24.60	24.39	0.853
18	1,4-диэтилнафталин С14Н16	230.5	30	24.60	24.27	1.329
19	1,2-диэтилнафталин С14Н16	228.5	30	24.60	24.21	1.566
20	1,6-диэтилнафталин С14Н16	238.5	30	24.60	24.51	0.377
21	4,6-диметил-1-этилнафталин С14Н16	226	30	24.24	24.14	0.406
22	2,4-диметил-1-этилнафталин С14Н16	220	30	24.24	23.97	1.130
23	2,5-диметил-3-этилнафталин С14Н16	227.5	30	24.24	24.19	0.225
24	1,5-диметилнафталин С12Н12	140	26	30.06	29.98	0.271
25	2,3-диметилнафталин С12Н12	142.5	26	30.06	30.05	0.027
26	1,8-диметилнафталин С12Н12	139.5	26	31.00	29.96	3.342
27	1,6-диметилнафталин С12Н12	142.5	26	30.06	30.05	0.027
28	1,4-диметилнафталин С12Н12	138.5	26	30.06	29.93	0.417
29	1,3-диметилнафталин С12Н12	141	26	30.06	30.01	0.173
30	1,7-диметилнафталин С12Н12	142	26	30.06	30.04	0.076
31	1,2-диметилнафталин С12Н12	140	26	30.06	29.98	0.271
32	1-этилнафталин С12Н12	146.5	26	30.00	30.17	0.563
33	2-метил-1-этилнафталин С13Н14	181	28	27.13	27.00	0.473
34	1-метил-2-этилнафталин С13Н14	183	28	27.13	27.06	0.258
35	2-метил-3-этилнафталин С13Н14	186	28	27.13	27.15	0.066
36	2-метил-4-этилнафталин С13Н14	183	28	27.13	27.06	0.258
37	2-метил-5-этилнафталин С13Н14	186	28	27.13	27.15	0.066
38	2-метил-6-этилнафталин С13Н14	191	28	27.13	27.29	0.605
39	2-метил-7-этилнафталин С13Н14	190	28	27.13	27.26	0.497
						(0.647)

Таблица 1. Значения топологических индексов и сравнение справочных [17] и вычисленных по модели (5) значений критических давлений для соединений из базовой выборки

Примечание. В скобках приведено среднее значение.

a_n	<i>а_n</i> , атм	<i>t</i> -статистика		
a_0	80.176	32.307		
a_1	0.029	5.835		
a_2	-2.088	-17.373		

Таблица 2. Коэффициенты модели (5) для расчета критического давления, *t*-статистика

Рассмотрим критическое давление $P_{\text{расч}}(L,W)$ как функцию двух переменных (топологических параметров), аргументами которой будут: сумма квадратов собственных значений топологической матрицы молекулы и индекс Винера. Полученную модель представим в виде двумерной зависимости, которая имеет линейный вид:

$$P_{\text{pacy}} = a_0 + a_1 L + a_2 W, \tag{5}$$

где a_n (n = 0, 1, 2) – коэффициенты модели.

Коэффициенты модели, полученные методом наименьших квадратов, вероятно, имеют определенный структурно-химический смысл, а именно: a_0 – характеризует вклад в критическое давление факторов не связанных явно с химической структурой, например, дальнодействующих атом-атомных потенциалов; a_1 – характеризует влияние на критическое давление хюккелевского спектра; a_2 – характеризует влияние на критическое давление на критическое давление на критическое давление на критическое давление хюккелевского спектра; a_2 – характеризует влияние на критическое давление длины углеродной цепочки.

Для исследуемого ряда молекул в табл. 1 приведены значения сумм квадратов собственных значений молекулярных графов (L) и индекс Винера (W). Справочные данные по критическому давлению выбирались из баз данных [15–17] и справочной литературы [18, 19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Коэффициент детерминации модели $R^2 = 0.984$, коэффициент множественной корреля-

Таблица 3. Значения топологических индексов и сравнение справочных [17] и вычисленных по модели (5) значений критических давлений для соединений из контрольной выборки

N⁰	Соединение, химическая формула	W	L	<i>P</i> _c (спр), атм	<i>P</i> _c (расч), атм	$\Delta,\%$
1	2-метил -8-этилнафталин С13Н14	185	28	27.13	27.19	0.239
2	1-метил-3-этилнафталин С13Н14	184	28	27.13	27.17	0.159
3	1-метил-4-этилнафталин С13Н14	182.5	28	27.13	27.14	0.038
4	1-метил-5-этилнафталин С13Н14	183	28	27.13	27.15	0.078
5	1-метил-6-этилнафталин С13Н14	188	28	27.13	27.26	0.482
6	1-метил-7-этилнафталин С13Н14	185	28	27.13	27.19	0.239
7	1-метил-8-этилнафталин С13Н14	182	28	27.13	27.13	0.003
8	2-пропилнафталин С13Н14	202	28	27.56	27.57	0.027
9	2-метилнафталин С11Н10	111	24	32.5	33.25	2.310
10	2-втор-бутилнафталин С14Н16	246.5	30	25.18	24.70	1.890
11	1-втор-бутилнафталин С14Н16	238.5	30	25.18	24.53	2.586
12	2-пентилнафталин С15Н18	345	32	22.74	23.02	1.250
13	1-пентилнафталин С15Н18	335	32	22.74	22.81	0.286
14	1,3,5,8-тетраметилнафталин С14Н16	216	30	23.89	24.04	0.609
15	1,2,4,6-тетраметилнафталин С14Н16	217.5	30	23.89	24.07	0.747
16	1,2,3,6-тетраметилнафталин С14Н16	218.5	30	23.89	24.09	0.839
17	1,4,5,8-тетраметилнафталин С14Н16	214.5	30	23.89	24.00	0.472
18	1,2,3,4-тетраметилнафталин С14Н16	211.5	30	23.89	23.94	0.197
19	1,2,5,8-тетраметилнафталин С14Н16	215	30	23.89	24.01	0.518
20	2-этилнафталин С12Н12	150.5	26	31.4	30.28	3.574
						(0.827)

Примечание. В скобках приведено среднее значение.

ции $r \approx 0.992$, что свидетельствует о хороших прогностических возможностях модели (5) для критического давления. Подтверждается сильная статистическая связь между предложенными топологическими характеристиками молекул нафталинов и ее физико-химическим свойством.

Обоснуем валидность модели (5). Значения и влияние независимых величин (топологических индексов) на изменение критического давления приведены в табл. 2.

В табл. 2 приведены данные *t*-статистики, которая характеризует значимость коэффициентов и показывает влияние каждого дескриптора регрессионной модели в отдельности. Табличное значение критерия Стьюдента, соответствующее доверительной вероятности g = 0.95 и числу степеней свободы v = n - m - 1 = 39 - 2 - 1 = 36 равно 2.028. Наблюдаемое значение *t*-статистики Стьюдента для всех коэффициентов больше, чем критическое (табличное) значение статистики Стьюдента, значит, они значимы. Однако заметим, что между дескрипторами существуют сложные взаимосвязи, поэтому их влияние комплексное и его нельзя рассматривать как простую сумму изолированных влияний. Оценим значимость уравнения, для этого выполним сравнение фактического $F_{\text{факт}}$ и критического (табличного) $F_{\text{табл}}$ значений *F*-критерия Фишера

$$F_{\text{Ha6}\pi} = \frac{R^2}{1 - R^2} \frac{n - m - 1}{m} = 1107,$$

$$F_{\text{Ta6}\pi} = F(0.95, 2, 36) = 0.05.$$

Так как $F_{\text{табл}} < F_{\text{набл}}$, то с вероятностью 0.95 можно говорить о значимости уравнения регрессии.

Для оценки статистической достоверности дескриптора использовали корреляционную поправку:

$$S_r = \frac{1 - r^2}{\sqrt{n - 1}},$$
 (6)

где *S_r* — корреляционная поправка, *r* — коэффициент множественной корреляции, *n* — число исследуемых соединений. Связь нельзя считать случайной, если

$$\left|\frac{r}{S_r}\right| \ge 3.$$

к как в нашем случае n = 39, r = 0.992, получаем

$$S_{r1} = 0026$$
 и $\left|\frac{r}{S_r}\right| = \left|\frac{0.992}{0.0026}\right| = 383.73 \ge 3$

для критического давления. Следовательно, связь нельзя считать случайной и регрессионное уравнение проходит через центр облака исходных точек.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020

Для проверки прогностических возможностей уравнения (5) и адекватности прогноза были рассчитаны критические давления замещенных нафталинов, не входящих в базовый ряд. Полученные результаты приведены в табл. 3.

Из табл. 3 следует, что средняя относительная ошибка составляет 0.827%, наибольшая относительная ошибка наблюдается для соединения 2этилнафталин и равна 3.574%. Между справочными и смоделированными значениями критического давления наблюдается линейная зависимость с коэффициентом детерминации $R^2 = 0.984$.

Таким образом, получена двумерная модель QSPR "структура—свойство", адекватная эксперименту, которая отражает влияние разветвленности, протяженности углеродного скелета и хюккелевского спектра на критическое давление нафталинов. Данная модель может быть рекомендована для оценки критических давлений известных и вновь синтезированных соединений ряда нафталинов, и может быть использована при проведении научных и инженерных расчетов критических давлений в нефтехимии и технологии сверхкритических флюидов.

СПИСОК ЛИТЕРАТУРЫ

- Clifford Anthony A. et al. // Supercritical Fluid Methods and Protocols. Springer Netherlands. 2000. P. 272. P. 1–16. ISBN: 0-89603-571-9
- 2. Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 272 с.
- 3. Амирханов Д.Г., Гумеров Ф.М., Сагдеев А.А., Галимова А.Т. Растворимость веществ в сверхкритических флюидных средах. Казань: Отечество, 2014. 264 с.
- 4. Lulu Zhou, Beibei Wang, Juncheng Jianga et al. // ThermochimicaActa 2017. V. 655. P. 112.
- Станкевич М.И., Станкевич И.В., Зефиров Н.С. // Успехи химии. 1988. Т. 57. № 3. С. 337.
- Цветкович Д., Дуб М., Захс Х. Спектры графов. Теория и применение. Киев: Наукова думка, 1984. 384 с.
- 7. *Харари Ф*. Теория графов. М.: Едиториал УРС, 2003. 296 с.
- Доломатов М.Ю., Шамова Н.А., Трапезникова Е.Ф. и др. // Химическая технология. 2016. Т. 17. № 1. С. 45.
- Dolomatov M.Yu., Aubekerov T.M., Koledin O.S. et al. // Rus. J. Phys. Chem. A. 2019. V. 93. № 12. P. 2388. ISSN 0036-0244.
- 10. *Wiener H.* // J. Amer. Chem. Soc. 1947. V. 69. № 1. P. 17.
- Иванов В.В., Слета Л.А. Расчетные методы прогноза биологической активности органических соединений. Харьков: ХНУ, 2003. 71 с.

- Доломатов М.Ю., Ковалева Э.А., Хамидуллина Д.А. // Журн. физ. химии. 2018. Т. 92. № 5. С. 770. ISSN: 0044-4537.
- 13. Дьяконов В.П. Maple 10/11/12/13/14 в математических расчетах. М.: Изд-во ДМК-Пресс, 2018. 800 с. ISBN: 978-5-94074-770-3.
- 14. Долинер Л.И. Основы программирования в среде PascalABC.NET. Екатеринбург: Изд-во Урал. унта, 2014. 128 с. ISBN: 978-5-7996-1260-3.
- Доломатов М.Ю., Павлов Т.И., Аубекеров Т.М. База данных физико-химических свойств органических соединений: Б.д. 201862459. 2017.
- 16. ChemSynthesis база данных химических веществ (www.chemsynthesis.com).
- Сетевая база данных по физико-химическим свойствам веществ и материалов (http://db.itp.nsc.ru.http://metalldb.susu.ac.ru).
- Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие / Пер. с англ. под ред. Б.И. Соколова. 3-е изд., перераб. и доп. Л.: Химия, 1982. 592 с.
- Бабичев А.П., Бабушкина Н.А., Братковский А.М. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.