– ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 544.03

ЭНТРОПИЙНЫЙ ПРЕДВЕСТНИК ФАЗОВОГО ПЕРЕХОДА В1–В2 КРИСТАЛЛИЧЕСКОГО ОКСИДА МАГНИЯ ПРИ 300 К

© 2020 г. Л. Р. Фокин^{*a*}, Е. Ю. Кулямина^{*a*,*}, В. Ю. Зицерман^{*a*}

^а Российская академия наук, Объединенный институт высоких температур, Москва, Россия *e-mail: kulyamina.elena@gmail.com Поступила в редакцию 26.12.2019 г. После доработки 25.02.2020 г.

Принята к публикации 17.03.2020 г.

Расчетами для MgO на изотерме 300 К (как и в работах других авторов) показано, что при сжатии в 2–2.5 раза абсолютная энтропия резко падает и стремится к нулю. При этом выявлен синергетический эффект: низкие значения энтропии на изотерме для MgO – предвестник фазового перехода, в результате которого энтропия кристалла скачком увеличивается, что снимает проблему нулевой энтропии. Установлена большая группа двухатомных твердых тел типа NaCl, которые при сжатии испытывают аналогичные фазовые переходы.

Ключевые слова: энтропия, сжимаемость, термодинамика **DOI:** 10.31857/S0044453720110072

Поведение энтропии в зависимости от других параметров играет важную роль при анализе свойств термодинамической системы как в качественном, так и в количественном отношении. В переменных T-V (температура—объем) производная энтропии по объему на изотерме имеет вид

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \alpha K_{T} = \left(\frac{\partial p}{\partial T}\right)_{V}, \qquad (1)$$

где $\alpha = 1/V (\partial V/\partial T)_p$ — изобарный коэффициент термического расширения (КТР), $K_T =$ $= -V (\partial p/\partial V)_T$ — изотермический модуль сжатия, $(\partial p/\partial T)_V$ — термический коэффициент давления. По условиям устойчивости системы модуль сжатия $K_T > 0$, однако, на производные α и $(\partial p/\partial T)_V$ это требование не распространяется, и они могут иметь как положительные, так и отрицательные значения.

Для расчета абсолютного значения энтропии на изотерме при интегрировании по объему (1) используется выражение

$$S(T,V) = S^{0}(T) + \int_{V_{0}}^{V} \alpha K_{T} dV, \qquad (2)$$

где $S^0(T)$ — обычно табличное значение энтропии, отсчитанное от 0 К при давлении $p_0 = 1$ атм, начальный объем $V_0(T, p_0) > V$. В статье 1935 г. "Интересные теоретические вопросы в физике высоких давлений" [1] П. Бриджмен обратил внимание на то, что при сильном сжатии или при сколь угодно высоком давлении, если КТР $\alpha > 0$, энтропия при расчете по (2) будет падать и может принять отрицательное значение, если интеграл в

(2) превысит значение $S^0(T)$ (!). Для преодоления "энтропийного кризиса" на изотерме термодинамическая система имеет две основных возможности: 1) перейти в область отрицательных КТР $\alpha(p) < 0, 2$) реализовать фазовый переход с отрицательной производной dp/dT < 0 и с отрицательным скачком объема $\Delta V < 0$, так что при сжатии вещества и переходе через двухфазную область, где $dp/dT = (\partial p/\partial T)_V$, будет выполняться условие $dp/dT \Delta V = \Delta S > 0$, и энтропия системы вырастет.

В рамках теории термоупругости твердых тел имеется значительный объем литературы, посвященный вопросам асимптотики поведения КТР и модуля сжатия на изотерме при бесконечно высоком увеличении давления [2]. Наш анализ этой проблемы показал, что требование сохранения положительной энтропии должно выступать в качестве дополнительного критерия при построении соответствующей системы расчетных зависимостей [3, 4].

Со времен П. Бриджмена область экспериментальных и теоретических исследований свойств веществ при высоких давлениях увеличилась приблизительно на два порядка: от 1 до 200—

Рис. 1. Исходные и рассчитанные данные по КТР (α : 1 - [11, 12], 2 - [13], 3 - [14], 4 - [15], 5 - [16], 6 - [17], 7 - нашрасчет) и модулю сжатия (K₁: 1* - [18], 2* - [19], 3* - [20], 4* - [16], 5* - [21], 6* - наш расчет) на изотерме.

500 ГПа, а в ряде случаев и больше. Ниже для кристаллического оксида магния MgO мы рассматриваем поведение энтропии при сжатии на изотерме 300 К до 500-600 ГПа, где по разным оценкам ожидается появление отрицательных или нулевых значений абсолютной энтропии и одновременно фазового перехода кристаллической решетки. Сам по себе оксил магния (периклаз) является одним из системообразующих компонентов коры и мантии Земли, и изучению его свойств уделяется постоянное внимание (см., например, [5, 6]).

Авторы работ [7-9], используя известные к тому времени экспериментальные и теоретические данные по КТР и модулю сжатия для оксида магния MgO на изотерме 300 К, провели с помощью (2) расчеты полной энтропии. Можно видеть, что при изменении степени сжатия $\eta = V/V_0$ от 1 до 0.3 значение энтропии уменьшается на порядок, а в [9] достигает отрицательного значения. Авторы этих работ не всегда приводят детали, связанные с выбором исходных данных, областью их экстраполяции на высокие давления и, главное, не обсуждают возможные последствия, связанные с появлением аномально низких оценок абсолютной энтропии при сильном сжатии вещества на изотерме. Позже были опубликованы новые опытные и расчетные данные о свойствах MgO, в частности, оценки параметров структурного перехода В1-В2 в области 500 ГПа. В этой ситуации мы решили провести новые расчеты изменения энтропии кристаллического оксида магния на изотерме 300 К.

Термохимические данные для MgO приведены в справочнике [10]. При атмосферном давлении для температуры плавления твердой фазы принято значение 3100 ± 15 К в шкале температур 1968 г. Стандартная энтропия кристалла $S^0(300 \text{ K}) =$ = 27.181 \pm 0.15 Дж/(моль К), V_0 =11.248 см³/моль. Оценка температуры Дебая $\theta_p \sim 900$ K, т.е. 300 K – это область низких приведенных температур.

ИСХОДНЫЕ ДАННЫЕ. РАСЧЕТ ЭНТРОПИИ

Реализована процедура совместной обработки и согласования разнородных данных в рамках нелинейного весового метода наименьших квадратов (МНК). Исходные данные на изотерме 300 К -КТР $\alpha(\eta)$, модуль сжатия $K_T(\eta)$ и оценки энтропии $S(\eta)$, а также интервалы давлений Δp и принятые нами погрешности приведены в табл. 1.

На рис. 1 можно видеть масштаб изменения и полноту используемых при аппроксимации данных по КТР и модулю сжатия, а также результаты нашей обработки этих данных.

Можно видеть, что при сжатии в 2-2.5 раза КТР падает, а модуль сжатия растет приблизительно на порядок. При этом произведение $\alpha K_T c$ ростом давления растет, что следует иметь в виду при взятии интеграла (2) и расчете энтропии.

В перечне работ по КТР MgO можно отметить цикл экспериментальных исследований [11, 12]. Вначале [11] на изотермах при разных давлениях с помощью методов спектроскопии были проведены измерения частот колебаний решетки и в квазигармоническом приближении рассчитаны значения энтропии, что позволило при дифференцировании по давлению $(\partial S/\partial p)_T = -\alpha V$ получить оценки КТР до 20 ГПа. В другом цикле работ [12]

ЭНТРОПИЙНЫЙ ПРЕДВЕСТНИК ФАЗОВОГО ПЕРЕХОДА

	Автор, год	Метод	Δ <i>р</i> , ГПа	Число точек, <i>n_i</i>	Погреш- ность, %
α	Chopelas, 1990, [11]	DAC*, спектр колебаний решетки $\rightarrow S(p) \rightarrow \alpha(p)$	1-22	6	5
	Chopelas et al., 1992, [12]	обобщение опытных данных по адиабатическому термическому коэффициенту давлений и спектру колебаний решетки	27-130	12	5
	Karki et al., 2000, [13]	DFT, динамическая матрица, квазигармоническое при- ближение (графическое представление данных КТР)	30-200	5	5-30
	Gaurav et al., 2004, [14]	обобщение опытных данных по двухпараметрическому уравнению Anderson–Isaak α(η)/α ₀	36-582	9	5—7
	Sun et al., 2009, [15]	МД-моделирование, три варианта потенциалов, учет трехчастичных взаимодействий	1-200	13	5-30
	Соколова и др., 2013, [16]	параметрическое уравнение состояния свободной энергии <i>F</i> (<i>T</i> , η)	100, 236	2	5
	Abu_Farsakh et al., 2018, [17]	DFT, динамическая матрица, квазигармоническое приближение (графическое представление данных КТР)	25-600	7	5
K _T	Kushwah et al, 1998, [18]	сравнительный анализ изотермических уравнений состояния на массиве опытных и расчетных данных	0-224	6	10
	Srivastava et al., 2009, [19]	эмпирические модели Anderson—Isaak и Stacey для KTP и модуля сжатия	0-1705	8	5-10
	Singh et al., 2012, [20]	изотермическое уравнение состояния Holzaphel и теория свободного объема для оценок модуля сжатия	0-224	5	10
	Соколова и др., 2013, [16]	параметрическое уравнение состояния свободной энергии <i>F</i> (<i>T</i> , η)	0-236	3	5
	Chaturvedi et al., 2018, [21]	изотермическое уравнение состояния с оценками асимптотических значений при $\eta \to 0$ производных K_T по давлению до третьего порядка включительно	0–2187	8	10
S	Cynn et al., 1995, [7]	расчет энтропии (2) с учетом корреляции $\alpha K_T = f(\eta)$	9-224	8	1-20
	Sharma et al., 2011, [6]	расчет энтропии (2) с учетом корреляции α <i>K_T = f</i> (η) и степенной зависимости для коэффициента Грюнайзена	9–224	8	2-50

Таблица 1. Исходные данные, использованные при аппроксимации

измерения температурного отклика в веществе при резком повышении давления на адиабате $(\partial T/\partial p)_S = \alpha V T/C_p$, где C_p – изобарная теплоемкость, послужили независимым источником информации о КТР при давлениях до 100–130 ГПа. В той же работе [12] авторы представили результаты дополнительного анализа и согласования рассмотренных данных, которые включены в процедуру нашей дальнейшей обработки (см. табл. 1).

При построении изотермических уравнений состояния твердых тел в области высоких давлений обычно подчеркивается, что именно модуль сжатия является ключевой величиной (K – prime) при расчете свойств. На рис. 1 можно видеть, что для модуля сжатия $\eta > 0.6$ имеется представительный массив опытных и расчетных данных. В то же время при более высокой степени сжатия $\eta < 0.6$ имеются только две работы с близкими

при построении зависимости К_T(η) для модуля сжатия использовали, в основном, два источника информации: 1) многочисленные широколиапазонные обобщения коэффициента Грюнайзена $\gamma = \alpha K_T V / C_V (C_V -$ изохорная теплоемкость), 2) результаты квантово-механических расчетов потенциалов межионных взаимодействий (здесь Mg–Mg, O–O, Mg–O) и одновременно сжимаемости твердых тел [22]. Позже в работе [21], в частности, для оксида магния было построено уравнение состояния, включающее асимптотические оценки при $\eta \to 0.2$ производных модуля сжатия по давлению до третьего порядка включительно. Рассчитанные здесь оценки *К*₇(η) при степени сжатия $\eta = 1 - 0.2$ и данные [19, 22] близки (см. рис. 1). Тем не менее, для этой области сильного сжатия $\eta < 0.6$ новые эксперименталь-

результатами [19, 21]. Сривастава и соавторы [19]

i, j	1	2	3	4	5	6
1	0.339 <i>E</i> +0	-0.551 <i>E</i> -1	0.381 <i>E</i> -1	-0.402E-1	0.684 <i>E</i> -2	-0.435E-3
2	-0.50E+0	0.358 <i>E</i> -1	-0.170 <i>E</i> -1	0.153 <i>E</i> -2	0.503 <i>E</i> -3	-0.377 <i>E</i> -4
3	$0.70E{+}0$	-0.96E+0	0.881 <i>E</i> -2	-0.216 <i>E</i> -2	-0.358 <i>E</i> -4	0.552 <i>E</i> -5
4	-0.39E-1	0.45 <i>E</i> -2	-0.13E-1	0.319 <i>E</i> +1	0.469 <i>E</i> +0	-0.381 <i>E</i> -1
5	0.10 <i>E</i> -1	0.23 <i>E</i> -2	-0.34E-3	0.23 <i>E</i> +0	0.128 <i>E</i> +1	-0.880E - 1
6	-0.95E-2	-0.26 <i>E</i> -2	0.75 <i>E</i> -3	-0.27E+0	-0.99E+0	0.610 <i>E</i> -2

Таблица 2. Матрица ошибок параметров

ные и теоретические исследования сжимаемости MgO будут весьма полезны.

Отметим, что расчеты модуля сжатия MgO методом минимизации энергии атомизации при давлениях до 60 ГПа были проведены также в МГУ и опубликованы в 2002 г. [23].

При формировании функционала МНК были использованы следующие параметрические зависимости: для КТР $Y(\alpha) = a_1 \exp[-a_2(1 - \eta^{a_3})]$, для модуля сжатия $Y(K_T) = a_4 \exp[a_5(1 - \eta^{a_6})]$, для энтропии Y(S) выражение (2), где под интегралом стоит произведение $Y(\alpha)Y(K_T)$ с варьируемыми параметрами a_{1-6} . При совместной аппроксимации набора независимых данных n = 100 (табл. 1) и числе параметров m = 6 были найдены минимум МНК функционала M = 119, оптимальный набор параметров a_{1-6} , а также вариационно-ковариационная матрица их погрешностей с элементами соv (a_i, a_i) . Вектор параметров:

 $a_{1-6} = [29.98 \ 4.506 \ 1.209 \ 163.38 \ 7.985 \ 0.484].$

В табл. 2 на диагонали находятся дисперсии $D(a_i)$ параметров, выше диагонали – ковариации погрешностей параметров соv (a_i, a_j) , ниже диагонали – их коэффициенты корреляции $r_{ij} = \text{cov}(a_i a_j) / [D(a_i) D(a_j)]^{1/2}$. Можно видеть, что 1) оценки среднеквадратических погрешностей

Рис. 2. Изменение энтропии при сжатии на изотерме 300 К.

 $\sigma_i = \sqrt{D(a_i)}$ параметров на порядок меньше их значений, 2) как ни странно, наблюдается тесная связь параметров a_2 , a_3 и a_5 , a_6 в выражениях для КТР и модуля сжатия. При этом соответствующие коэффициенты корреляции $r_{ii} > 0.9$.

Знание матрицы ошибок дает возможность, в частности, предложить оценки доверительных погрешностей рассматриваемых функций *Y*, включая энтропию

$$\Delta Y_P = t_P \left[\frac{M}{n-m} \sum_i \sum_j \frac{\partial Y}{\partial a_i} \frac{\partial Y}{\partial a_j} \operatorname{cov}\left(a_i a_j\right) \right]^{1/2}, \quad (3)$$

где *t*_P – коэффициент доверительной вероятности Р. Использование при аппроксимации сглаженных опытных или расчетных данных в значительной степени противоречит идеологии МНК. При анализе результатов нашей обработки мы условно относим оценки $\Delta Y_{P}(3)$ к доверительной вероятности P = 0.9, для которой квантили ряда симметричных, в частности, нормального распределений ошибок близки [24], а на коэффициент $t_{0.9} = 5$ переносим ответственность за другие допущения реализованной МНК-процедуры (систематические отклонения данных от расчетных зависимостей, ограниченность моделей обработки и т.д.). В табл. 3 приведены результаты наших расчетов энтропии MgO на изотерме 300 К с оценками коридора ошибок ΔS , а также для сравнения данные [7-9]. Результаты наших расчетов показаны курсивом.

На рис. 2 показана картина изменения энтропии и соответствующий коридор ошибок.

Выполненные ранее и проведенные нами расчеты показывают, что на изотерме 300 К при сжатии в 2–3 раза при давлениях 400–600 ГПа энтропия кристаллической решетки уменьшается на порядок по сравнению с величиной при атмосферном давлении, и абсолютная энтропия стремится к нулевому значению. В то же время расчеты и эксперименты последних лет свидетельствуют о том, что в этой области параметров в кристалле MgO происходит фазовый B1(ГЦК)– B2(ОЦК)-переход [25–27]. Линия фазового перехода имеет отрицательный наклон и отрицатель-

n	<i>р</i> , ГПа [14]	S	ΔS	S			
'1				[7]	[8]	[9]	
1		0.6705		0.6705	0.6705	0.6705	
0.9	21.1	0.5317	0.002	0.5384	0.5355	0.5295	
0.8	56.6	0.4209	0.003	0.4201	0.4162	0.3876	
0.7	117	0.3287	0.005	0.3102	0.3068	0.2437	
0.6	224	0.2300	0.006	0.2033	0.2004	0.0958	
0.5	421	0.1195	0.008		0.0902	-0.059	
0.4	815	0.0093	0.011				
0.3	1705	-0.1234	0.018				

Таблица 3. Абсолютная энтропия (Дж/(г К)) MgO при 300 К

ный скачок объема ~6–8%. По нашему мнению, выполненные расчеты абсолютной энтропии указывают на то, что в этой ситуации мы наблюдаем синергетический эффект: резкое падение энтропии является предвестником фазового перехода, а фазовый переход, со своей стороны, приводит к скачкообразному росту энтропии и снимает намечающийся энтропийный кризис в системе.

Следует отметить, что этот результат для MgO мы не можем распространить на более высокие температуры: стандартная энтропия кристалла растет, и чтобы скомпенсировать ее значение на изотерме, необходимо осуществить сжатие вещества в 4-5 раз, далеко за линией фазового перехода. С другой стороны, многие двухатомные кристаллы, например, оксиды щелочно-земельных металлов (Be, Ca, Sr, Ba)O, галогениды шелочных металлов (Na, K, Rb, Cs)Cl, халькогениды бария, церия (S, Se, Te) и другие [28] испытывают фазовые переходы типа В1-В2, и роль энтропии, стремяшейся к нулю при сжатии на изотерме, при анализе этих переходов заслуживает дальнейшего изучения, как и вся проблема Бриджмена в ее термодинамической постановке (1) [1].

Таким образом, на примере кристаллического оксида магния при сжатии в 2–3 раза на изотерме 300 К выявлены резкое падение энтропии и ее стремление к нулю. Это дает основание расширить исходную формулировку П. Бриджмена применительно к проблеме поведения энтропии твердого тела на изотерме при бесконечно высоком сжатии. Если пример с MgO не является исключением, то для термодинамической системы задача преодоления нулевой энтропии может возникать также при сжатии других веществ в 2-3 раза и более. Мы знаем механизмы в виде отрицательных значений КТР и структурных превращений, которые позволяют преодолеть энтропийный кризис. Но мы пока что не знаем, какие сенсорные датчики имеет система для восприятия приближающейся катастрофы и для сохранения своей термодинамической идентичности.

Работа подготовлена при поддержке Российского фонда фундаментальных исследований (код проекта № 17-08-00736).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bridgmen P.W. // Rev. Modern Phys. 1935. V. 7. P. 1.
- Stacey F.D., Davis P.M. // Phys. Earth Planet. Inter. 2004. V. 142. P. 137.
- 3. Фокин Л.Р., Кулямина Е.Ю., Зицерман В.Ю. // Журн. физ. химии. 2020. Т. 94. № 2.
- 4. Фокин Л.Р., Кулямина Е.Ю., Зицерман В.Ю. // Изв. КБГУ. 2020. (в печати)
- 5. Кусков О.Л., Галимзянов Р.Ф., Калинин В.А. и др. // Геохимия. 1982. Т. 20. № 7. С. 984.
- 6. Паньков В., Ульман В., Хайрих Р., Краке Д. // Российский журнал наук о Земле. 1998. Т. 1. С. 11.
- Cynn H., Anderson O.I., Isaak D.G. // J. Phys. Chem. 1995. V. 99. P. 7813.
- Srivastava S.K., Sharma S.K., Vinod K., Malik V.S. // J. Phys. Chem. Solids. 2008. V. 69. P. 1029.
- Sharma S.K., Sharma B.K., Kumar R., Sharma B.S. // Modern Phys. Lett. B. 2011. V. 25. P. 218.
- Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х т. / Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др. Т. III. Кн. 1, 2. М.: Наука, 1981.
- 11. *Chopelas A.* // Phys. Chem. Minerals. 1990. V. 17. P. 142.
- Chopelas A., Boehler R. // Geophys. Res. Lett. 1992.
 V. 19. P. 1983.
- Karki B.B., Wentzcovitch R.M., de Gironcoli S., Baroni S. // Phys. Rev. B. 2000. V. 61. P. 8793.
- Gaurav S., Sharma B.S., Sharma S.B., Upadhyaya S.C. // J. Phys. Chem. Solids. 2004. V. 65. P. 1635.
- Sun X.-W., Liu Z.-J., Chen Q.-F. et al. // Chin Phys B. 2009. V. 18. P. 5001.
- Соколова Т.С., Дорогокупец П.И., Литасов К.Д. // Геология и геофизика. 2013. Т. 54. № 2. С. 237.
- 17. *Abu-Farsakh H., Al-Qasir I., Qteish A. //* Computational Materials Science. 2018. V. 154. P. 159.

- Kushwah S.S., Shanker J.A. // Physica B. 1998. V. 253. P. 90.
- 19. Srivastava S.K., Sharma S.K., Sinha P. // J. Phys. Chem. Solids. 2009. V. 70. P. 255.
- 20. Singh B.P., Chandra H., Shyam R., Singh A. // Bull. Mater. Sci. 2012. V. 35. P. 631.
- 21. Chaturvedi P., Goyal M. // Chin. J. Phys. 2018. V. 56. P. 2069.
- Hama J., Saito K. // J. Phys. Condens. Matter. 1996. V. 8. P. 67.
- 23. *Урусов В.С., Кантор И.Ю.* // Докл. РАН. 2002. Т. 386. № 5. С. 614.
- Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1991. 304 с.
- 25. Coppari F., Smith R.F., Eggert J.H. et al. // Nature Geosci. 2013. V. 6. P. 926.
- Gour A., Shareef F., Singh S. // Phase Transitions. 2015. V. 88. P. 1.
- 27. Dubrovinskaia N., Petitgirard S., Charliton S. et al. // 2019. arXiv: 1904.00476
- 28. *Kholiya K*. Pressure Induced B1-B2 Phase Transition in Binary Solids: A simple potential model approach. LAP LAMBERT Publ., 2012. 96 p.