СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 539.193

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА УФ-СПЕКТРА ПОГЛОЩЕНИЯ ВЫСОКОГО РАЗРЕШЕНИЯ БЕНЗАЛЬДЕГИДА В ГАЗОВОЙ ФАЗЕ

© 2020 г. Л. А. Королева^{*a*,*}, К. С. Андриасов^{*a*}, А. В. Королева^{*b*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет. 119991, Москва, Россия

^b Московский государственный университет имени М.В. Ломоносова, Физический факультет. 119991, Москва, Россия

> *e-mail: Koroleva@phys.chem.msu.ru Поступила в редакцию 23.02.2020 г. После доработки 23.02.2020 г. Принята к публикации 24.04.2020 г.

УФ-спектр высокого разрешения паров бензальдегида получен в области 26 600–28 500 см⁻¹ при высокой температуре (140°С). Использован метод анализа разрешенной колебательной структуры полос $n-\pi^*$ -перехода в УФ-спектре. Выявлено, что УФ-спектр паров бензальдегида состоит из 60 полос поглощения. Установлена достоверность значений частот 0-v-переходов крутильного колебания в основном (S_0) и возбужденном (S_1) электронных состояниях. Надежность определения этих значений доказана их многократным повторением в таблицах Деландра (ТД) от 0–0-полосы и частот колебания S_1 -состояния (см⁻¹): v' = 728, v' = 1091, v' = 1315; Частота 0–0 полосы для бензальдегида равна 26912.8 см⁻¹. В S_0 -состоянии определена частота крутильного колебания этой молекулы (111.2 ± 0.4 см⁻¹); значения частот переходов 0–v-крутильного колебания S $_0$ -состоянии определены до высокого значения колебательного квантового числа v = 7. Из построенных ТД при анализе колебания бензальдегида (138.0 ± 0.4 см⁻¹) и частоты 0–v-переходов крутильного колебания до v = 6. Для обоих электронных состояний найдены гармонические частоты ω_e и коэффициенты ангармоничности x_{11} крутильного колебания. Проведено полное отнесение 60 полос колебательной структуры.

Ключевые слова: заторможенное внутреннее вращение, таблица Деландра, 0-v-переходы, крутильные колебания, основное (S_0) и возбужденное (S_1) электронные состояния **DOI:** 10.31857/S0044453720110175

Метод анализа разрешенной колебательной структуры полос $n-\pi^*$ -перехода в УФ-спектре паров α . β -ненасыщенных карбонильных соединений $R_4R_3C = CR_2 - COR_1$, где $R_1 = H$, F, Cl; $R_2 = R_3 =$ $= R_4 = H, CH_3 [1-3]$ ряда (I) и соединений C₆H₅-COR, где R = H, F, Cl [4–7] ряда (II) применяется нами с целью изучения внутреннего вращения (ВВ) вокруг одинарной связи С-С, находящейся в сопряжении с двумя двойными связями (=С-С=). В настоящей работе этот метод применен к молекуле бензальдегида (R=H) ряда (II). Достоинство применяемого метода - его информативность, так как колебательная структура УФ-спектров паров многих исследуемых соединений содержит около сотни полос поглощения (иногда больше-метакрилоилфторид [3]). Большинство из этих полос поглощения соответствуют определенному переходу между уровнями энергии крутильного колебания основного (S_0) и возбужденного (S_1) электронных состояний. Поэтому применяемый нами метод позволяет определять значения частот 0-v-переходов крутильного колебания в обоих электронных состояниях до высоких значений колебательного квантового числа v. Полученные частоты 0-v-переходов крутильного колебания в обоих электронных состояниях позволяют построить потенциальные функции внутреннего вращения (ПФВВ) вида:

$$V(\varphi) = 1/2 \sum V_n (1 - \cos n\varphi), \qquad (1)$$

где ϕ — угол поворота одной группы атомов ("волчка") относительно другой ("остова").

Таким образом, этот метод, в отличие от ИК, КР, микроволновой и фурье-спектроскопии в дальней ИК-области, позволяет изучить внутрен-

нее вращение не только в S_0 -, но и в S_1 -состояниях. Впервые анализ колебательной структуры УФ-спектра паров бензальдегида был нами опубликован в 1980 г. [4]. В этой работе по секвенциям и прогрессиям, полученным при анализе 22 полос поглощения колебательной структуры УФ-спектра этой молекулы, были получены частоты 0-*v*переходов крутильного колебания в обоих электронных состояниях до v = 4. Значение барьера внутреннего вращения ($\Delta^{\ddagger}H$) в S_0 -состоянии составляло 5.4 ккал/моль (1900 см⁻¹). В 2000 г. с применением разработанного нами комплекса программ были проанализированы 44 полосы поглошения колебательной структуры УФ-спектра паров бензальдегида, полученные при более высоких значениях температуры и давления паров [5]. По таблице Деландра от 0-0-полосы в [5] были найдены в S₀-состоянии частоты 0-*v*-переходов крутильного колебания до v = 7 и значение $V_2 =$ = 2025 см⁻¹, соответствующее $\Delta^{\ddagger}H = 5.8$ ккал/моль (2040 см⁻¹), что выше значений: 4.66 ккал/моль (1630 см⁻¹), 4.90 ккал/моль (1714 см⁻¹), и 4.61 ккал/моль (1611 см⁻¹), полученных соответственно из ИК, микроволновой и фурье-спектроскопии в дальней ИК-области [8-10]. Для бензальдегида мы наблюдали разногласие в значениях частот 0-v-переходов крутильного колебания, полученных нами в [5] и из анализа фурье-спектров в дальней ИК-области [10]. После изменения в [5] отнесения 0-*v*-переходов работы [10] наблюдалось хорошее согласие в значениях частот этих переходов до v = 4 [5, 10].

Авторы [11] рассматривают различия между значениями барьеров внутренного врашения бензальдегида, рассчитанными квантово-механическими методами и экспериментально полученными из частот переходов крутильного колебания ИК- и микроволновой спектроскопии. Результаты наших работ [4, 5] они не приводят. Авторы [11] считают величины $\Delta^{\ddagger} H$, полученные из эксперимента, заниженными и связывают это с возможно ошибочным определением частот 0*v*-переходов крутильного колебания в *S*₀-состоянии и неправомерностью применения модели Питцера для расчета приведенного момента инерции. Предполагаемая ими величина $\Delta^{\ddagger}H$ ближе к 7.7 ккал/моль. Хотя барьер (ВВ), полученный нашим методом, несколько выше, чем в работах [8-10], он тоже ниже рассчитанного квантово-механическим методом [11]. Поэтому в настоящей работе проводится анализ колебательной структуры нового более информативного $У\Phi$ -спектра, полученного при еще более высоких значениях температуры и давления паров, чем в

предыдущих работах [4, 5], с целью установления достоверности значений частот 0-v-переходов крутильного колебания бензальдегида в основном (S_0) электронном состоянии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Перед съемкой УФ-спектра образец бензальдегида очищали от примесей путем обычной и холодной перегонки с замораживанием и вакуумной откачкой. УФ-спектры поглощения бензальлегила получали на приборе высокого разрешения ДФС-2. Снимали во втором порядке решетки 2400 штрихов/мм с обратной линейной дисперсией 8.3 Å/мм. В качестве источника излучения использовали сплошного лампу ДКСШ-1000. Использовали многоходовую (3 м) кварцевую кювету с рубашкой, по которой пропускали силиконовое масло. Давление паров изменялось от 20 до 400 мм рт. ст. Время экспозиции меняли от нескольких минут до часов, так что в область нормального почернения попадали разные участки спектра. Регистрация спектров фотографическая – на пленку КН-2. В области $26\ 600-28\ 500\ \text{см}^{-1}$ была получена хорошо разрешенная колебательная структура УФ-спектра паров бензальдегида с 60 полосами поглощения сильной и средней интенсивности. Для измерения волновых чисел полос поглощения паров бензальдегида снимали спектр железа.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Молекула бензальдегида изучалась давно с разными целями. Микроволновое исследование [9] показало, что небольшой отрицательный дефект инерции указывает на плоское строение равновесной геометрии молекулы бензальдегида. ИК-, КР- и фурье-спектры в дальней ИК-области получены и отнесены в работах [8, 10, 12-17]. Изучение УФ-спектров паров бензальдегида проводилось в [18, 19]. Полосы поглощения УФспектра паров бензальдегида отнесены к переходу $S_0 \rightarrow S_1$ симметрии ${}^1A' - {}^1A''$ и, судя по интенсивности, к $n-\pi^*$ -переходу [19]. Спектры состояли из небольшого количества линий поглощения (~10). Основной целью авторов было отнесение фундаментальных частот в возбужденном (S₁) электронном состоянии и определение их симметрии, что очень важно и для нашего исследования колебательной структуры УФ-спектра бензальдегида.

Колебательная структура УФ-спектра бензальдегида, полученного в настоящей работе, состоит из широких полос С-типа и (A+B)-типа. Перпендикулярные полосы С-типа имеют максимум. Параллельные полосы (A+B)-типа состоят из двух нешироких компонент, между которыми наблюдается провал. Контур полос обоих типов рассчитан в [19]. Начала полос обоих типов неизвестны, однако для получения частот колебаний в УФ-спектре используются разностные величины. Поэтому важно измерять полосы одного типа единообразно. Полосы С-типа измерялись нами по максимуму поглощения, (A+B)-типа-по провалу на контуре.

Выражение для волновых чисел всех возможных колебательных переходов (т.е. системы полос) имеет вид [20]:

$$v = v_e + G'(v'_1, v'_2, v'_3, ...) - G''(v''_1, v''_2, v''_3, ...),$$

где $v_e = T'_e - T''_e$. Подставив выражения для колебательных термов, получим [20]:

$$\nu = \nu_{e} + \sum_{i} \omega'_{i} (v'_{i} + 1/2) + \sum_{i} \sum_{k \ge i} x'_{ik} (v'_{i} + 1/2) (v'_{k} + 1/2) -$$
(2)

$$-\sum_{i}\omega_{i}^{"}(v_{i}^{"}+1/2)+\sum_{i}\sum_{k\geq i}x_{ik}^{"}(v_{i}^{"}+1/2)(v_{k}^{"}+1/2).$$

На практике бывает удобнее пользоваться энергиями уровней по отношению к энергии самого низкого колебательного уровня в каждом состоянии [20]:

$$v = v_{00} + \sum_{i} \omega_{i}^{o'} v_{i}' + \sum_{i} \sum_{k \ge i} x_{ik}^{o'} v_{i}' v_{k}' - \sum_{i} \omega_{i}^{o''} v_{i}'' + \sum_{i} \sum_{k \ge i} x_{ik}^{o''} v_{i}'' v_{k}'' - \dots,$$

= $\omega_{i} + x_{i} + 1/2 \sum_{i} x_{ik}^{o''} v_{i}'' v_{k}'' - \dots,$

где $\omega_i^\circ = \omega_i + x_{ii} + 1/2 \sum_{k \neq i} x_{ik}$,

$$v_{00} = v_{e} + 1/2 \sum_{i} \omega_{i}' + 1/4 \sum_{i} \sum_{k \ge i} x_{ik}^{\circ} - 1/2 \sum_{i} \omega_{i}'' - 1/4 \sum_{i} \sum_{k \ge i} x_{ik}''.$$
(3)

Здесь штрих соответствует возбужденному электронному состоянию, а два штриха — основному. Обычно крутильная частота ω_t намного меньше других и легко отделяется от других частот. В такой ситуации ее можно рассматривать в приближении ангармонического осциллятора:

$$\omega_{tv} = v\omega_{e} + v(v+1)x_{tt} + v\delta = v\omega_{to} + v(v+1)x_{tt},$$
 (4)
где $\delta = 1/2(x_{t1} + x_{t2} + ...); \omega_{te} + \delta = \omega_{to}.$

Наш экспериментально полученный УФспектр паров бензальдегида информативный. Большинство полос колебательной структуры этого спектра соответствуют определенному переходу с уровня энергии крутильного колебания основного (S_0) электронного состояния с колебательным квантовым числом v'' на уровень энергии возбужденного (S_1) электронного состояния с колебательным квантовым числом v'. Поэтому мы из анализа колебательной структуры этого

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020

спектра можем получить богатую информацию о значениях частот 0-v-переходов крутильного колебания в обоих электронных состояниях до высоких значений v'' и v'.

В результате анализа колебательной структуры УФ-спектра паров бензальдегида в настоящей работе была определена частота 0-0-полосы, равная 26912.8 см⁻¹. Это значение подтверждается фундаментальными колебательными частотами ИК- и КР-спектров основного (S_0) электронного состояния и фундаментальными частотами возэлектронного бужденного (S_1) состояния (табл. 1). Отнесение частот табл. 1 к фундаментальным частотам в возбужденном (S_1) электронном состоянии соответствует их отнесению в работах [18, 19], а также подтверждается в нашей работе построением от них таблиц Деландра (ТД). Значения измеренных нами в настоящей работе волновых чисел полос поглощения колебательной структуры УФ-спектра паров бензальдегида и предложенное отнесение значительно отличаются от приведенных в [5] (табл. 2). Это связано с большей информативностью спектра настоящей работы, что привело к расширению ТД от 0-0полосы и построению новых информативных ТД. Если крутильное колебание отделено и возбуждено, то в рамках одномерной жесткой модели можно выделить уравнение для чисто крутильных переходов. Оно описывает соответствующую ТД от 0-0-полосы определенного электронного перехода:

$$\mathbf{v} = \mathbf{v}_{00} + \omega_{l}' v_{l}' + \sum_{k} x_{ik}' (v_{l}')^{2} + \dots - \omega_{l}' v_{l}'' - \sum_{k} x_{ik}' (v_{l}'')^{2} - \dots$$
(5)

Для более достоверного и быстрого анализа колебательной структуры УФ-спектра бензальдегида используется разработанный нами комплекс программ. По программе "NONIUS" среди волновых чисел УФ-спектра проводится поиск прогрессий, которые являются строками и столбцами ТД, и секвенций - диагональных элементов этой таблицы. В таблицах Деландра, которые строятся от 0-0-полосы и от фундаментальных частот, выполняется равенство значений частот одинаковых переходов крутильного колебания во всех строках (частоты переходов крутильного колебания в основном электронном S₀-состоянии). В столбцах ТД также выполняется равенство уже других значений частот одинаковых переходов крутильного колебания (частоты переходов крутильного колебания в возбужденном электронном состоянии S_1). Важным моментом для правильного получения всех значений частот переходов молекулы бензальдегида в обоих электронных состояниях является единообразное измерение полос одного типа. При анализе колебательной структуры УФ-спектров бензальдегида было установле-

N^*	Сим-	Отнесение	Жидкость				Газ	УФ-спектр			
1	метрия	[12]	ИК [12]	KP [12]	ИК [14]	ИК [15]	ИК [17]	ИК [10]	УФ-спе 1К [10] S ₀ 110.9 111 223.8 221 238 238	S_1	
1	<i>a</i> "	$\chi_{torsion}$	133			111 [8]	111	110.9	111	138	
2	<i>a'</i>	$\delta(\Phi\text{-CHO})$	221	229		223	217	223.8	221	217	
3	<i>a</i> "	ф-CHOwag	245	246	245	234, 237 [16]			238	249	
4	<i>a</i> '	v16b	449		442	449	450			422	
5	<i>a</i> "	v11,ring [13]	746				740			728	
6	<i>a</i> '	v9b	1170	1172	1171	1167	1168			1184	
7	<i>a</i> '	φ-CHOstret	1206	1206	1206	1202	1202			1091	
8	<i>a</i> '	v3	1314	1316	1314	1313	1314			1335	
9	<i>a</i> '	C=O _{stret}	1707	1694	1701	1727	1728			1315	

Таблица 1. Фундаментальные колебательные частоты бензальдегида в газовой фазе, найденные при анализе колебательной структуры УФ-спектра (см⁻¹)

*N** – номер колебания

но, что с такими же значениями частот 0-v''- и 0v'-переходов крутильного колебания, как в ТД от 0-0-полосы, строятся информативные таблицы Деландра с началами, отстоящими от 0-0-полосы на величину $\Delta \omega_i$, равную +728, +1091, +1315 см⁻¹, и менее информативные с $\Delta \omega_i = +217, +249, +422,$ $+1184 \,\mathrm{cm}^{-1}$. Полосы поглощения, отстоящие от 0-0-полосы бензальдегида на эти величины, были отнесены к фундаментальным частотам молекулы в S₁-состоянии (табл. 1). Для бензальдегида были построены ТД от 0-0-полосы, $v' = 728 \text{ см}^{-1}$, $v' = 1091 \text{ cm}^{-1}, v' = 1315 \text{ cm}^{-1}$ и другие менее информативные (табл. 2). ТД от 0–0-полосы и v' == 1315 см⁻¹ приведены табл. 3, 4. Для определения значений частот 0-и-переходов крутильного колебания, гармонических частот ω, и коэффициентов ангармоничности x₁₁ этого колебания в обоих электронных состояниях применялась разработанная нами программа v₀₀. Значения частот одинаковых 0-и-переходов крутильного колебания, гармонических частот ω, и коэффициентов ангармоничности *x*₁₁ этого колебания в основном (S_0) электронном состоянии, полученные из таблиц Деландра от 0–0-полосы, $v' = 728 \text{ см}^{-1}$, v' == 1091 см⁻¹, v' = 1315 см⁻¹, находятся в хорошем согласии (табл. 5). В двух таблицах Деландра от 0-0-полосы и v' = 1315 см⁻¹ значения частот одинаковых 0-и-переходов крутильного колебания бензальдегида в основном (S_0) электронном состоянии подтверждаются до высокого значения колебательного квантового числа v = 7. Частота крутильного колебания паров бензальдегида в основном (S_0) электронном состоянии равна 111.2 ± ± 0.4 см⁻¹ (табл. 5). Многократность повторения

частот одинаковых 0-и-переходов крутильного колебания как внутри одной таблицы Деландра, так и в нескольких ТД обеспечивает надежность определения их значений. Кроме того, эти значения частот совпали в основном (S_0) электронном состоянии с частотами аналогичных 0-и-переходов нашей работы [5], в которой частоты 0-*v*-переходов крутильного колебания получены только из одной ТД и требовали подтверждения в силу конфликта между величиной барьера, вычисляемой по экпериментальным частотам 0-и-переходов этого электронного состояния, и расчетной [11]. Квантово-механический расчет частот 0-ипереходов крутильного колебания до v = 4 в двумерной модели работы [21], исходя из рассчитанной в ней (ПФВВ) с высоким значением барьера внутреннего врашения, также близок к частотам одинаковых 0-и-переходов настоящей работы (табл. 5). Это бывает тогда, когда взаимодействие крутильного колебания с другими незначительно. Авторы [21] сравнивают свои расчетные значения частот переходов со значениями для аналогичных переходов в работе [10], которые они, как и мы в [5], переотнесли. Барьер ВВ и частоты переходов крутильного колебания бензальдегида авторы [10] рассчитывали, как и мы, в одномерной модели.

Значения частот одинаковых 0-v-переходов крутильного колебания, гармонических частот ω_e и коэффициентов ангармоничности x_{11} этого колебания в возбужденном (S_1) электронном состоянии, полученные из четырех таблиц Деландра от 0-0-полосы, $v' = 728 \text{ см}^{-1}$, $v' = 1091 \text{ см}^{-1}$, $v' = 1315 \text{ см}^{-1}$ находятся в хорошем согласии до колебательного квантового числа v = 3 (табл. 6). Частота крутильного колебания паров бензальдеги-

N⁰	ω_i	Отнесение	№	ω_i	Отнесение
1	26674.5	310	31	27529.3	$5_0^1 1_1^0$
2	26691.6	2_{1}^{0}	32	27557.8	$5_0^1 1_2^1$
3	26701.5	$3_1^0 1_1^1$	33	27584.6	$5_0^1 1_3^2$
4	26720.5	$2_1^0 1_1^1$	34	27612.1	3_0^2
5	26768.8	$2_1^0 1_3^0$	35	27640.6	5_0^1
6	26801.8	1_{1}^{0}	36	27652.5	3_0^3
7	26830.1	1^{1}_{2}	37	27680.0	$5^1_0 1^6_7$
8	26856.9	1_{3}^{2}	38	27717.9	$9_0^1 1_6^1, 5_0^1 1_3^3$
9	26883.6	1_{4}^{3}	39	27778.4	$5^1_0 1^1_0$
10	26912.8	00	40	27783.1	$7^1_0 1^0_2$
11	26930.7	1_{6}^{5}	41	27888.0	$9_0^1 1_7^3$
12	26940.3	1_{1}^{1}	42	27914.0	$5_0^1 1_0^2$
13	26953.7	1_{7}^{6}	43	27921.6	$7^1_0 1^1_2$
14	26965.9	1_{2}^{2}	44	27928.9	$9^1_01^1_4$
15	26990.4	1_{3}^{3}	45	27986.1	$9_0^1 1_6^3$
16	27020.3	$2_0^1 1_1^0$	46	28003.9	7^{1}_{0}
17	27050.9	1_{0}^{1}	47	28031.2	$7^1_0 1^1_1$
18	27075.5	1_{1}^{2}	48	28081.7	$7_0^1 1_3^3$
19	27103.5	$2_0^1 1_4^3$	49	28093.0	$9_0^1 1_5^3$
20	27121.1	1_{3}^{4}	50	28097.1	6_0^1
21	27129.7	2_{0}^{1}	51	28124.6	$6_0^1 1_1^1$
22	27162.2	$3_0^1, 1_5^6$	52	28142.2	$9_0^1 1_2^1, 7_0^1 1_0^1$
23	27188.5	$3_0^1 1_1^1$	53	28227.4	9_0^1
24	27214.5	$3_0^1 1_2^2$	54	28247.6	8_0^1
25	27279.9	$4_0^1 1_3^2$	55	28254.0	$9_0^1 1_1^1$
26	27308.9	$4_0^1 1_4^3$	56	28279.6	$9_0^1 1_2^2, 7_0^1 1_0^2$
27	27334.4	4_0^1	57	28300.1	$7_0^1 1_1^3$
28	27443.3	$4_0^1 1_1^0$	58	28365.4	$9^1_0 1^1_0$
29	27470.3	$4_0^1 1_3^4$	59	28388.7	$9_0^1 1_1^2$
30	27477.5	$5_0^1 1_4^2$	60	28499.7	$9_0^1 1_0^2$

Таблица 2. Волновые числа полос поглощения паров бензальдегида (см⁻¹)

Примечание: $N_{v''}^{v'} - N$ соответствует номеру колебания в табл. 1; v'' – колебательное квантовое число основного (S_0) электронного состояния; v' – колебательное квантовое число возбужденного (S_1) электронного состояния.

Таблица 3. Таблица Деландра от 0–0-полосы бензальдегида

<i>V</i> '	<i>v</i> "									
	0	1	2	3	4	5	6	7		
0	10 ^a	6								
1	17	12	7							
2		18	14	8						
3				15	9					
4				20						
5							11			
6						22		13		

^а Номера полос поглощения соответствуют их номерам в табл. 2.

Таблица 4. Таблица Деландра от $v' = 1315 \text{ см}^{-1}$ бензальдегида

<i>v</i> '	<i>v</i> "								
,	0	1	2	3	4	5	6	7	
0	53								
1	58	55	52		44		38		
2	60	59	56						
3						49	45	41	

Примечание. Номера полос поглощения соответствуют их номерам в табл. 2.

да в возбужденном (S_1) электронном состоянии равна 138.0 ± 0.4 см⁻¹ (табл. 6). Многократность повторения частот одинаковых переходов в нескольких ТД до v = 3 обеспечивает надежность их определения в S_1 -состоянии. В таблице Деландра от 0–0-полосы частоты переходов в возбужденном (S_1) электронном состоянии были определены до v = 6.

Таким образом, при построении нескольких таблиц Деландра подтверждена надежность определения значений частот 0-*v*-переходов крутильного колебания паров бензальдегида в обоих электронных состояниях, необходимых для вычисления экспериментальных барьеров внутреннего вращения. Доказана достоверность значений частот крутильного колебания в основном (S_0) электронном состоянии, полученных методом анализа колебательной структуры УФ-спектра. Различия между экспериментальным и расчетным барьером ВВ в S₀-состоянии возник из-за ошибочных значений частот 0-и-переходов крутильного колебания спектра в дальней ИК-области [10], а также из-за применения модели Питцера для расчета приведенного момента инерции. В работах [8, 9] частота крутильного колебания в S_0 -состоянии близка к полученной нами и к рас-

КОРОЛЕВА и др.

0-v	ν_{00}	v' = 728	v' = 1091	v' = 1315	ω _{cp}	ω _{cp} [5]	[21]*
0-1	111.0	111.2	111.0	111.6	111.2 ± 0.4	110.9 ± 0.1	110
0-2	220.8	221.0	220.7	221.1	220.9 ± 0.3	220.6 ± 0.2	220
0-3	329.3	329.3	329.1	329.4	329.3 ± 0.2	329.2 ± 0.2	328
0-4	436.6	436.2		436.3	436.4 ± 0.2	436.5 ± 0.1	436
0-5	542.6			541.6	542.1 ± 0.5	542.7 ± 0.1	
0-6	647.5			645.4	646.5 ± 1.0	647.5 ± 0.3	
0-7	751.1			748.5	749.8 ± 1.3	751.1 ± 0.3	
ω _e	112.2	111.9	111.6	112.1	112.0 ± 0.4	111.7 ± 0.5	
$-x_{11}$	0.6	0.7	0.6	0.7	0.7 ± 0.1	0.6 ± 0.05	

Таблица 5. Значения частот переходов крутильного колебания и ω_e, x_{11} для бензальдегида в основном (S_0) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра (см⁻¹); ω_{cn} – средние значения

* pacчet CASSCF(12e-11MO)/def2-TZVPP в 2D-модели.

Таблица 6. Значения частот переходов крутильного колебания и ω_e , x_{11} для бензальдегида в возбужденном (S_1) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра (см⁻¹); ω_{cp} – средние значения

0-v	v_{00}	v' = 728	v' = 1091	v' = 1315	ω _{cp}	ω _{cp} [5]
0-1	138.2	137.6	138.4	137.6	138.0 ± 0.4	137.8 ± 0.5
0-2	273.9	273.4	274.1	273.0	273.6 ± 0.6	273.4 ± 0.5
0-3	406.9	407.2	407.2	406.0	406.8 ± 0.8	406.9 ± 0.5
0-4	537.5				537.5 ± 0.8	538.4 ± 0.9
0-5	665.4				665.4 ± 0.8	667.7 ± 2.3
0-6	790.8				790.8 ± 1.2	790.8 ± 2.5
ω _e	140.5	138.9	139.9	139.6	139.7 ± 0.9	140.3 ± 0.6
- <i>x</i> ₁₁	1.2	1.0	1.3	1.0	1.2 ± 0.2	1.0 ± 0.4

считанной в [21]. Различия рассчитанного и экспериментальных барьеров BB в этих работах, возможно, связаны с выбором модели. Вопрос о выборе модели при построении ПФВВ и расчете барьера внутреннего вращения ($\Delta^{\ddagger}H$) требует дальнейших исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Вестн. МГУ. Сер. 2. Химия. 1979. Т. 20. № 12. С. 23.
- Koroleva L.A., Tyulin V.I., Matveev V.K., Pentin Yu.A. // Spectrochimica Acta A.: Mol. and Biomol., Spectros. 2014. V. 122. P. 609. https://doi.org/10.1016/j.saa.2013.11.038
- Koroleva L.A., Abramenkov A.V., Krasnoshchekov S.V., Korolyova A.V., Bochenkova A.V. // J. Mol. Struct. 2019. V. 1181. P. 228. https://doi.org/10.1016/j.molstruc.2018.12.065
- 4. Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Вестн. МГУ. Сер. 2. Химия. 1980. Т. 21. № 1. С. 22.
- 5. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // Там же. 2000. Т. 41. № 1. С. 16.

- 6. Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Там же. 1980. Т. 21. № 2. С. 125.
- 7. *Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин* Ю.А. // Там же. 1999. Т. 40. № 1. С. 9.
- Miller F.A., Fateley W.G., Witkowski R.E. // Spectrochim. Acta A. 1967. V. 23. № 4. P. 891. https://doi.org/10.1016/0584-8539(67)80016-3
- Kakar R.K., Rinehar E.A., Quade C.R., Kojima T. // J. Chem. Phys. 1970. V. 52. № 7. P. 3803. https://doi.org/10.1063/1.1673561
- Durig J.R., Bist H.D., Furic K., Qiu J., Little T.S. // J. Mol. Struct. 1985. V. 129. № 1–2. P. 45. https://doi.org/10.1016/0022-2860(85)80191-5
- Speakman L.D., Papas B.N., Woodcock H.L., Schaefer III. H.F. // J. Chem. Phys. 2004. V. 120. P. 4247. Doi.org/10.1063/1.1643716
- Zwarich R., Smolarek J., Goodman L. // J. Mol. Spectr. 1971. V. 38. № 2. P. 336. https://doi.org/10.1016/0022-2852(71)90118-4
- Ohmori N., Suzuki T., Ito M. // J. Phys. Chem. 1988.
 V. 92. № 5. P. 1086. https://doi.org/10.1021/j100316a019

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 11 2020

1662

- 14. *Pietila L.-O., Mannfors B., Palmo K.* // Spectrochim. Acta A. 1988. V. 44. № 2. P. 141. https://doi.org/10.1016/0584-8539(88)80237-X
- 15. *Sarin V.N., Jain Y.S., Bist H.D.* // Thermochim. Acta. 1973. V. 6. № 1. P. 39. https://doi.org/10.1016/0040-6031(73)80004-8
- 16. Brown F.B. // Spectrochim. Acta A. 1967. V. 23. № 2. P. 462. https://doi.org/10.1016/0584-8539(67)80248-4
- 17. *Green J.H.S., Harrison D.J.* // Spectrochim. Acta A. 1976. V. 32. № 6. P. 1265. https://doi.org/10.1016/0584-8539(76)80165-1
- Smolarek J., Zwarich R., Goodman L. // J. Mol. Spectr. 1972. V. 43. № 3. P. 416. https://doi.org/10.1016/0022-2852(72)90053-7
- Hollas J.M., Gregorek E., Goodman L. // J. Chem. Phys. 1968. V. 49. № 4. P. 1745. https://doi.org/10.1063/1.1670302
- 20. *Herzberg G.* Electronic Spectra and Structure of Polyatomic Molecules. M.: Mir, 1969.
- 21. Godunov I.A., Bataev V.A., Abramenkov A.V., Pupyshev A.V. // J. Phys. Chem. A. 2014. V. 118. № 44. P. 10159. https://doi.org/10.1021/jp509602s
- 22. Абраменков А.В. // Журн. физ. химии. 1995. V. 69. № 6. Р. 1048.