К 100-ЛЕТИЮ УРАЛЬСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА

УДК 544.228

ВЛИЯНИЕ СОДЕРЖАНИЯ КОБАЛЬТА НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ La_{1.5}Sr_{0.5}Ni_{1 – v}Co_vO_{4 + δ}

© 2020 г. А. Р. Гилев^{*a*}, Е. А. Киселев^{*a*,*}, В. А. Черепанов^{*a*}

^а Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия

*e-mail: eugene.kiselyov@urfu.ru Поступила в редакцию 03.03.2020 г. После доработки 25.03.2020 г. Принята к публикации 14.04.2020 г.

Сложные оксиды La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} (*y* = 0, 0.1, 0.2, 0.3, 0.4) синтезированы по цитрат-нитратной технологии. Однофазность полученных образцов подтверждена методом рентгенофазового анализа (РФА). Все образцы имели структуру типа K₂NiF₄ с пространственной группой *I4/mmm*. Установлено, что введение кобальта в La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} приводит к расширению кислородных октаэдров в плоскости *ab* и их сжатию в направлении оси *c*, что способствует уменьшению микронапряжений в структуре. Увеличение концентрации кобальта приводит к постепенному повышению кислородной сверхстехиометрии, при этом содержание кислорода в La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} слабо зависит от температуры. Сделан вывод, что большая часть катионов кобальта в данных оксидах находится в степени окисления +3 во всем исследованном интервале температур. Результаты моделирования температурных зависимостей коэффициента Зеебека показали, что основная часть катионов Ni³⁺ в La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} находится в низкоспиновом состоянии в интервале 25– 1000°C, при этом увеличение содержания кобальта приводит к немонотонному росту доли высокоспиновых Ni³⁺ (при *T* > 600°C). Допирование кобальтом La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} уменьшает общую электропроводность вследствие увеличения локализации электронных дырок на катионах 3*d*-металлов.

Ключевые слова: никелат лантана, кристаллическая структура, кислородная нестехиометрия, электропроводность

DOI: 10.31857/S0044453720120110

Смешанные электронно-ионные проводники на основе La₂NiO_{4 + δ}, со структурой типа K₂NiF₄, могут найти применение в качестве католных ма-(600-800°C) среднетемпературных териалов твердооксидных топливных элементов (ТОТЭ) [1], перспективных катализаторов расщепления воды и кислородпроводящих мембран для процессов переработки углеводородов [2, 3]. Они характеризуются умеренными коэффициентами термического расширения (КТР) и достаточно высокой термодинамической стабильностью [4]. Смешанная проводимость в этих оксидах осуществляется за счет междоузельного кислорода в слоях LaO и электронных дырок в слоях LaNiO₃.

Частичное замещение никеля кобальтом в $La_2Ni_{1-y}Co_yO_{4+\delta}$ уже при небольших концентрациях допанта (y = 0.1) существенно повышает скорость кислородного обмена и практически не влияет на кислородно-ионную проводимость, КТР и термодинамическую стабильность [4, 5]. Это важно, так как электрохимическая активность $La_2NiO_{4+\delta}$, напрямую связанная со скоростью поверхностного кислородного обмена, за-

метно уступает таковой для кобальт- и железосолержаших перовскитов при умеренных температурах (600-800°С) [1]. Однако растворимость кобальта в $La_2Ni_{1-\nu}Co_{\nu}O_{4+\delta}$ ограничена и не превышает $y \approx 0.15$ при 1100°С на воздухе [6]. На данный момент наиболее изученным составом является $La_2Ni_{0.9}Co_{0.1}O_{4+\delta}$, при этом систематические исследования влияния кобальта на физико-химические свойства La₂NiO_{4 + δ} в литерату-Исследование отсутствуют. pe фазовых равновесий в системе $La_{2-x}Sr_xNi_{1-x}Co_yO_{4+\delta}$ [6], указывает на то, что частичное замещение лантана стронцием позволяет значительно увеличить концентрацию кобальта в этих оксидах.

Поэтому целями данной работы являлись синтез образцов $La_{2-x}Sr_xNi_{1-y}Co_yO_{4+\delta}$ (x = 0.5, y = 0, 0.1, 0.2, 0.3, 0.4) и комплексный анализ влияния кобальта на кристаллическую структуру, кислородную нестехиометрию и транспортные свойства исследуемых оксидов.

Параметры	y = 0	y = 0.1	y = 0.2	y = 0.3	y = 0.4
a = b, Å	3.8121(1)	3.8155(1)	3.8207(1)	3.8255(1)	3.8278(1)
<i>c</i> , Å	12.7271(4)	12.6843(3)	12.6389(4)	12.5969(4)	12.5576(4)
V, Å ³	184.95(1)	184.66(1)	184.50(1)	184.35(1)	183.99(1)
$R_f, \%$	3.65	3.93	4.05	4.72	4.78
$R_{\rm Br}$, %	4.58	6.29	6.62	7.19	7.05
La/Sr–O1	2.598(1)	2.596(2)	2.591(2)	2.587(2)	2.584(2)
La/Sr–O2	2.732(2)	2.737(4)	2.733(3)	2.736(2)	2.735(2)
Ni/Co-O1	1.9060(1)	1.9077(0)	1.9104(1)	1.9127(1)	1.9139(0)
Ni/Co-O2	2.21(1)	2.23(2)	2.16(2)	2.16(2)	2.13(2)
t	0.77	0.75	0.79	0.79	0.80

Таблица 1. Уточненные методом Ритвелда параметры элементарной ячейки, длины связей Me–O и факторы сходимости для оксидов $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сложных оксидов $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$ (y = 0, 0.1, 0.2, 0.3, 0.4) был осуществлен по цитрат-нитратной технологии. В качестве исходных веществ использовали реактивы: Ni(CH₃COO)₂ · 4H₂O (Acros Organics, 99%), SrCO₃ (Aldrich, ≥99.9%), La₂O₃ (Уралредмет, 99.996%), Co₃O₄ (Вектон, "ч.д.а.") и С₆H₈O₇ · H₂O (Вектон, "ч.д.а."). Образующиеся в результате термического разложения цитратно-нитратных прекурсоров порошки отжигали не менее трех раз при 1100°С на воздухе в течение 8-10 ч, с промежуточным перетиранием в среде этилового спирта. Затем их прессовали в бруски под давлением 20 бар и спекали при 1350°С в течение 20 ч на воздухе. Относительная плотность керамических образцов составила ≥95%. Более подробно методика синтеза описана в работах [7, 8]. Фазовый состав и кристаллическая структура полученных сложных оксидов были исследованы методами рентгенофазового (РФА) и рентгеноструктурного (РСА) анализа. Съемку образцов проводили на порошковом рентгеновском дифрактометре Махіта XRD-7000 в Cu K_{lpha} -излучении при комнатной температуре. Обработка дифрактограмм была выполнена методом Ритвелда в программе Fullprof.

Кислородную нестехиометрию (δ) твердых растворов La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4+ δ} исследовали как функцию температуры методом термогравиметрического анализа (ТГА) на термоанализаторе Netzsch STA 409 PC в диапазоне 30–1100°C на воздухе. Для достижения равновесия с газовой фазой образец выдерживали при фиксированной температуре в течение 12 ч, затем температуру понижали на 100°C, и далее процедуру повторяли. Абсолютное значение кислородной нестехиометрии было получено при помощи обратного дихроматометрического титрования с использованием избытка соли Мора в качестве восстановителя.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12 2020

Общая электропроводность исследуемых оксидов была измерена четырехконтактным методом на постоянном токе в интервале температур $30-1000^{\circ}$ С на воздухе. Равновесные точки были получены в режиме охлаждения с шагом 50° С и выдержкой при каждой температуре около 5 часов, необходимой для релаксации электропроводности. Одновременно с общей электропроводностью был измерен коэффициент Зеебека исследуемых оксидов при температурном градиенте вдоль образца $10-15^{\circ}$ С (собственный градиент печи).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кристаллическая структура $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$

Результаты РФА показали, что все синтезированные образцы были однофазными и имели структуру типа K_2NiF_4 с пространственной группой *I4/mmm*. В качестве примера на рис. 1 представлена обработанная методом Ритвелда дифрактограмма для сложного оксида $La_{1.5}Sr_{0.5}Ni_{0.7}$ Со_{0.3}O_{4+δ}. Параметры элементарной ячейки, длины связей Ме–О и факторы сходимости для исследуемых оксидов приведены в табл. 1.

Как видно из табл. 1 увеличение содержания кобальта в La_{1.5}Sr_{0.5}Ni_{1 – y}Co_yO_{4 + δ} приводит к увеличению параметра *a* и уменьшению параметра *c*. При этом происходит постепенное увеличение длины связи Ni/Co–O1 и уменьшение длин связей La/Sr–O1 и Ni/Co–O2, тогда как La/Sr–O2 остается практически неизменной. Анализ длин связей показывает, что основные изменения при допировании кобальтом происходят в перовскитном слое: кислородные полиэдры расширяются в плоскости *ab* и сжимаются в направлении оси *c*, что приводит к уменьшению объема октаэдров и толщины перовскитного слоя. В результате объем элементарной ячейки уменьшается с увеличени-

Рис. 1. Обработанная методом Ритвелда дифрактограмма сложного оксида $La_{1.5}Sr_{0.5}Ni_{0.7}Co_{0.3}O_{4+\delta}$.

ем содержания кобальта. Сравнение эффективных ионных радиусов Ni²⁺/Ni³⁺ и Co²⁺/Co³⁺ позволяет предположить, что уменьшение объема элементарной ячейки обусловлено меньшим размером катионов кобальта ($r(Co^{2+})_{LS}^{VI} = 0.65$ Å; $r(Co^{3+})_{LS}^{VI} = 0.545$ Å) в сравнении с таковым для катионов никеля ($r(Ni^{2+})_{HS}^{VI} = 0.69$ Å; $r(Ni^{3+})_{LS}^{VI} = 0.56$ Å) [9]. Следует отметить, что уменьшение толщины перовскитного слоя при увеличении содержания кобальта в La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+δ} приводит к повышению фактора толерантности Гольдшмидта (t) от 0.77 (y = 0) до 0.8 (y = 0.4) и позволяет понизить микронапряжения в структуре.

Кислородная нестехиометрия $La_{1.5}Sr_{0.5}Ni_{1-v}Co_vO_{4+\delta}$

На рис. 2 показаны температурные зависимости кислородной нестехиометрии (δ) и средней степени окисления 3*d*-металлов (Z^+) в исследуемых оксидах. Содержание кислорода в La_{1.5}Sr_{0.5}NiO₄ близко к 4 и не зависит от температуры в интервале 25–1100°С. Частичное замещение никеля кобальтом в La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+ δ} приводит к увеличению значений δ и Z^+ [4, 10, 11]. Основываясь на ранее опубликованных данных [12], и учитывая полученные значения Z^+ , а также то, что кобальт обладает меньшей электроотрицательностью, чем никель можно предположить, что равновесие в реакции Co²⁺ + Ni³⁺ = Co³⁺ + Ni²⁺ смещено в правую сторону и при комнатной температуре подавляющее большинство катионов кобальта имеет степень окисления +3. Поэтому химические формулы исследуемых оксидов (при комнатной температуре) могут быть представлены в следующем виде: $La_{1.5}^{3+}Sr_{0.5}^{2+}Ni_{0.5}^{2+}Ni_{0.5}^{3+}O_{4.00}^{2-}$,

$$La_{1.5}^{3}Sr_{0.5}^{2}Ni_{0.46}^{+}Ni_{0.44}^{+}Co_{0.1}^{3}O_{4.02}^{2},$$

$$La_{1.5}^{3}Sr_{0.5}^{2+}Ni_{0.4}^{2+}Ni_{0.4}^{3+}Co_{0.2}^{3+}O_{4.05}^{2-},$$

$$La_{1.5}^{3+}Sr_{0.5}^{2+}Ni_{0.4}^{2+}Ni_{0.4}^{3+}Co_{0.2}^{3+}O_{4.05}^{2-},$$

La³⁺_{1.5}Sr²⁺_{0.5}Ni²⁺_{0.36}Ni³⁺_{0.34}Co³⁺_{0.3}O⁴_{4.07}, La³⁺_{1.5}Sr²⁺_{0.5}Ni²⁺_{0.32}Ni³⁺_{0.28}Co³⁺_{0.4}O²⁻_{4.09}. Примечательно, что соотношение Ni³⁺/Ni²⁺ при комнатной температуре близко к 1 во всех исследованных оксидах. Суммарное содержание Co³⁺ и Ni³⁺ превышает содержание акцепторного допанта в А позиции Sr²⁺ (Sr¹_{La}) и избыточный положительный заряд Co³⁺ (Co[•]_{Ni}) компенсируется, главным образом, отрицательно заряженным междоузельным кислородом (O^{''}_i), а не восстановлением Ni³⁺ в Ni²⁺.

Кислородная нестехиометрия в La_{1.5}Sr_{0.5}Ni_{1-y} Co_yO_{4+ δ} слабо зависит от температуры. Это приводит к тому, что исследуемые оксиды обладают заметной сверхстехиометрией по кислороду даже при высоких температурах. Следовательно, можно предположить, что бо́льшая часть катионов кобальта в исследуемых оксидах остается в степени окисления +3 и при высоких температурах.

Рис. 2. Температурные зависимости кислородной нестехиометрии и средней степени окисления 3*d*-металлов для $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$ на воздухе.

Общая электропроводность и коэффициент Зеебека La_{1.5}Sr_{0.5}Ni_{1-v}Co_vO_{4+δ}

На рис. 3 показаны температурные зависимости общей электропроводности (σ) и коэффициента Зеебека (*S*) для исследуемых оксидов на воздухе. Электропроводность La_{1.5}Sr_{0.5}NiO₄ возрастает в интервале температур 25–400°С, после чего остается практически неизменной вплоть до 1000°С. Допирование кобальтом приводит к понижению электропроводности, при этом полупроводниковый тип проводимости наблюдается во всем исследованном интервале температур. Коэффициент Зеебека в La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO₄₊₈ проходит через минимум при повышении температуры. Введение кобальта приводит к смещению минимума в область более высоких температур и повышает значения *S* при прочих равных условиях.

Производные La₂NiO_{4 + δ} рассматриваются как проводники *p*-типа, электронно-дырочная проводимость в которых осуществляется по прыжковому механизму поляронами малого радиуса [4, 12, 13]. Кроме того, электронная составляющая проводимости в этих соединениях на несколько порядков превышает кислородно-ионную и получаемые данные по общей электропроводности в первом приближении можно рассматривать как электронно-дырочную проводимость [4, 11]. Уменьшение электропроводности, либо замедление ее роста при повышении температуры зачастую связывают с выделением кислорода из образца в газовую фазу при повышении температуры, что сопровождается уменьшением концентрации электронных дырок [13, 14]. Однако в данном случае содержание кислорода практически не зависит от температуры для всех исследованных составов La_{1.5}Sr_{0.5}Ni_{1 - ν}Co_{ν}O_{4 + δ}. Как будет показано ниже, наблюдаемые изменения на температурных зависимостях электропроводности и коэффициента Зеебека могут быть обусловлены переходом части катионов Ni³⁺ из низко- в высокоспри пиновое состояние повышении температуры, что приводит к существенному уменьшению подвижности электронных дырок. Уменьшение электропроводности и рост коэффициента Зеебека при допировании кобальтом могут быть вызваны тем, что катионы Со³⁺ в данных соединениях выступают как "ловушки" электронных дырок и, таким образом, понижают концентрацию подвижных носителей заряда [4, 11].

В предположении прыжкового механизма проводимости температурные зависимости электропроводности и коэффициента Зеебека могут быть описаны следующими выражениями [15]:

$$\sigma = \frac{A}{T} \exp\left(-\frac{E_{\sigma}}{RT}\right),\tag{1}$$

$$S = \frac{k}{|e|} \left(\frac{Q_+}{RT} + B \right), \tag{2}$$

где A — независимая от температуры константа, E_{σ} – энергия активации электропроводности, $B = \ln[(1-p)/p]$ — константа, Q_+ — теплота переноса, или другими словами, энергия, необходимая для образования носителя заряда (в данном случае полярона).

Как видно из уравнений (1) и (2) энергии E_{σ} и *Q*₊ могут быть определены из экспериментальных ланных, представленных в координатах $\ln(\sigma T) =$ = f(1/T) и S = f(1/T), соответственно (см. рис. 3). Разница $E_{\sigma} - Q_{+}$ равна энергии прыжка полярона $W_{\rm H}$, которая в случае прыжкового механизма должна быть существенно больше нуля [15, 16]. Следует отметить, что такое определение энергетических параметров транспорта корректно лишь в случае, если концентрация подвижных носителей заряда (в данном случае электронных дырок р) остается постоянной в рассматриваемом интервале температур. Для исследуемых оксидов это условие достигается только при низких температурах. Поэтому значения E_{σ} , Q_+ и $W_{\rm H}$ были определены в интервале температур 25-350°С (как показано на рис. 3). Результаты расчетов представлены в табл. 2.

Как видно из табл. 2 значения $W_{\rm H}$ значительно больше нуля, что подтверждает предположение о прыжковом механизме проводимости. Увеличение содержания кобальта в La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+δ} приводит к возрастанию энергетических параметров транспорта, при этом увеличивается как теплота переноса, так и энергия необходимая для осуществления перескока из одной позиции в другую. Среди возможных причин такого увеличения могут быть: удлинение связи Ni/Co-O1 (т.е. увеличение расстояния для перескока), а также меньшая электроотрицательность кобальта в сравнении с никелем, в результате чего он выступает в качестве "ловушки" электронной дырки.

Для комплексного анализа полученных температурных зависимостей была использована модель для описания коэффициента Зеебека, учитывающая спиновое состояние катионов Ni³⁺. Подробно данная модель была рассмотрена в работах [7, 8]. В основе модели лежит предположение, что между катионами Ni³⁺ в низкоспиновом (LS) и высокоспиновом (HS) состояниях существует равновесие (Ni³⁺)_{LS} \leftrightarrow (Ni³⁺)_{HS}, которое характеризуется константой равновесия *K* и изменением энтальпии соответствующего процесса ΔH :

$$K = \frac{p_{\rm HS}}{p_{\rm LS}} = K_0 \exp\left(-\frac{\Delta H}{RT}\right),\tag{3}$$

где p_{LS} и p_{HS} — концентрации электронных дырок, которые при локализации на Ni²⁺ образуют катионы Ni³⁺ в низкоспиновом (LS) и высокоспиновом (HS) состоянии, соответственно; K_0 — константа равновесия при бесконечно большом значении температуры *T*.

Рис. 3. Температурные зависимости общей электропроводности (а) и коэффициента Зеебека (б) сложных оксидов $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$ на воздухе.

При этом сумма p_{LS} и p_{HS} равна общей концентрации электронных дырок p, которая может быть рассчитана из условия электронейтральности (4), с учетом данных по кислородной нестехиометрии. Принимая La₂NiO₄ за идеальное со-

Таблица 2. Энергетические параметры электроннодырочного транспорта для сложных оксидов $La_{1.5}Sr_{0.5}Ni_{1-\nu}Co_{\nu}O_{4+\delta}$

110 010	1)) ! ?		
у	$E_{\sigma},$ кДж моль $^{-1}$	<i>Q</i> ₊ , кДж моль ⁻¹	<i>W</i> _H , кДж моль ^{−1}
0	14.2 ± 1	0.92 ± 0.06	13.3 ± 1
0.1	15.4 ± 0.2	1.1 ± 0.1	14.3 ± 0.22
0.2	17.7 ± 0.5	2.05 ± 0.2	15.65 ± 0.5
0.3	25 ± 0.7	2.72 ± 0.2	22.28 ± 0.73
0.4	32.73 ± 0.8	5.36 ± 0.1	27.37 ± 0.81

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12 2020

1833

у	$Q_+,$ кДж моль $^{-1}$	ΔH , кДж моль $^{-1}$	<i>K</i> ₀	−∆ <i>W</i> , кДж моль ^{−1}	<i>y</i> ′
0	1.17	19.8	1.21	29.3	_
0.1	1.17	21.1	1.27	31.4	0.099
0.2	1.95	26.2	1.12	33.1	0.197
0.3	2.76	19.2	1.12	35.5	0.294
0.4	5.73	19.8	1.75	35.8	0.318

Таблица 3. Результирующие параметры аппроксимации зависимостей S = f(T)

стояние, условие электронейтральности для твердых растворов $La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+\delta}$ может быть записано следующим образом:

$$[Ni_{Ni}^{\bullet}] + [Co_{Ni}^{\bullet}] = [Sr'_{La}] + 2[O''_{i}], \qquad (4)$$

где $[Ni_{Ni}^{\bullet}] = p$ – концентрация подвижных электронных дырок, $[Co_{Ni}^{\bullet}]$ – концентрация катионов $Co^{3+}, [Sr'_{La}] = 0.5$ – содержание стронция в оксиде, $[O'_{i}] = \delta$ – концентрация междоузельного кислорода.

Следует отметить, что электронные дырки, локализованные на катионах Co^{2+} с образованием Co^{3+} , в первом приближении не участвуют в переносе заряда согласно литературным данным [4, 14].

Тогда наблюдаемые температурные зависимости электропроводности и коэффициента Зеебека представляют собой сумму вкладов:

$$\sigma = \sigma_{\rm LS} + \sigma_{\rm HS},\tag{5}$$

$$S = t_{\rm LS}S_{\rm LS} + t_{\rm HS}S_{\rm HS},\tag{6}$$

Рис. 4. Температурные зависимости доли катионов Ni^{3+} в низкоспиновом состоянии для $La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+\delta}$ на воздухе.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12 2020

где σ_{LS} и σ_{HS} – парциальные проводимости, S_{LS} и S_{HS} – парциальные коэффициенты Зеебека, t_{LS} и t_{HS} – числа переноса электронных дырок, локализованных на катионах Ni²⁺ с образованием Ni³⁺ в низкоспиновом (LS) и высокоспиновом (HS) состояниях соответственно.

Парциальные коэффициенты Зеебека в выражении (6) определяются формулой Хайкса, учитывающей фактор спинового вырождения [7, 15] Выражения для чисел переноса могут быть получены из отношения парциальной проводимости к общей электропроводности, как показано в работе [7]. В предположении прыжкового механизма подвижность электронных дырок определяется следующим выражением:

$$\mu_{\rm LS/HS} = \frac{\mu_0}{T} \exp\left(-\frac{W_{\rm LS/HS}}{RT}\right),\tag{7}$$

где μ_0 — подвижность электронных дырок при бесконечно большом значении температуры *T*; $W_{\rm LS}$ и $W_{\rm HS}$ — энергии прыжка полярона.

Тогда отношение подвижностей может быть записано в следующем виде:

$$L = \frac{\mu_{\rm HS}}{\mu_{\rm LS}} = \exp\left(\frac{\Delta W}{RT}\right),\tag{8}$$

где $\Delta W = W_{\rm LS} - W_{\rm HS}$.

В качестве модельной функции используется выражение (6). Параметрами фитинга выступают: K_0 , ΔH , Q_+ и ΔW . Для проверки предположения о том, что большинство ионов кобальта имеет степень окисления +3, концентрация Co³⁺ входящая в уравнение (4), также уточняется в процессе фитинга (обозначается далее как y'). Результаты фитинга зависимостей S = f(T) представлены в табл. 3 и на рис. 3 в виде сплошных линий.

Как видно из рис. З предложенная модель удовлетворительно описывает экспериментальные данные. Значения *y*' указывают на то, что большая часть катионов кобальта в La_{1.5}Sr_{0.5}Ni_{1-*y*} Co_{*y*}O_{4+δ} находится в степени окисления +3. Для составов La_{1.5}Sr_{0.5}Ni_{0.9}Co_{0.1}O_{4+δ}, La_{1.5}Sr_{0.5}Ni_{0.8}Co_{0.2} O_{4+δ}, La_{1.5}Sr_{0.5}Ni_{0.7}Co_{0.3}O_{4+δ} доля Co²⁺ не превышает 3%. Существенное содержание катионов Co²⁺ (\approx 20%) наблюдается только в La_{1.5}Sr_{0.5}Ni_{0.6} Co_{0.4}O_{4+δ}. Согласно полученным данным по кислородной нестехиометрии, предполагается, что установленные соотношения концентраций Co³⁺/Co²⁺ остаются практически неизменными в исследованном интервале температур.

Конечные параметры фитинга (см. табл. 3) позволяют рассчитать концентрации p_{LS} и p_{HS} , используя уравнение (3). Результаты расчетов представлены на рис. 4 в виде температурных зависимостей доли катионов Ni³⁺ в низкоспиновом состоянии (p_{LS}/p).

Полученные зависимости p_{LS}/p показывают, что практически все катионы Ni^{3+} в $La_{1,5}Sr_{0,5}Ni_{1-\nu}$ Со О 4 + 8 находятся в низкоспиновом состояний при комнатной температуре. Повышение температуры приводит к переходу части Ni³⁺ в высокоспиновое состояние. Из графика также видно, что допирование кобальтом сначала препятствует, а затем, начиная с y = 0.2, наоборот, способствует появлению высокоспиновых Ni³⁺ при повышении температуры. Как отмечалось ранее в работе [17], одним из основных факторов, влияющих на долю катионов Ni³⁺ в высокоспиновом состоянии при высоких температурах в этих соединениях является размерный фактор. Было показано, что введение допантов с большим радиусом, например замещение никеля железом или марганцем, приводило к увеличению объема элементарной ячейки и доли катионов Ni³⁺ в высокоспиновом состоянии. Такая взаимосвязь объясняется тем, что увеличение объема элементарной ячейки приводит к расширению кислородных полиэдров и ослаблению кристаллического поля, что способствует переходу в высокоспиновое состояние с большим радиусом. В случае с кобальтом ситуация более сложная, так как с одной стороны происходит удлинение связи Ni/Co–O1, а с другой стороны уменьшение длины связи Ni/Co-О2. Вероятно, при небольших концентрациях кобальта сжатие элементарной ячейки в направлении с играет основную роль и препятствует рассматриваемому переходу. В результате, при высоких температурах доля высокоспиновых Ni³⁺ в $La_{1.5}Sr_{0.5}Ni_{0.8}Co_{0.2}O_{4+\delta}$ приблизительно на 10% меньше в сравнении с таковой для $La_{1.5}Sr_{0.5}NiO_{4+\delta}$. Начиная с y = 0.2, из-за удлинения связи Ni/Co-O1, доля высокоспиновых Ni³⁺ начинает возрастать и при y = 0.4 достигает приблизительно 20% при высоких температурах.

Используя параметры фитинга, представленные в табл. 4, можно также рассчитать подвижность электронных дырок, которые локализуются на катионах Ni^{2+} с образование Ni^{3+} в низкоспиновом (μ_{LS}) и высокоспиновом (μ_{HS}) состояниях. Для этого необходимо определить среднюю подвижность μ_h при помощи следующего выражения:

$$\sigma = \frac{zep\mu_h}{V},\tag{9}$$

где *z* — число формульных единиц в элементарной ячейке оксида, *e* — абсолютный заряд электрона, *V* — объем элементарной ячейки.

Подставляя выражение (9) и (7) в (5), а также учитывая тот факт, что $p = p_{LS} + p_{HS}$, можно получить следующую модельную функцию [18]:

$$\mu_h T = \mu_0 \exp\left(-\frac{W_{\rm LS}}{RT}\right) \left(\frac{1+LK}{1+K}\right),\tag{10}$$

Таблица 4. Результирующие параметры фитинга зависимостей $\mu_h T = f(1/T)$

у	$\mu_0, \ cm^2 B^{-1} c^{-1}$	$W_{ m LS},$ кДж моль $^{-1}$	$W_{ m HS},$ кДж моль $^{-1}$
0	744.4	9.6	38.9
0.1	1022.6	12.9	44.3
0.2	1496.2	17.5	50.6
0.3	2220.3	22.0	57.5
0.4	3976.5	28.1	63.9

Уточняемыми параметрами в данном случае выступают μ_0 и W_{LS} . Результаты фитинга представлены на рис. 5 и в табл. 4.

Из рис. 5 видно, что модельные кривые хорошо согласуются с экспериментальными точками. Значения μ_{LS} и μ_{HS} могут быть рассчитаны с помощью уравнения (7), после подстановки параметров из табл. 4. Результаты расчетов представлены на рис. 6. Из графиков видно, что подвижность электронных дырок в La_{1.5}Sr_{0.5}Ni_{1-y} Co_yO_{4+δ} при умеренных и высоких температурах уменьшается более чем на порядок при переходе катиона Ni³⁺ из низкоспинового в высокоспиновое состояние. Таким образом, увеличение доли высокоспиновых Ni³⁺ при повышении температуры будет уменьшать среднюю подвижность электронных дырок и замедлять рост электропроводности.

Можно также отметить, что значения μ_{LS} для La_{1.5}Sr_{0.5}NiO_{4+δ} и La_{1.5}Sr_{0.5}Ni_{0.9}Co_{0.1}O_{4+δ} существенно замедляют свой рост при высоких температурах. Такое поведение подвижности не характерно для прыжкового механизма [15]. На приме-

0.1

v = 0.2

v = 0.4

= 0.3

250

200

150

100

50

0

 $\mu_h T$, $cm^2 B^{-1} c^{-1} K$

0.0012 0.0018 0.0024 1/T, K⁻¹ Рис. 5. Результаты фитинга зависимостей $\mu_h T = f(1/T)$ для La_{1.5}Sr_{0.5}Ni_{1 – v}Co_vO_{4 + δ}.

Рис. 6. Температурные зависимости подвижностей μ_{LS} и μ_{HS} в $La_{1.5}Sr_{0.5}Ni_{1-y}Co_yO_{4+\delta}$.

ре $La_{1.2}Sr_{0.8}Ni_{0.9}Fe_{0.1}O_{4+\delta}$ ранее было показано [18], что механизм проводимости может быть смешанным из-за присутствия катионов Ni³⁺ в разных спиновых состояниях. При этом в случае с низкоспиновым Ni³⁺ электронные дырки ведут себя как квази-делокализованные, а в случае с высокоспиновым Ni³⁺ — как локализованные. В первом случае механизм может быть описан с точки зрения зонной теории проводимости, а во втором случае прыжковым механизмом. Интересно отметить, что при увеличении содержания кобальта температурные зависимости подвижно-

стей μ_{LS} и μ_{HS} становятся похожи, указывая на увеличение локализации подвижных носителей заряда и переходу от смешанного к прыжковому механизму.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект 19-03-00753 А.

СПИСОК ЛИТЕРАТУРЫ

- Shao Z., Tadé M.O. Intermediate-Temperature Solid Oxide Fuel Cells. Springer-Verlag Berlin Heidelberg, 2016. 266 p.
- Forslund R.P., Hardin W.G., Rong X. et al. // Nat. Commun. 2018. V. 9. P. 3150.
- Zhu D.C., Xu X.Y., Feng S.J. et al. // Catal. Today. 2003. V. 82. P. 151.
- Yaremchenko A.A., Kharton V.V., Patrakeev M.V. et al. // J. Mater. Chem. 2003. V. 13. P. 1136.
- Kilner J.A., Shaw C.K.M. // Solid State Ionics. 2002. V. 154–155. P. 523.
- Gavrilova L.Ya., Aksenova T.V., Bannykh L.A. et al. // J. Struct. Chem. 2003. V. 44. P. 248.
- Gilev A.R., Kiselev E.A., Cherepanov V.A. // RSC Adv. 2016. V. 6. P. 72905.
- Gilev A.R., Kiselev E.A., Zakharov D.M. et al. // J. Alloys Compd. 2018. V. 753. P. 491.
- 9. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751.
- Naumovich E.N., Kharton V.V. // J. Mol. Struct. 2010. V. 946. P. 57.
- Klande T., Efimov K., Cusenza S. et al. // J. Solid State Chem. 2011. V. 184. P. 3310.
- 12. *El Shinawi H., Greaves C. //* J. Mater. Chem. 2010. V. 20. P. 504.
- Bassat J.M., Odier P., Loup J.P. // J. Solid State Chem. 1994. V. 119. P. 124.
- 14. Nishiyama S., Sakaguchi D., Hattori T. // Solid State Commun. 1995. V. 94. P. 279.
- 15. Austin I.G., Mott N.F. // Adv. Phys. 1969. V. 18. P. 41.
- Wang S., Li K., Chen Z. et al. // Phys. Rev. B. 2000. V. 61. P. 575.
- 17. *Cherepanov V.A., Gilev A.R., Kiselev E.A.* // Pure Appl. Chem. 2019. V. 91. P. 911.
- Gilev A.R., Kiselev E.A., Zakharov D.M. et al. // Solid State Sci. 2017. V. 72. P. 134.