К 100-ЛЕТИЮ УРАЛЬСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА

УДК 544.22

ВЛИЯНИЕ ДОБАВОК ВИСМУТА НА КРИСТАЛЛИЧЕСКУЮ И ЭЛЕКТРОННУЮ СТРУКТУРУ МОЛИБДАТА СТРОНЦИЯ

© 2020 г. З. А. Михайловская^{*a,b*}, Е. С. Буянова^{*a,**}, Е. В. Соколенко^{*c*}, Г. В. Слюсарев^{*c*}, С. А. Петрова^{*a,d*}, А. Ф. Зацепин^{*a*}

^а Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия ^b Российская академия наук, Уральское отделение, Институт геологии и геохимии им. академика А.Н. Заварицкого, 620016, Екатеринбург, Россия

^с Северокавказский федеральный университет, 355009, Ставрополь, Россия

^d Российская академия наук, Уральское отделение, Институт металлургии, 620016, Екатеринбург, Россия

*e-mail: elena.buyanova@urfu.ru Поступила в редакцию 03.03.2020 г. После доработки 25.03.2020 г. Принята к публикации 14.04.2020 г.

Рассмотрен ряд висмут замещенных соединений на основе SrMoO₄, отвечающих общей формуле Sr_{1-3x}Bi_{2x}MoO₄. На основе данных рентгеновской порошковой дифракции предложена модель структуры для образцов с высоким содержанием висмута ($x \ge 0.20$). Из первых принципов выполнены расчеты плотности состояний в окрестности запрещенной зоны. Проведено сравнение результатов вычислений ширины запрещенной зоны кристаллов с данными, полученными из спектров отражения.

Ключевые слова: шеелит, молибдат стронция-висмута, плотность состояний **DOI:** 10.31857/S0044453720120201

Шеелитоподобные соединения с общей формулой ABO₄ и, в частности, молибдаты щелочноземельных металлов, обладают широким спектром физико-химических свойств и структурных особенностей. Такие соединения привлекательны как материалы сцинтилляторов и лазеров [1-3], криогенных детекторов частиц [3], гетерогенных катализаторов [4, 5], люминесцентных систем [6, 7], электрохимических устройств [8], СВЧ-диэлектриков [9] и т.д. Молибдат стронция SrMoO₄ кристаллизуется в структурном типе шеелита (пр. гр. $I4_1/a$), и построен из молибден-кислородных тетраэдров, между которыми располагаются восьмикоординированные атомы стронция [10]. Он проявляет свойства фото- и электрофотокатализатора [11, 12], люминофора [11, 12] и диэлектрика в широком частотном диапазоне [13]. Замещение позиций стронция в SrMoO₄ висмутом возможно как по схеме формирования кислородно-избыточных фаз типа $Sr_{1-x}Bi_x MoO_{4+x/2}$ (для малых концентраций висмута, x < 0.1 [14]), так и путем формирования катион-дефицитных фаз Sr_{1-3x}Bi_{2x}MoO₄ (для больших концентраций висмута, вплоть до *x* < 0.25 [15, 16]. Замещение висмутом приводит к улучшению фотокаталитических характеристик [14, 15], снижению ширины запрещенной зоны и значительному снижению температуры плавления и температуры спекания образцов. В работе [15] было показано, что при допировании висмутом наблюдается значительное искажение структуры и сжатие элементарной ячейки молибдата стронция, отмечено наличие сверхструктурного упорядочения для составов с высоким содержанием висмута (0.15 < x < 0.25 Sr_{1-3x}Bi_{2x}MoO₄).

Теоретические статьи, касающиеся исследования электронной структуры $SrMoO_4$ включают работу Ві с соавт. [17] (рассчитано электронное строение и аттестованы фотокаталитические свойства сложного оксида) и работу Vali [18] (рассмотрены электронные свойства и фононный спектр $SrMoO_4$). В обоих случаях моделирование проводилось методом ab initio по схеме DFT. О каких-либо расчетах электронных структур замещенного висмутом молибдата стронция $SrMoO_4$ информация отсутствует.

Также несомненный интерес представляет расчет электронной структуры нанокластеров на основе шеелитоподобных соединений [19], включающих собственные и примесные дефекты. Подобные расчеты могут быть использованы как для уточнения моделей приведенных в лите-

Позиция	x	у	Z,	Beq.	Occ
Bi1	0.3978	-0.0553	0.3792	1.291	0.24
Sr1	0.3978	-0.0553	0.3792	1.291	0.49
Mo1	0.5	0.25	0.375	0.5156	1
Bi2	0.0	0.25	0.625	1.291	1
Mo2	0.2876	0.1614	0.6132	1.291	0.99
O 1	0.1758	0.1408	0.6506	1.2	1
O2	0.3126	0.0455	0.5568	1.2	1
O3	0.0989	0.1744	0.4571	1.2	1
O4	0.3124	0.2597	0.4752	1.2	1
O5	0.4495	0.1409	0.4663	1.2	1

Таблица 1. Координаты атомов и кристаллографическая информация для состава $Sr_{0.4}Bi_{0.4}MoO_4$

Примечание. x = 0.2, пр. гр. – $I4_1/a$, параметры: a = 11.936(2) Å, b = 11.936(2) Å, c = 11.935(4) Å, V = 1700.474 Å³, Z = 4, R-факторы: $R_{exp} = 6.08$, $R_{wp} = 9.08$, $R_p = 7.15$, GOF = 1.49, R-Bragg = = 3.254.

ратуре активных центров, полученных на основе экспериментальных результатов, так и для общего объяснения, описания и прогнозирования свойств наноструктур, например, фотокаталитических систем на основе шеелитоподобных соединений.

Настоящая работа посвящена описанию структуры и электронного строения фаз $Sr_{1-3x}Bi_{2x}MoO_4$, и выявлению природы сверхструктурного упорядочения в них. Расчеты ряда наноразмерных кластеров, включающих собственные и примесные дефекты $SrMoO_4$, также представлены в данной статье.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сложных оксидов $Sr_{1-3x}Bi_{2x}MoO_4$ проведен по стандартной керамической технологии из гомогенных стехиометрических смесей Bi_2O_3 ("ос.ч."), MoO_3 ("ч.д.а."), $SrCO_3$ ("ос.ч."), последовательно отожженных в интервале температур 773–973 К. Аттестация образцов осуществлялась с помощью РФА (с использованием дифрактометра Bruker Advance D8, детектор VÅNTEC, CuK_{α} -излучение, Ni-фильтр, θ/θ -геометрия). Уточнение структуры фаз со сверхструктурным упорядочением проводили методом Ритвелда, на примере образца с x = 0.2 в программном пакете Fullprof suite [20], стартовую модель получили на основе кристаллографических преобразований исходной модели шеелита [16].

Спектры отражения порошков измеряли с помощью спектрофотометра Lambda 35 в интервале длин волн 350—1100 нм (источник света — дейтериевая лампа/галогенная лампа накаливания), ширину запрещенной зоны вычисляли с использованием модели Кубелки—Мунка [21], в соответствии с выражением Тауца были определены величины энергетических зазоров для прямых и непрямых переходов.

Расчеты электронной структуры наноразмерных кристаллов проводились в рамках метода функционала плотности с использованием базисных функций вида LanL2DZ в программном пакете Q-chem [22] для следующих типов кластеров:

1) "SrMoO₄": кластеры на основе SrMoO₄, структура описана в [10, 16], ячейки $2 \times 2 \times 1$ и $3 \times 3 \times 1$ из 134—216 атомов,

2) "Bi₂SrMoO₄": кластеры на основе SrMoO₄, ячейка $3 \times 3 \times 1$, с заменой 2 атомов стронция на висмут и образованием вакансии стронция;

3) "Bi₄SrMoO₄": кластеры на основе SrMoO₄, ячейка $3 \times 3 \times 1$, с заменой 4 атомов стронция на висмут и внедрением двух вакансий стронция;

4) "SrMoO₄-V_{Sr}": кластеры на основе SrMoO₄, ячейка $3 \times 3 \times 1$, с одной вакансией стронция;

5) "BiSrMoO₄": кластеры на основе сверхупорядоченной шеелитоподобной структуры с расширенной элементарной ячейкой.

Оборванные связи соседних атомов были соединены, в ряде случаев строение кластеров было оптимизировано, а поверхность насыщена водородом [23]. В процессе оптимизации структура кластера приближается к структуре свободного кластера, при этом изменяются все спектральноэнергетические параметры. Поэтому представляет интерес сравнение этих параметров (оптимизированного и нет). Вычисления выполнялись программой Q-chem в режиме удаленного доступа на сервере СКФУ [19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как было отмечено в [15], при синтезе серий сложных оксидов $Sr_{1-3x}Bi_{2x}MoO_4$ формирование тетрагональной фазы, изоструктурной $Sr_{0.88}Bi_{0.08}MoO_4$ [16], происходит до x < 0.15. В интервале 0.15 < x < 0.25 в области малых углов появляются дополнительные рефлексы, которые можно описать в рамках сверхструктурного упорядочения путем выделения элементарной ячейки большего размера (a' = a, b' = b, V = 5V) в рамках той же пространственной группы $I4_1/a$. В работе [15] было осуществлено бесструктурное моделирование дополнительных рефлексов на дифрактограмме $Sr_{1-3x}Bi_{2x}MoO_4$, что в достаточно полной мере позволило описать экспериментальные данные, но не дало возможности понять природу упорядочения. Однако образование вакансий и упорядочение дефектов является отдельным параметром для контроля свойств подобных шеелитоподобных фаз, и подобная информация может быть довольно ценной с точки зрения установления закономерностей составструктура-свойства. В данной работе предложена структурная модель, описывающая расширенную элементарную ячейку, и, после уточнения структуры методом Ритвелда, получена информация о координатах кристаллографических позиций и их заселенности. Координаты атомов и кристаллографическая информация для состава Sr_{0.4}Bi_{0.4}MoO₄ приведены в табл. 1, расчетная и экспериментальная дифрактограмма Sr_{0.4}Bi_{0.4}MoO₄ на рис. 1. Видно, что при высоких концентрациях висмута наблюдается полное замещение висмутом кристаллографической позиции стронция Sr2, позиция Sr1 является смешанной и содержит как атомы висмута и стронция, так и катионные вакансии.

Из спектров отражения $Sr_{1-3x}Bi_{2x}MoO_4$ были рассчитаны значения функции Тауца, путем аппроксимации линейных участков получены значения ширины запрещенной зоны для прямых переходов. Расчет значений E_g для непрямых переходов затруднен в силу наложения на спектр отражения $Sr_{1-3x}Bi_{2x}MoO_4$ линий его люминесценции в данной области спектра [11, 12], что затрудняет однозначное нахождение линейных участков. Значения E_g прямых переходов приведены в табл. 2. Величина запрещенной щели для SrMoO₄ согласуется с имеющимися экспериментальными работами [18, 24], общее уменьшение

Таблица 2. Экспериментально определенные значения ширины запрещенной зоны прямых переходов (п.п.) Sr_{1-3x}Bi_{2x}MoO₄

Состав	Е _{д п.п} , эВ	Литературные данные
SrMoO ₄	4.25	4.18–4.35 3 B [18], 4.4 3 B [23]
$Sr_{0.925}Bi_{0.05}MoO_4$	3.26	3.70 эВ для SrMoO ₄ : 2.5%Bi ³⁺
$Sr_{0.85}Bi_{0.10}MoO_4$	3.27	3.52 эВ для SrMoO ₄ : 5.0%Bi ³⁺
$Sr_{0.70}Bi_{0.20}MoO_4$	3.26	3.42 эВ для SrMoO ₄ : 7.5%Bi ³⁺
$Sr_{0.55}Bi_{0.30}MoO_4$	3.17	[14]
Sr _{0.40} Bi _{0.40} MoO ₄	3.01	

 $E_{\rm g}$ при введении висмута в структуру молибдата стронция согласуется с тенденцией, показанной для серии Sr_{1-x}Bi_xMoO_{4+x/2} в работе [14].

Таким образом, замещение висмутом стронция в молибдате SrMoO₄, сопровождающееся генерацией катионных вакансий, влияет на энергетические параметры поликристаллических образцов $Sr_{1-3x}Bi_{2x}MoO_4$. Для относительно малых концентраций висмута 0.025 < x < 0.15 наблюдается спад, и, затем, плато изменения величины E_s прямого перехода в зависимости от состава, и далее, после перестройки структуры (x > 0.15) вновь заметно сушественное уменьшение ширины запрещенной зоны. Для аналогичных систем с кальцием было показано, что эффект влияния висмута более выражен для непрямых переходов [25], и, вероятно, следует ожидать аналогичных эффектов и для SrMoO₄. Для расчета энергии E_o непрямых переходов следует в дальнейшем изменить условия получения спектров диффузного отражения Sr_{1-3x}Bi_{2x}MoO₄. Кроме того, также,

Рис. 1. Расчетная (сплошная линия) и экспериментальная (точки) рентгеновская дифрактограмма для образца Sr_{0.4}Bi_{0.4}MoO₄ и их разностная кривая (внизу). Положение рефлексов показано штрих-диаграммой.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12 2020

Рис. 2. Парциальные плотности состояний (ПС) кластера молибдата стронция SrMoO₄-ps5.

как и для висмут-замещенного $CaMoO_4$, для замещенного молибдата стронция наблюдается гашение люминесценции с ростом концентрации висмута, хоть и не столь заметное [25]. По результатам структурного анализа (табл. 1) создана модель расширенной элементарной ячейки $Sr_{1-3x}Bi_{2x}MoO_4$, на основании которой для проведения расчетов электронной структуры построе-

Кластер	Особенности кластера	E_{homo} , эВ	$E_{\text{lumo}}, \Im \mathbf{B}$	$\Delta E_{\rm g},$ эВ
BiSrMoO ₄ -ps	не насыщенный водородом	8.74	10.56	1.82
BiSrMoO ₄ -ps4	насыщенный водородом, зафиксированный	7.29	9.01	1.72
SrMoO ₄ - <i>ps</i> 4	204 атома	-6.88	-5.47	1.42
SrMoO ₄ -ps5	204 атома, оптимизирован	-7.16	-5.55	1.61
SrMoO ₄ - <i>ps</i> 6	204 атома насыщенный водородом	-4.54	-3.12	1.42
SrMoO ₄ -ps8	204 атома, насыщенный водородом, оптимизирован	-3.37	-1.80	1.58
Bi ₂ SrMoO ₄ -ps2	134 атома, насыщенный водородом,	-11.29	-9.77	1.52
Bi ₂ SrMoO ₄ - <i>ps</i> 3	134 атома, насыщенный водородом, оптимизирован	-13.77	-11.92	1.85
Bi ₂ SrMoO ₄ -ps	135 атомов, насыщенный водородом,	-10.80	-8.93	1.88
Bi ₂ SrMoO ₄ - <i>ps</i> 5	203 атома, насыщенный водородом,	-6.07	-4.68	1.38
Bi ₄ SrMoO ₄ -ps	201 атом, насыщенный водородом, оптимизирован	-6.53	-5.17	1.36
Bi ₄ SrMoO ₄ -ps2	201 атом, насыщенный водородом	-8.35	-6.91	1.44
SrMo-V _{Sr} -ps4	135 атомов, насыщенный водородом, оптимизирован	-12.84	-10.97	1.88

Таблица 3. Структурные особенности кластеров и E_{homo} , E_{lumo} и ширина запрещенной зоны

Рис. 3. Парциальные плотности состояний (ПС) кластеров молибдата стронция с вакансией стронция $SrMoO_4$ - V_{Sr} -ps4.

Кластер	Зона	<i>p</i> -Sr, %	<i>p</i> -Mo, %	<i>s</i> -Sr, %	s-Mo, %	<i>p</i> -0, %	<i>d</i> -Mo, %	<i>p</i> -Bi, %	s-0, %	<i>s</i> -Bi, %
BiSrMoO ₄ - <i>ps</i>	Ehomo	57.27	40.00	2.27	1.36	0.18	0.09	0.09	0.09	0.09
	E _{lumo}	60.00	30.00	8.00	1.90	0.60	0.20	0.10	0.10	0.10
BiSrMoO ₄ -ps4	Ehomo	62.22	26.67	6.67	2.22	1.11	0.18	0.02	0.00	0.00
	E _{lumo}	43.64	23.64	23.64	1.82	1.09	0.18	0.02	0.00	0.00
SrMoO ₄ - <i>ps</i> 4	Ehomo	47.76	23.88	19.40	8.06	0.36	0.06	0.00	0.48	0.00
	E _{lumo}	54.51	31.02	11.28	2.63	0.23	0.09	0.00	0.30	0.00
SrMoO ₄ - <i>ps</i> 5	$E_{\rm homo}$	41.18	44.12	27.35	2.35	0.09	0.09	0.00	0.09	0.00
	E _{lumo}	45.83	36.46	13.54	2.81	0.15	0.06	0.00	0.15	0.00
SrMoO ₄ - <i>ps</i> 6	Ehomo	65.22	19.57	8.70	6.52	0.52	0.09	0.00	0.65	0.00
	E _{lumo}	68.97	20.69	7.47	2.07	0.17	0.06	0.00	0.22	0.00
SrMoO ₄ -ps8	$E_{\rm homo}$	43.58	40.00	12.67	2.50	0.17	0.06	0.00	0.17	0.00
	E _{lumo}	53.83	46.67	13.33	4.33	0.08	0.03	0.00	0.08	0.00
SrMo-V _{Sr} -ps4	$E_{\rm homo}$	41.18	35.29	17.65	5.88	0.35	0.18	0.00	0.88	0.00
	E _{lumo}	48.51	42.86	5.58	1.40	0.23	0.09	0.00	0.93	0.00
Bi ₂ SrMoO ₄ - <i>ps</i> 2	$E_{\rm homo}$	42.65	38.24	14.71	3.68	1.03	0.29	0.01	0.88	0.07
	E _{lumo}	42.86	30.00	23.21	3.57	0.98	0.18	0.09	0.89	0.09
Bi ₂ SrMoO ₄ - <i>ps</i> 5	$E_{\rm homo}$	50.00	33.33	10.00	3.33	0.13	0.10	0.03	0.23	0.03
	E _{lumo}	53.19	29.79	13.83	3.19	0.21	0.30	0.02	0.40	0.02
Bi ₄ SrMoO ₄ -ps2	$E_{\rm homo}$	40.00	40.00	12.80	4.00	0.24	0.08	0.04	0.36	0.04
	E _{lumo}	44.68	38.30	11.70	3.19	0.13	0.04	0.02	0.17	0.02

Таблина 4.	Вклал элект	ронных о	рбиталей в	фор	мирование в	спаев заг	пешенной	зоны
таолица ч.	DRIUG SHORT	pointibil o	pomulation b	φυρ	mpobuline i	spued Sur	рещенной	JOILDI

```
ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12 2020
```


Рис. 4. Парциальные плотности состояний (ПС) кластеров замещенного висмутом молибдата стронция Bi₄SrMoO₄-ps2.

ны кластеры типа "BiSrMoO₄". Исходная модель является фрагментом кристаллической структуры, на поверхности которой существуют оборванные связи. В практике построения модельных кластеров принято компенсировать такие поверхностные связи, например, насыщая их водородом [23]. Таким образом, в нашей работе рассмотрены два вида кластеров типа "BiSrMoO₄" — насыщенные водородом и ненасыщенные.

Для понимания процессов, происходящих в электронной структуре SrMoO₄ в процессе замещения атомов стронция висмутом, не сопровождающимся сверхструктурным упорядочением, построили модели молибдата стронция на основе структурных данных [10]: ячейки $2a \times 2b \times c$ (135 атомов) и $3a \times 3b \times c$ (204 атома). Затем путем модификации типа атомов вводили атомы висмута и вакансии (*V*), в итоге получили кластеры еще четырех типов: "SrMoO₄", "Bi₂SrMoO₄", "Bi₄SrMoO₄" и "SrMoO₄-*V*_{Sr}". Далее рассматривали влияние компенсации поверхностных состояний и осуществляли оптимизацию структуры, необходи-

мую после внедрения в кластер примесных и собственных дефектов. Разновидности кластеров и детали структуры каждого из них приведены в табл. 3.

Установлено, что для кластеров "SrMoO₄", "Bi₂SrMoO₄", "Bi₄SrMoO₄" и "SrMoO₄– $V_{\rm Sr}$ " на основе базовой шеелитоподобной структуры в результате оптимизации структуры возрастает значение $\Delta E_{\rm g}$, а значение энергии уровня Ферми приближается к нулю. С ростом числа атомов в кластере растет ширина запрещенной зоны, что согласуется с бо́льшими значениями ширины запрещенной зоны для микрокристаллических порошков, для которых были получены экспериментальные значения. Потолок валентной зоны ($E_{\rm homo}$) и дно зоны проводимости ($E_{\rm lumo}$) также состоят преимущественно из *p*- и *s*-орбиталей молибдена и стронция (табл. 3, 4, рис. 2–4).

Для кластеров типа "BiSrMoO₄" результаты расчета энергетической щели HOMO-LUMO и парциальной плотности состояний приведены в табл. 3, 4 и на рис. 5. Полученные значения энергии запрещенной зоны, вероятно, соответствуют

Рис. 5. Парциальные плотности состояний (ПС) кластеров молибдата стронция-висмута BiSrMoO₄-*ps* со сверхупорядоченной шеелитоподобной структурой.

непрямым переходам. В результате компенсации поверхностного заряда водородом для кластера BiSrMoO₄—*ps*4, наблюдается изменение положения уровня Ферми и ширина запрещенной зоны уменьшается. Потолок валентной зоны и дно зоны проводимости образованы преимущественно p- и *s*-орбиталями молибдена и стронция. Вклад кислорода и висмута в окрестности запрещенной зоны незначительный.

Таким образом, согласно анализу расчетных данных электронной структуры созданных на основании модели структуры $Sr_{1-x}Bi_xMoO_{4+x/2}$ кластеров, внедрение собственных (вакансия кислорода и стронция) и примесных (Bi_{Sr}) дефектов в структуру молибдата стронция не приводит к существенной перестройке энергетических зон. Кроме того, локальных уровней в окрестности запрещенной зоны, связанных с висмутом, не наблюдается. Следовательно, можно предположить экспериментально выявленное сужение запрещенной зоны в кристалле в целом как следствие образования подзон у потолка валентной зоны и дна зоны проводимости в результате искажения кристаллической и электронной структуры.

Работа выполнена в рамках темы № АААА-А19-119071090011-6 госзадания ИГГ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Jelinkova H., Sulc J., Basiev T.T. et al.* // Laser Phys. Lett. 2005. V. 2. № 1. P. 4.
- 2. *Fan Y.X., Liu Y., Duan Y.H. et al.* // Appl. Phys. B. 2008. V.93. № 2–3. P. 327.
- 3. Angloher G., Bucci C., Cozzini C. et al. // Nucl. Instrum. Methods Phys. Res. Sect. A. 2004. V.520. № 1–3. P. 108.
- Paski E.F., Blades M.W. // Anal. Chem. 1988. V. 60. № 21. P. 1224.
- 5. *Daturi M., Savary L., Costentin G. et al.* // Catal. Today 2000. V. 61. № 1–4. P. 231.
- Chen L.P., Gao Y.H. // Mater. Res. Bull. 2007. V. 42. № 10. P. 1823.
- 7. Pontes F.M., Galhiane M.S., Santos L.S. et al. // J. Alloys. Compd. 2009. V. 477 № 1–2. P. 608.
- 8. *Takai S., Mako Satou M., Yoshida T. et al.* // Electrochem. 2011. V. 79. № 9. P. 696.
- Najafvandzadeh N., Vali R. // Physica B Condens. Matter. 2019. V. 572. P. 266.

- 10. Zhao B.C., Sun Y.P., Zhang S.B. et al. // J. Cryst. Growth. 2006. V. 290. № 1. P. 292.
- *Zhu Y., Zheng G., Dai Z. et al.* // J. Mater. Sci. Technol. 2017. V. 33. № 1. P. 23–29.
- *Zhu Y., Zheng G., Dai Z. et al.* // Ibid. 2017. V. 8. № 5. P. 33.
- Choi G., Kim J., Yoon S. et al. // J. Eur. Ceram. Soc. 2007. V. 27. № 8–9. P. 3063–3067.
- Wang Y., Xu H., Shao C. et al. // Appl. Surf. Sci. 2017. V. 392. P. 649.
- 15. Михайловская З.А., Буянова Е.С., Петрова С.А. и др. // Неорган. материалы. 2019. Т. 55. № 10. С. 1080. https://doi.org/10.1134/S0002337X19080098
- Sleight J.A.W., Aykan K. // Solid State Chem. 1975.
 V. 13. № 3. P. 231.
- 17. *Bi J., Wu L., Zhang Y. et al.* // Appl. Catal. B Environ. 2009. V. 91. № 1–2. P. 135.

- 18. Vali R. // Comput. Mater. Sci. 2011. V. 50. № 9. P. 2683.
- Соколенко Е.В., Слюсарев Г.В. // Неорган. материалы. 2019. Т. 55. № 1. С. 21. https://doi.org/10.1134/S0002337X19010159
- Rodríguez-Carvajal J. // IUCr Newsletter. 2001. V. 26. P. 12.
- 21. Kubelka P., Munk F. // J. Tech. Phys. 1931. V. 12. P. 593.
- 22. Willard W.R., Hay P.J. // J. Chem. Phys. 82. 284 (1985); https://doi.org/10.1063/1.448800
- 23. Губанов В.А., Курмаев Э.З., Ивановский А.Л. Квантовая химия твердого тела. М.: Наука, 1984. 304 с.
- 24. Ivanovskii A.L., Zhukov V.P., Slepukhin V.K. et al. // J. Struct. Chem. 1981. V. 21. № 3. P. 426.
- 25. *Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al.* // Chimica Techno Acta. 2018. V. 5. № 4. P. 189.