К 100-ЛЕТИЮ УРАЛЬСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА

УДК 544.2

ВОССТАНОВЛЕНИЕ Eu³⁺ → Eu²⁺ ПРИ ВЫСОКОМ ДАВЛЕНИИ В МАТРИЦЕ СО СТРУКТУРОЙ АПАТИТ СИЛИКАТА

© 2020 г. А. А. Васин^{*a,b,**}, М. Г. Зуев^{*a,b*}, И. Д. Попов^{*b*}, И. В. Бакланова^{*b*}, Д. Г. Келлерман^{*b*}, Е. В. Заболоцкая^{*b*}, Ю. Г. Зайнулин^{*b*}, Н. И. Кадырова^{*b*}

^а Уральский федеральный университет им. первого Президента РФ Б.Н. Ельцина, Екатеринбург, Россия ^b Российская академия наук, Уральское отделение, Институт химии твердого тела, Екатеринбург, Россия

> *e-mail: andrey-htt@yandex.ru Поступила в редакцию 03.03.2020 г. После доработки 25.03.2020 г. Принята к публикации 14.04.2020 г.

Получен люминофор состава Ca₂La_{6.8}Eu_{1.2}(SiO₄)₆O_{2 – δ} методами соосаждения и пиролиза органосолевой смеси. С помощью РФА исследована структура и фазовый состав синтезированных апатит силикатов. Записаны спектры люминесценции образца до и после прессования при давлениях выше 5 ГПа. Проведен анализ магнитных свойств методами ЭПР спектроскопии и вибрационной магнитометрии. На основании анализа температурной зависимости магнитной восприимчивости образцов были рассчитаны концентрации ионов Eu²⁺ и оптические константы расщепления (λ) между уровнями ⁷*F*₁ в исходном образце и после горячего прессования.

Ключевые слова: внутрицентровые переходы, люминесценция, магнитометрия, парамагнетизм Ван-Флека, закон Кюри–Вейса, вибрационная магнитометрия, ЭПР **DOI:** 10.31857/S0044453720120316

Целью данной работы является создание нового люминофора, активированного ионами Eu³⁺, поиск оптимальных способов его получения и обработки, позволяющих добиться изменения цвета свечения в белую область. В предыдущих работах показано, что соединения со структурой апатит силиката являются перспективными матрицами для создания как люминофоров красного свечения [1-3], так и люминофоров белого свечения [4, 5], активированных ионами Eu^{n+} (n = 2, 3). Устойчивость [6] к действиям высоких давлений (вплоть до 40 ГПа) и высокая термическая стабильность [7, 8] кристаллической решетки апатит силиката (пр. гр. $P 6_3/m$) позволяет получать соелинения с молифицированными свойствами и стабильной структурой, используя метод горячего прессования. Известно [5, 9, 10], что при термической обработке соединений, содержащих атомы щелочноземельных металлов, активированных ионами Eu³⁺, происходит процесс восстановления $\mathrm{Eu}^{3+} \to \mathrm{Eu}^{2+}$ за счет образования заряженных дефектов в катионной подрешетке.

Совместная люминесценция ионов Eu³⁺ и Eu²⁺ может давать свечение белого цвета. Ранее для получения нужного количества ионов двухвалентного европия при создании белых люмино-форов на базе соединений со структурой апатит

силиката были описаны способы, предусматривающие использование специальных восстановительных сред [5, 11]. В текущей работе предложен оригинальный способ быстрого восстановления трехвалентного европия с применением метода горячего прессования, исключающий использование химических восстановителей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец $Ca_2La_{6.8}Eu_{1.2}(SiO_4)_6O_{2-\delta}$ был синтезирован тремя различными способами: LS, SCS1S, SCS2S.

Методика LS. Исходные реагенты La_2O_3 (ЛаО-Д), Eu_2O_3 (ЕвО-1) и СаСО₃ (хч) растворяли в 20 мл HNO₃ (масс. конц. 70%). Перетертый рентгеноаморфный SiO₂ добавляли в раствор при тщательном перемешивании в виде порошка. После выпаривания раствора при температуре 140°С осажденный ксерогель прокаливали в температурном интервале 300–900°С при подъеме температуры со скоростью 100°С/ч. Окончательный обжиг производили при 1350°С в течение 21 ч и при 1400°С в течение 40 ч.

Методика SCS1S. Исходные реагенты La_2O_3 (ЛаО-Д), Eu_2O_3 (ЕвО-1) и CaCO₃ (хч) растворяли в 20 мл концентрированной HNO₃. Аморфный

SiO₂ ("ч.") перетирали в течение 2 ч в этиловом спирте, после чего к оксиду кремния добавляли одноводную лимонную кислоту ("х.ч.") из расчета на 3 массы SiO₂ 1.1 массы C₆H₈O₇ · H₂O [12]. К смеси оксила кремния и лимонной кислоты приливали 10 мл 96%-ного этилового спирта и перетирали коллоидную смесь до образования прозрачного геля. Затем растворили моногидрат лимонной кислоты в 50 мл 48%-ного этилового спирта. Массу лимонной кислоты рассчитывали на основании реакций

$$\begin{split} &3\mathrm{Ca}(\mathrm{NO}_3)_2 + 2\mathrm{C}_6\mathrm{H}_8\mathrm{O}_7 \rightarrow 3\mathrm{Ca}\mathrm{O} + 6\mathrm{C} + \\ &+ 3\mathrm{CO}_2\uparrow + 8\mathrm{H}_2\mathrm{O}\uparrow + 6\mathrm{NO}_2\uparrow + 3\mathrm{CO}\uparrow, \\ &2\mathrm{Ln}(\mathrm{NO}_3)_3 + 3\mathrm{C}_6\mathrm{H}_8\mathrm{O}_7 \rightarrow \mathrm{Ln}_2\mathrm{O}_3 + 12\mathrm{C} + \\ &+ 6\mathrm{CO}_2\uparrow + 12\mathrm{H}_2\mathrm{O}\uparrow + 6\mathrm{NO}_2\uparrow, \end{split}$$

где Ln = La, Eu.

.

После добавления раствора нитратов к гелю, полученная смесь была выпарена наполовину и к ней добавлен раствор лимонной кислоты и спирта. В ходе данного процесса протекает реакция

$$C_2H_5OH + 2HNO_3 \rightarrow C_2H_4O + 2NO_2\uparrow + 2H_2O\uparrow$$

с непрореагировавшей азотной кислотой, содержащейся вместе с нитратами в чаше. После чего смесь выпаривали при 140°С до образования белого осадка, который затем был разложен при 200°С. Полученный прекурсор был прокален при $t = 200 - 900^{\circ}$ C со скоростью подъема температуры 50°С/ч, и затем гомогенную смесь оксидов спрессовали в таблетки методом двухстадийного гидростатического прессования. На первой стадии давление составляло ~14.7 МПа, время выдержки было равно 2 мин, на второй стадии – кратковременное давление ~24.5 МПа. Таблетки были отожжены при 1350°С в течение 12 ч и при 1400°С в течение 36 ч с промежуточным перетиранием.

Методика SCS2S. Образец Ca₂La_{6.8}Eu_{1.2}(SiO₄)₆ О₂₋₆ был получен в 2 этапа. На первом этапе были синтезированы составы Ca₂La₈(SiO₄)₆O₂ и $Ca_2Eu_8(SiO_4)_6O_{2-\delta}$ по методике, описанной для метода SCS1S. На втором этапе, полученные составы были совместно перетерты с добавлением

этилового спирта в течение полутора часов. Количества апатит силиката кальция лантана и апатит силиката кальния европия были взяты по уравнению.

$$0.85 \operatorname{Ca}_{2}\operatorname{La}_{8}(\operatorname{SiO}_{4})_{6}\operatorname{O}_{2} + 0.15 \operatorname{Ca}_{2}\operatorname{Eu}_{8}(\operatorname{SiO}_{4})_{6}\operatorname{O}_{2-\delta} \rightarrow \\ \rightarrow \operatorname{Ca}_{2}\operatorname{La}_{6,8}\operatorname{Eu}_{1,2}(\operatorname{SiO}_{4})_{6}\operatorname{O}_{2-\delta}.$$

Полученная смесь была отожжена при 1350°С в течение 12 ч и при 1400°С в течение 24 ч.

Образец, полученный методом SCS1S, был разделен на две навески по 0.3 г и подвергнут горячему изостатическому прессованию в тороидальных камерах в следующих режимах.

Навеска 1. Давление ≈6 ГПа. температура 1400°С время выдержки 5 мин. Навеска 2. Давление ≈9 ГПа, температура 1300°С время выдержки 10 мин.

Аттестация образцов была проведена методом РФА (дифрактометр Shimadzu XRD-7000). Магнитные измерения образца, полученного методом SCS1S, были проведены на вибрационном магнитометре VSM-5T Cryogenic Ltd и ЭПРспектрометре CMS 8400. Спектры люминесценции были сняты на спектрофлуориметре Edinburg Instruments FS5 с Хе лампой мощностью 150 Вт и программными модулями для расчета квантового выхода люминесценции и цветовых координат. Спектры диффузного отражения для образца, полученного с помощью метода SCS1S были сняты на спектрофотометре Shimadzu UV-2410.

Анализ температурной зависимости кривой намагниченности для различных давлений прессования образца, полученного методом SCS1S проводился, исходя из того, что магнитные свойства данного соединения определяются вкладом ионов Eu³⁺ и Eu²⁺ [13]

$$\chi_m = \chi_{Eu^{3+}} + \chi_{Eu^{2+}}.$$
 (1)

Причем магнитная восприимчивость $\chi_{En^{3+}}$ складывается из парамагнетизма Ван-Флека ионов Eu³⁺ [13, 14] и парамагнетизма Кюри–Вейса неконтролируемых примесей Gd^{3+} [13]:

$$\chi_{Eu^{3+}} = \chi_{Gd^{3+}} + \chi_{Eu^{3+}}^{VF} = \frac{7.88n'}{T} + \left(1 - \frac{n}{i}\right) \frac{0.136996}{\left(\frac{\lambda}{k_B}\right)} \times \frac{24 + \left(\frac{13.5\lambda}{k_BT} - 1.5\right) \exp\left(-\frac{\lambda}{k_BT}\right) + \left(\frac{67.5\lambda}{k_BT} - 2.5\right) \exp\left(-\frac{3\lambda}{k_BT}\right) + \left(\frac{189\lambda}{k_BT} - 3.5\right) \exp\left(-\frac{6\lambda}{k_BT}\right)}{1 + 3\exp\left(-\frac{\lambda}{k_BT}\right) + 5\exp\left(-\frac{3\lambda}{k_BT}\right) + 7\exp\left(-\frac{6\lambda}{k_BT}\right) + 9\exp\left(-\frac{10\lambda}{k_BT}\right) + 11\exp\left(-\frac{15\lambda}{k_BT}\right) + 13\exp\left(-\frac{21\lambda}{k_BT}\right)} + (2)$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ 2020 том 94 № 12

$$+\frac{\left(\frac{405\lambda}{k_{\rm B}T}-4.5\right)\exp\left(-\frac{10\lambda}{k_{\rm B}T}\right)+\left(\frac{742.5\lambda}{k_{\rm B}T}-5.5\right)\exp\left(-\frac{15\lambda}{k_{\rm B}T}\right)+\left(\frac{1228.5\lambda}{k_{\rm B}T}-6.5\right)\exp\left(-\frac{21\lambda}{k_{\rm B}T}\right)}{1+3\exp\left(-\frac{\lambda}{k_{\rm B}T}\right)+5\exp\left(-\frac{3\lambda}{k_{\rm B}T}\right)+7\exp\left(-\frac{6\lambda}{k_{\rm B}T}\right)+9\exp\left(-\frac{10\lambda}{k_{\rm B}T}\right)+11\exp\left(-\frac{15\lambda}{k_{\rm B}T}\right)+13\exp\left(-\frac{21\lambda}{k_{\rm B}T}\right)},$$

где *n*' — количество молей ионов Gd³⁺ на 1 моль исследуемого соединения, *n* — количество молей ионов Eu²⁺ на 1 моль исследуемого соединения, *i* — индекс при Eu (в нашем случае *i*_= 1.2), λ — оптический параметр, равный ширине энергетического зазора между подуровнями ⁷*F*₁, расщепленного основного состояния иона Eu³⁺, *k*_B — постоянная Больцмана (*k*_B = 8.617 × 10⁻⁵ эB/K), *T* температура регистрации магнитной восприимчивости.

Ионы Eu²⁺ обладают парамагнетизмом Кюри– Вейса, магнитная восприимчивость при котором определяется из уравнения

$$\chi_{\mathrm{Eu}^{2+}} = A + \frac{C}{T - \theta},\tag{3}$$

где *А* — температурно-независимый параметр, θ — температура Кюри, *С* — константа Кюри, определяемая из выражения

$$C = \frac{nN_{\rm A}\mu_{\rm eff}^2}{3k_{\rm P}},\tag{4}$$

где $N_{\rm A}$ — постоянная Авогадро, $\mu_{\rm eff}$ — эффективный магнитный момент для Eu²⁺ $\mu_{\rm eff}$ = 7.96 $\mu_{\rm B}$, где $\mu_{\rm B}$ — магнетон Бора.

Аппроксимируя экспериментальные данные по уравнению (1), с учетом уравнений (2)–(4), мы получаем значения параметров n, n', λ , A, θ , что позволит количественно оценить влияние давления на восстановление ионов европия в образце.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 представлена рентгенограммы образца $Ca_2La_{6.8}Eu_{1.2}(SiO_4)_6O_{2-\delta}$, полученного методом LS. Рентгенограммы для образцов SCS1S и SCS2S аналогичны. Как видно, все образцы кристаллизовались в виде чистой фазы апатит силиката (JCPDS 29-0337). Структурные параметры, полученных образцов, были рассчитаны методом Ритвельда.

Как видно из табл. 1, наибольшее количество кальциевых вакансий наблюдается для образца, синтезированного методом SCS1S. Для образцов, полученных через пиролиз органо-солевых композиций, имеет значение контакт с углеродом, который выступает в качестве восстановителя при прокалке прекурсора.

Из анализа рентгенограмм образца SCS1S после прессования при давлениях 6 ГПа и 9 ГПа сле-

Рис. 1. Рентгенограммы образца $Ca_2La_{6.8}Eu_{1.2}(SiO_4)_6O_{2-\delta}$, полученного методом LS.

<u>Cu2Lu_{6.8}Lu_{1.2}(0104)602</u>									
Пара	метр	LS	SCS1S	SCS2S					
<i>a</i> , Å		9.6245	9.6274	9.6269					
<i>c,</i> Å		7.1082	7.1119	7.1126					
$V, Å^3$		570.219	570.870	570.876					
Рент. плотно	ость D , г/см ³	5.194	5.167	5.258					
Ca (I)	Ca (I) x		0.00160	0.02190					
	v	0.01690	0.24040	0.25030					
	<i>z</i> .	1/4	1/4	1/4					
	SOF	0.0296	0.0298	0.0491					
La (I)	x	0.24920	0.00160	0.02190					
	у	0.01690	0.24040	0.25030					
	z.	1/4	1/4	1/4					
	SOF	0.7975	0.7955	0.7768					
Eu (I)	x	0.24920	0.00160	0.02190					
	у	0.01690	0.24040	0.25030					
	z.	1/4	1/4	1/4					
	SOF	0.1610	0.1610	0.1744					
Ca (II)	x	1/3	1/3	1/3					
. /	У	2/3	2/3	2/3					
	<i>z</i> .	0.48250	0.00340	0.01750					
	SOF	0.3785	0.3788	0.4319					
La (II)	x	1/3	1/3	1/3					
~ /	v	2/3	2/3	2/3					
	<i>z</i> .	0.48250	0.00340	0.01750					
	SOF	0.4846	0.4818	0.4770					
Eu (II)	x	1/3	1/3	1/3					
	у	2/3	2/3	2/3					
	z.	0.48250	0.00340	0.01750					
	SOF	0.0770	0.0771	0.0451					
Si	x	0.38330	0.61000	0.63080					
	у	0.40390	0.98660	0.99700					
	z.	1/4	1/4	1/4					
	SOF	1	1	1					
O (I)	x	0.45880	0.43020	0.44380					
	У	0.58610	0.87860	0.88180					
	z.	1/4	1/4	1/4					
	SOF	1	1	1					
O (II)	x	0.48030	0.68430	0.70510					
	У	0.33650	0.15420	0.16460					
	z	1/4	1/4	1/4					
	SOF	1	1	1					
O (III)	x	0.25030	0.25310	0.26140					
	У	0.35130	0.34200	0.33160					
	z	0.06720	0.07240	0.05830					
	SOF	1	1	1					
O (Free)	x	0	0	0					
	У	0	0	0					
	z	1/4	1/4	1/4					
	SOF	0.9992	0.9908	0.9982					
Средняя дли	на связи, Å								
(Ca, La, Eu)-	-0	2.5526	2.5389	2.5869					
Si-O	2	1.6223	1.5738	1.5874					
$\chi^2 = (R_{\rm wp}/R_{\rm ex})$	$(p)^2$	1.45	2.14	2.44					
Bragg R-facto	or	1.43	2.70	2.84					
$R_{\rm p}$		20.4	44.9	45.8					

Таблица 1. Структурные данные для образца $Ca_2La_{6.8}Eu_{1,2}(SiO_4)_6O_2$

дует, что фаза остается стабильной, сверхструктурные пики отсутствуют.

На рис. 2 изображены спектры эмиссии ионов Eu³⁺ в люминофоре Ca₂La_{6 8}Eu_{1 2}(SiO₄)₆O_{2 - δ}. Люминесценция трехвалентного европия представлена серией узких линий в области от 570 до 720 нм, соответствующих переходам с уровня ${}^{5}D_{0}$ на уровни 7F_0 (невырожденный переход с одним пиком 578 нм), ⁷*F*₁ (три пика — 586, 590, 597 нм), ⁷*F*₂ (три пика — 614, 621, 627 нм), 7F_3 (слабый пик при 650 нм), ${}^{7}F_{4}$ (пик при 700 нм). Широкие полосы эмиссии в области 430-720 нм, соответствующие переходам $4f^{6}5d^{1}(e_{o}) \rightarrow 4f^{7}$ (⁸S_{7/2}), соответствующие ионам Eu²⁺, присутствующим в структуре этих соединений. Измеренные значения квантовых выходов люминесценции (λ_{ехс} = 394 нм) составили: 32.2% (LS), 20.8% (SCS1S), 12.2% (SCS2S).

На рис. 3 представлены спектры эмиссии образца SCS1S, полученного при высоких давлениях. Как видно, после прессовки интенсивность свечения ионов Eu²⁺ относительно Eu³⁺ увеличивается, что приводит к появлению белого свечения. Данное явление обусловлено как снижением интенсивности красной компоненты, так и ростом интенсивности сине-зеленой.

Рассчитанные значения цветовых координат при этом составили: x = 0.40846, y = 0.28351 для исходного образца; x = 0.2369, y = 0.25771 (P = 6 ГПа); x = 0.31197, y = 0.26454 (P = 9 ГПа).

Спектры диффузного отражения для образца SCS1S разложили на гауссианы. Полоса фундаментального поглощения исходного образца состоит из полосы поглощения силикатной матрицы (гауссиан с пиком 202 нм) и полосы (СТВ) перехода в состояние с переносом заряда ($4f^{7}2p^{-1}$), формируемое при переносе электрона с внешней 2p оболочки O^{2–} на внешнюю 4f оболочку иона Eu³⁺ (гауссиан с пиком 286 нм). В работе [15] показано, что процесс восстановления ионов европия сопровождается образованием кислородно-

дефицитных центров $V_0^{\bullet\bullet}$. Дефекты $V_0^{\bullet\bullet}$ обуславливают наличие примесных энергетических уровней внутри запрещенной зоны, что приводит к появлению полосы поглощения в области 450—750 нм в образцах, полученных при высоких давлениях. За счет этого происходит поглощение эмиссии ионов Eu³⁺ внутри матрицы и снижение интенсивности свечения в красно-оранжевой области. Ширина запрещенной зоны исходного образца SCS1S была определена через функцию Ку-

Рис. 2. Спектры фотолюминесценции ионов Eu^{n+} (*n* =2, 3) в образце $Ca_2La_{6.8}Eu_{1.2}(SiO_4)_6O_{2-\delta}$, синтезированном различными способами.

2020

белки–Мунка (КМ) [16, 17]. Связь между коэффициентами поглощения (*K*) и рассеяния (*S*) может быть выражена как

$$F(R_{\infty}) = \frac{K}{S} = \frac{(1 - R_{\infty})^2}{2R_{\infty}},$$
 (5)

где R_{∞} — отношение между коэффициентом отражения исследуемого образца и абсолютно белого эталона (BaSO₄). Соотношение между коэффициентом поглощения (α) и шириной запрещенной зоны ($E_{\rm g}$) может быть представлено через уравнение Таука [17, 18]

$$(\alpha h\nu) = K_1(h\nu - E_g)^n, \qquad (6)$$

где V — частота поглощаемого света; h — постоянная Планка; K_1 — константа пропорциональности. Для порошков коэффициент поглощения выражается через функцию KM ($F(R_{\infty})$) и уравнение (6) записывается в виде

$$(F(R_{\infty})h\nu)^{1/n} = K_2(h\nu - E_g).$$
(7)

Прологарифмировав правую и левую части (7), получим уравнение прямой

$$\ln[F(R_{\infty})h\nu] = n\ln(h\nu - E_{g}) + A, \qquad (8)$$

где n — параметр, зависящий от вида перехода: n = 1/2 для прямых разрешенных переходов, n = 2 для непрямых разрешенных переходов, A — константа. Полученные значения ширины запрещенной зоны составили: 5.27 и 3.54 эВ при n = 1/2

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 12

и n = 2 соответственно. Лучшему линейному сглаживанию по (8) подвергается модель при n = 2. Исходя из этого, наиболее верным значением ширины запрещенной зоны является 3.54 эВ.

Как видно из спектра ЭПР (рис. 4), для апатита силиката SCS1S сигналы от парамагнитных центров в структуре можно разделить на две группы. В первую входят интенсивный сигнал (g = 2.06) и сигнал (g = 2.26) слабой интенсивности. Во вторую группу можно отнести серию сигналов в низкополевой области: g = 2.87, 4.40, 5.99. Данные сигналы происходят от расщепленного ос-

Рис. 3. Спектры фотолюминесценции образца $Ca_2La_{6.8}Eu_{1.2}(SiO_4)_6O_{2-\delta}$ (SCS1S): исходного и спрессованного при различных давлениях.

Рис. 4. Спектр ЭПР образца SCS1S (до прессования).

новного состояния ${}^{8}S_{7/2}$ иона Eu²⁺ расположенному в двух неэквивалентных кристаллографических позициях [19–21]. Подтверждением этому может служить наличие сигнала с g = 4.40, который свидетельствует о наличии парамагнитного иона с наполовину заполненной электронной оболочкой в низкосимметричной позиции (центр 6*h*).

Описав температурные кривые магнитной восприимчивости (рис. 5) при помощи уравнений (1)–(4), поучили данные, приведенные в табл. 2. При повышении давления концентрация ионов Eu^{2+} возрастает. Данное изменение приво-

дит к увеличению интенсивности люминесценции двухвалентного европия в образцах. Уменьшение константы λ свидетельствует об уменьшении длины связи Eu–O. Таким образом, сжатие происходит на уровне кристаллической структуры.

Основной механизм восстановления Eu³⁺ заключается в выходе кислорода при прессовании из каналов 2*a* в газовую фазу по уравнению

$$2\mathrm{Eu}_{\mathrm{Ca}}^{\bullet} + \mathrm{O}_{\mathrm{O}}^{\times} \rightarrow 2\mathrm{Eu}_{\mathrm{Ca}}^{\times} + \mathrm{V}_{\mathrm{O}}^{\bullet\bullet} + \frac{1}{2}\mathrm{O}_{2}\uparrow.$$

В ходе данной работы удалось получить соединение Ca₂La_{6.8}Eu_{1.2}(SiO₄)₆O_{2 – δ} тремя различными способами (LS, SCS1S, SCS2S). Методом РФА установлена идентичность структуры и отсутствие примесных фаз во всех трех случаях. Также было показано, что фаза апатит силиката остается стабильной под давлением до 9 ГПа.

Методами люминесцентной спектроскопии удалось установить наличие оптических центров, образованных ионами Eu³⁺ и Eu²⁺. Также было показано влияние горячего прессования на интенсивность люминесценции обоих ионов, приводящее к появлению белого свечения.

Методом ЭПР было показано, что ионы Eu²⁺ занимают две неэквивалентные кристаллографические позиции. При помощи метода вибрационной магнитометрии установлено, что концентрация Eu²⁺ растет с ростом давления прессования. Был предложен механизм восстановления ионов Eu³⁺ при использовании метода горячего прессования.

Рис. 5. Температурные зависимости магнитной восприимчивости образца SCS1S, спрессованного при различных давлениях.

<i>Р</i> , ГПа	λ , см ⁻¹	<i>n</i> ', ppm	<i>n</i> , моль/моль образца	n, % (от общего сод. Eu)	<i>А</i> , см ³ /моль	Θ, Κ
Исходный	362.2	105	0.0081	0.675	0.00002	0.75
6	291.7	105	0.0113	0.942	0.00401	2.19
9	256.3	105	0.0141	1.175	0.00814	1.58

Таблица 2. Параметры сглаживания кривых по уравнениям (1)-(4)

Работа выполнена в соответствии с Госзаданиями Химико-технологического института УрФУ и ИХТТ УрО РАН и планами НИР в сфере фундаментальных научных исследований при частичной финансовой поддержке проекта РФФИ № 20-03-00851.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ouenzerfi R.El., Goutaudier C., Cohen-Adad M.Th. et al. // J. Lumin. 2003. V. 102–103. P. 426.
- Sanhai Wang, Yanqiao Xu, Ting Chen et al. // J. Alloys and Comp. 2019. V. 789. P. 381.
- Zhi-wei Zhang, Li-jiang Wang, Sha-sha Yang et al. // Mat. Lett. 2017. V. 204. P. 101.
- Jerzy Sokolnicki, Eugeniusz Zych // J. Lumin. 2015. V. 204. P. 65.
- Xiaoli Gao, Haitau Liu, Xinyu Yang et al. // RSC Adv. 2017. V. 7. P. 1711.
- 6. *Zhang F.X., Xiao H.Y., Lang M. et al.* // Phys Chem. Minerals. 2013 V. 40. № 10. P. 817.
- Jake Sleeper, Anita Garg, Valerie L. Wiesner // J. Europ. Ceram. Soc. 2019. V. 39. № 16. P. 5380.
- Muresan L.E., Perhaita I., Prodan D. et al. // J. Alloys and Comp. 2018. V. 755. P. 135.

- 9. Cuimiao Zhang, Jun Yang, Cuikun Lin et al. // J. Solid State Chem. 2009. V. 182. № 7. P. 1673.
- Yin Zhang, Jie Chen, Chuanyan Xu et al. // Phys. B. 2015. V. 472. P. 6
- Shuyun Qi, Yanlin Huang, Taiju Tsuboi et al. // Opt. Soc. of Am. 2014. V. 4. № 2. P. 396.
- Ворсина И.А., Григорьева Т.Ф., Баринова А.П. и др. // Химия в интересах устойчивого развития. 2011. № 19. С. 485.
- Zurine Maupoey, Maria Teresa Azcondo, Ulises Amador et al. // J. Mater. Chem. 2012. V. 22. P. 18033.
- 14. *Takikawa Yusuke, Ebisu Shuji, Nagata Shoichi //* J. Phys. and Chem. of Sol. 2010. V. 71. № 11. P. 1592.
- Zuev M.G., Karpov A.M., Shkvarin A.S. // J. Solid State Chem. 2011. V. 184. P. 52.
- Nobbs James H. // Rev. of Prog. in Color. and Rel. Top. 1985. V. 15. № 1. P. 66.
- Kunti A.K., Ghosh L., Sharma S.K. et al. // J. Lumin. 2019. V. 214, № 116530. P. 1.
- Tauc J., Grigorovici R., Vancu A. // Phys. Stat. Solidi-Bas. Sol. State Phys. 1966. V. 15. № 2. P. 627.
- Vijay Singh, Chakradhar R.P.S., Rao J.L. et al. // J. Lumin. 2010. V. 130. P. 703.
- 20. Secu C.E., Rostas A.M. // J. Alloys and Comp. 2020. V. 815. № 152400. P. 1.
- 21. Vijay Singh, Chakradhar R.P.S., Rao J.L. et al. // J. Lumin. 2011. V. 131. P. 1714.