СТРОЕНИЕ ВЕЩЕСТВАИ КВАНТОВАЯ ХИМИЯ

УЛК 543.424.2

СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ КОМПОЗИТНЫХ АЭРОГЕЛЕЙ ПОЛИТЕТРАФТОРЭТИЛЕН—ОКСИД ГРАФЕНА

© 2020 г. В. И. Корепанов^a, Е. Н. Кабачков^{b,c}, С. А. Баскаков^b, Ю. М. Шульга^{b,*}

^а Российская академия наук, Институт проблем технологии микроэлектроники и особочистых материалов, 142432 Черноголовка, Россия

^b Российская академия наук, Институт проблем химической физики, 142432 Черноголовка, Россия ^c Российская академия наук, Научный центр в Черноголовке, 142432 Черноголовка, Россия *e-mail: vshulga@gmail.com

> Поступила в редакцию 21.12.2019 г. После доработки 21.12.2019 г. Принята к публикации 21.01.2020 г.

Получены и описаны спектры комбинационного рассеяния (KP) композитных аэрогелей политетрафторэтилен—оксид графена (восстановленный оксид графена). Для описания спектров в области $800-2100~{\rm cm}^{-1}$ использованы пять пиков: два гауссиана и три псевдо-фогтовские функции. Установлено, что восстановление гидразином и термическое восстановление по-разному влияют на положение отдельных компонент в спектрах KP. Любая из используемых в настоящей работе обработок (восстановление в гидразине, последующий отжиг при 250° C, отжиг при 370° C) композитного аэрогеля $\Pi T\Phi 9$ - $\Omega \Gamma(B\Omega \Gamma)$ приводит к уменьшению среднего размера графеновых кристаллитов.

Ключевые слова: аэрогель, политетрафторэтилен, оксид графена, спектры комбинационного рассеяния, композиты

DOI: 10.31857/S0044453720110163

Недавно было опубликовано сообщение о первом успешном синтезе аэрогеля на основе политетрафторэтилена (ПТФЭ) [1]. В качестве связки в аэрогеле использовали оксид графена (ОГ). После восстановления гидразином и отжига при 370°С аэрогель с удельным весом приблизительно 30 мг/см³ стал гидрофобным (угол смачивания по воде достигал 163.7 град). Аэрогель показал также высокую абсорбционную емкость по отношению к таким растворителям как изопропанол, ацетон и гексан и достаточно высокую устойчивость при циклических испытаниях сорбция—десорбция, что указывает на перспективы его использования для очистки воды от органических растворителей.

Естественным образом возникает вопрос о состоянии оксида графена в аэрогеле до и после описанных выше процедур, которые делают аэрогель супергидрофобным. Для решения этого вопроса мы решили использовать спектроскопию комбинационного рассеяния (КР) — уникальный метод исследования углеродных материалов, позволяющий отслеживать структурные изменения (см., например, [2–4]). Недавно появилось сообщение, что с помощью метода КР можно также оценить содержание кислорода в оксиде графена на разных стадиях его термического восстановления [5]. Для аэрогелей состава ПТФЭ—ОГ или

ПТФЭ-ВОГ, где ВОГ – восстановленный ОГ, такая возможность представляется уникальной, поскольку использование стандартных методов определения содержания кислорода путем высокотемпературного сжигания затруднителен (выделяющийся при сжигании фтор может повредить стеклянные (кварцевые) детали установки).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Водная суспензия Ф-4Д (Кирово-Чепецкая химическая компания, ТУ 6-05-1246-81) была выбрана в качестве источника ПТФЭ. Эта суспензия содержала ПТФЭ (молекулярная масса 140 000—500 000), поверхностно-активные соединения (смесь этоксилированных алкилфенолов) в качестве стабилизатора и воду в соотношении 6:1:3. Для получения оксида графена мы использовали модифицированный метод Хаммерса [6]. Подробности нашего способа получения ОГ описаны в работах [7, 8].

Синтез аэрогеля ПТФЭ—ВОГ. При приготовлении аэрогеля 30 мл водной суспензии ОГ с концентрацией 11 мг/мл помещали в стеклянный стакан и обрабатывали ультразвуком в течение 5 мин. Затем необходимый объем суспензии ПТФЭ вводили каплями в суспензию ОГ, не прекра-

щая ультразвуковую обработку. После полного введения суспензии ПТФЭ ультразвуковую обработку продолжали в течение еще 5 мин. Чтобы получить гранулированный аэрогель, гелеобразную суспензию смеси ПТФЭ-ОГ медленно по каплям с помощью дозирующего шприца капали в стеклянный сосуд Дьюара, заполненный жидким азотом. После замерзания гранулы в форме капель осаждаются на дне сосуда. Замороженные гранулы сушили в течение 3 суток при температуре жидкого азота внутри лабораторной сублимационной сушилки Martin Christ ALPHA 1-2 LD plus. Для сравнения по этой же схеме получали гранулы аэрогеля чистого оксида графена. Образцы непосредственно после сушки далее в своем обозначении имеют букву С.

Восстановление ОГ проводили в парах гидразина. Для этого полученные гранулы помещали в герметичный полимерный контейнер, на дно которого устанавливали сосуд с водным раствором гидразина. Контейнер выдерживали в сушильном шкафу при 60°С в течение 3 суток. Периодически гранулы перемешивали для равномерного доступа паров гидразина к их поверхности. В результате восстановления цвет гранул с коричневого менялся на черный. После извлечения из контейнера гранулы сушили на воздухе при 100°С еще в течение суток.

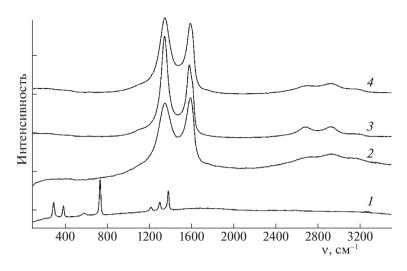
Для удаления поверхностно-активных веществ, присутствующих в суспензии ПТФЭ, восстановленный аэрогель отжигали в трубчатой кварцевой печи в потоке аргона. Отжиг проводился в три этапа. Сначала образец нагревали до $T=120\,^{\circ}\mathrm{C}$ для удаления остаточного гидразина и воды и выдерживали при этой температуре в течение 20 мин; на следующем этапе температуру устанавливали на уровне 250 $^{\circ}\mathrm{C}$ и выдерживали в течение 30 мин; наконец, на последнем этапе повышали до 370 $^{\circ}\mathrm{C}$ и выдерживали в течение 30 мин. Удельный вес гранул после обработки при 370 $^{\circ}\mathrm{C}$ составлял 26 мг/см 3 для композиции ПТФЭ (60%)—ОГ (40%).

Спектры комбинационного рассеяния получали на приборе Bruker Senterra. Длина волны лазерного излучения составляла 532 нм, мощность излучения 1 мВт в точке измерения, а диаметр анализирующего лазерного луча \sim 1 мкм.

В настоящей работе исследовали спектры 6 образцов. Это 3 образца композитного аэрогеля (КАС, КА250 и КА370). Образцы КА250 и КА370 были получены из образца КАС путем его восстановления в парах гидразина и отличались температурой последующего отжига, которая составляла соответственно 250 и 370°С. Для сравнения были получены также спектры двух аэрогелей чистого оксида графена ОГС и ОГГ и спектр пленки ПТФЭ, которая была получена из суспензии Ф-4Д. Образец ОГГ был получен путем вос-

становления образца ОГС в парах гидразина. Отметим здесь, что состав не содержащих фтора образцов ОГС и ОГ250 был определен методом элементного анализа на CHNS/O анализаторе "Vario Micro cube" Elementar GmbH.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Спектр КР для пленки ПТФЭ представлен несколькими узкими пиками, максимумы которых расположены при 296.0, 388.6, 588.1, 600.9, 736.8, 1219.7, 1303.5 и 1384.1 см $^{-1}$ (рис. 1). Полученный нами спектр пленки ПТФЭ по положению пиков близок к спектрам ПТФЭ, полученным ранее (см., например, [9-11]). Отнесение отдельных пиков в спектре ПТФЭ также хорошо известно [9-11].

Отсутствие этих пиков в спектре KP наших аэрогелей (рис. 1) еще раз подтверждает известное положение: интенсивность спектров KP зависит от изменения поляризуемости, которое в случае ОГ намного выше, чем в случае ПТФЭ. Кстати, в ИК-спектрах композитного аэрогеля, где интенсивность определяется изменением дипольного момента атомных групп, существенно более интенсивными оказываются полосы поглощения, обусловленные ПТФЭ [1].

Таким образом, основные пики, присутствующие в спектре композитных аэрогелей, обусловлены оксидом графена или восстановленным оксидом графена (ВОГ). Спектры комбинационного рассеяния ОГ и ВОГ также хорошо известны (см., например, [12–15]). В то же время информация, получаемая разными авторами из спектров КР, несколько отличается. Мы следуем за авторами работы [5], которые утверждают, что спектры комбинационного рассеяния ВОГ, полученные при возбуждении излучением с длинной волны 532 нм, могут быть использованы для получения данных о содержании кислорода кристалличности и степени беспорядка в нем.

Как видно из рис. 1, максимальную интенсивность в спектрах аэрогеля имеют пики D и G с центрами приблизительно при ~ 1350 и ~ 1580 см $^{-1}$ соответственно. Видно также, что эти пики для аэрогеля, отожженного при 250° С, уже по сравнению с таковыми для аэрогеля, отожженного при 370° С. Важная особенность спектров — наличие плеч со стороны малых волновых чисел от пика D и со стороны больших волновых чисел от пика G. Эти особенности указывают на то, что двух пиков недостаточно для описания спектра в области 1000-2000 см $^{-1}$.

На рис. 2 приведен пример описания спектра композитного аэрогеля, отожженного при 250°С, в области 800-2100 см⁻¹ пятью пиками: двумя гауссианами (пики D^* и D") и тремя псевдо-фогтовскими функциями (D, G и D), как предложено

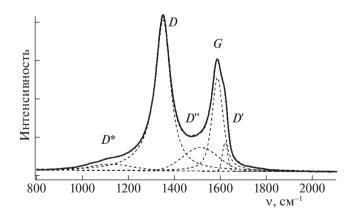


Рис. 1. Спектры КР пленки ПТФЭ (1) и композитных аэрогелей КАС (2), KA250 (3) и KA370 (4).

в работе [5]. Разложение было проведено при помощи гибкой подгоночной функции, описанной в работе [16]. Положения (*Pos*), полуширины (*FWHM*) и относительные интенсивности (*Int*) функций подгонки показаны в табл. 1 для спектров всех изученных образов.

В работе [5] было установлено, что положения пиков D" и D^* смещаются к более низким и более высоким значениям волнового числа соответственно, когда содержание кислорода уменьшается. Как видно из табл. 1, положения этих пиков в спектрах образцов ОГС и КАС практически совпадают, что кажется естественным, поскольку эти образцы были получены непосредственно после лиофильной сушки и никаким обработкам не подвергались. В табл. 2 приведены данные элементного анализа для ОГС. С учетом совпадения положения пиков D" и D^* в спектрах образцов ОГС и КАС можно полагать, что содержание кислорода в оксиде графена в образце КАС такое же, как и в образце ОГС. Однако, если не знать данных элементного анализа для образца ОГС и сравнивать только положения пиков D" и D^* в наших образцах с положениями этих пиков в исходном образце ОГ, приведенными в работе [5] (1538) и $1125 \,\mathrm{cm}^{-1}$, оценка по рис. 3a), то мы должны считать, что содержание кислорода в нашем образце ОГС >50% (если использовать только положение пика D^*) и <25% (если использовать только положение пика D"). Отсюда следует два очень интересных, на наш взгляд, вывода. Первый вывод положения пиков D" и D^* в спектрах KP оксида графена определяются не только общим содержанием кислорода, но и другими характеристиками исследуемого образца. Например, соотношением разных кислородсодержащих групп между собой, наличием примесей и т.п. Второй вывод — корреляцию между положением пиков D" и D^* , обнаруженную в [5], следует рассматривать как тенденцию, которая определяется исходным образцом.

Далее, образец КА370 укладывается в описанную в работе [5] тенденцию, а образцы ОГГ и КА250 — нет. Более того, образцы ОГГ и КА250 одинаковым образом отклоняются от этой тенденции. Причины этого понятны — в [5] описываются изменения спектров КР, которые обусловлены термическим восстановлением оксида графена, а образец ОГГ получен при восстановлении ОГ в парах гидразина и содержит заметное число азотсодержащих функциональных групп, как это следует из данных табл. 2. Схожее положение пиков в спектре КР образцов ОГГ и КА250 означает, что температура отжига 250°C недостаточна для азотсодержащих удаления функциональных групп. Отжиг при 370°C уменьшает содержание азотных групп, и мы наблюдаем тенденцию, опи-

Рис. 2. Спектр КР аэрогеля KA250 в диапазоне $800-2100 \, \mathrm{cm}^{-1}$ и его описание двумя гауссианами (пики D^* и D^*) и тремя псевдо-фогтовскими функциями (D, G и D^*). Обоснование разложения по такому набору функций см. в [5].

Таблица 1. Положения (*Pos*), полуширины (*FWHM*) и относительные интенсивности (*Int*) пиков в КР-спектрах всех изученных образцов

Образец	Пик	Pos, cm^{-1}	<i>FWHM</i> , см ⁻¹	Int, %
ОГС	D^*	1114.2	178	3.2
	D	1348.5	134	60.3
	D"	1520.0	123	4.8
	G	1587.1	78	28.8
	D'	1613.3	32	3.0
ОГГ	D^*	1144.2	220	5.2
	D	1347.9	80	60.1
	D"	1522.2	140	9.7
	\boldsymbol{G}	1584.0	55	22.4
	D'	1617.1	27	2.7
KAC	D^*	1113.4	202	3.2
	D	1351.3	161	62.1
	D"	1520.0	135	6.2
	\boldsymbol{G}	1588.0	83	26.9
	D'	1613.9	32	1.7
KA250	D^*	1121.0	215	4.4
	D	1348.5	80	57.4
	D"	1511.0	180	13.6
	\boldsymbol{G}	1584.0	57	22.1
	D'	1617.0	27	2.5
KA370	D^*	1119.6	220	3.7
	D	1350.6	126	61.5
	D"	1521.5	150	9.1
	G	1588.0	65	23.0
	D'	1615.4	32	2.7

Таблица 2. Элементный состав (мас. %) аэрогеля оксида графена до и после восстановления гидразином

Образец	[C]	[H]	[N]	[S]	[0]
ОГС	47.53	3.101	0.00	1.156	48.21
ΟΓΓ	63.10	2.243	2.96	1.538	30.16

Примечание. Содержание кислорода оценивали по формуле: $[{\bf O}]=100-\Sigma_i[C_i]$, где $[C_i]$ — содержание i-элемента из таблицы.

санную в [5], т.е. положение пиков D" и D* смещается к более низким и более высоким значениям волнового числа соответственно, при переходе от образца КАС к образцу КА370. Если мы будем оценивать содержание кислорода в образце по положению пиков D" и D* и корреляции, приведенной в [5], то получим ~40% по положению пика D* и ~20% по положению пика D". Однако, если использовать величины относительного смещения этих пиков (6.5 см $^{-1}$), то оценка по обоим

пикам даст величину $\sim 30\%$, что представляется разумным.

Отношение интенсивностей пиков D и G (I_D/I_G) может служить мерой беспорядка в углеродной sp^2 -решетке. Величину I_D/I_G можно использовать также для оценки размера sp^2 -доменов L_a в ВОГ [17, 18]:

$$L_a = (2.4 \times 10^{-10}) \lambda_{\rm L}^4 (I_D / I_G)^{-1}, \tag{1}$$

где λ_L — длина волны (в нм) возбуждающего лазера. Рассчитанные значения L_a равны 8.1, 7.4, 9.1, 7.7 и 7.6 нм для образцов ОГС, ОГ250, КАС, КА250 и КА370 соответственно. Полученные по формуле (1) величины указывают на то, что размеры графеновых кристаллитов уменьшаются в ходе восстановления.

Таким образом, проведенные исследования показали, что пики, характерные для ПТФЭ, отсутствуют в спектрах КР аэрогелей ПТФЭ-ОГ(ВОГ). В спектрах КР синтезированных нами композитных аэрогелей присутствуют только пики, обусловленные оксидом графена (восстановленным оксидом графена). Замечено, что корреляционные зависимости между положениями отдельных пиков в спектре КР и содержанием кислорода в восстановленном оксиде графена, описанные в работе [5], отражают тенденцию, которая проявляется только при термическом восстановлении. При химическом восстановлении эта тенденция нарушается. Восстановление гидразином и термическое восстановление по-разному влияют на положение отдельных компонент в спектрах КР. Установлено, что температура отжига 250°C недостаточна для удаления азотсодержащих функциональных групп из оксида графена в композите ПТФЭ-ВОГ. Тем не менее, использование данных [5] и калибровки по КР-спектру аэрогеля чистого оксида графена позволило нам оценить содержание кислорода в графеновом компоненте исходного композитного аэрогеля и композитного аэрогеля, восстановленного в парах гидразина и отожженного затем при 370°C. Установлено также, что оксид графена в композитном аэрогеле ПТФЭ-ОГ сохраняет характерную для оксида графена sp^2 -структуру, однако средний размер графеновых кристаллитов в композитном аэрогеле оказывается меньше такового в аэрогеле из чистого оксида графена, полученного идентичным методом.

Исследование выполнено по государственному заданию Российской Федерации (государственный регистрационный номер 0089-2019-0012 (ИПХФ), частично по темам № АААА-А19-

119061890019-5 (ИПХФ) и 075-00475-19-00 (ИПТМ)) при финансовой поддержке Минобрнауки РФ (проект RFMEFI60419X0235) с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН и НЦЧ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Baskakov S.A., Baskakova Y.V., Kabachkov E.N. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32517.
- 2. *Roy D., Chhowalla M., Wang H. et al.* // Chem. Phys. Lett. 2003. V. 373. № 1–2. P. 52.
- 3. *Calizo I., Balandin A.A., Bao W. et al.* // Nano Lett. 2007. V. 7. № 9. P. 2645.
- 4. *Kudin K.N., Ozbas B., Schniepp H.C. et al.* // Nano Lett. 2008. V. 8. № 1. P. 36.
- 5. Claramunt S., Varea A., López-Díaz D. // J. Phys. Chem. C. 2015. V. 119. № 18. P. 10123.
- 6. William S., Hummers J.R., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. № 6. P. 1339.
- 7. Shulga Y.M., Baskakov S.A., Smirnov V.A. et al. // J. Power Sources. 2014. V. 245. P. 33.

- 8. Baskakov S.A., Baskakova Y.V., Lyskov N.V. et al. // Electrochimica Acta. 2018. V. 260. P. 557.
- 9. Wu C.K., Nicol M. // Chem. Phys. Lett. 1973. V. 21. № 1. P. 153.
- 10. Gruger A., Régis A., Schmatko T., Colomban P. // Vibrational Spectros. 2001. V. 26. № 2. P. 215.
- 11. Shulga Y.M., Melezhik A.V., Kabachkov E.N. et al. // Appl. Phys. A. 2019. V. 125. № 7. P. 460.
- 12. Cançado L.G., Jorio A., Ferreira E.H.M., Stavale F. // Nano Lett. 2011. V. 11. № 8. P. 3190.
- Casero E., Alonso C., Vazquez L. // Electroanalysis. 2013. V. 25. № 1. P. 154.
- Dong X., Wang K., Zhao C. et al. // J. Alloys and Compounds. 2014. V. 586. P. 745.
- 15. *Dashairya L., Sharma M., Basu S., Saha P.* // J. Alloys and Compounds. 2019. V. 774. P. 625.
- Korepanov V.I., Sedlovets D.M. // Analyst. 2018. V. 143.
 № 11. P. 2674.
- 17. *Pimenta M.A.*, *Dresselhaus G.* // Phys. Chem. Chem. Phys. 2007. V. 9. № 11. P. 1276.
- 18. *Brown R.G.* // J. Chem. Phys. 1964. V. 40. № 10. P. 2900.