_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 544.31:547.1'128

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СВЕРХРАЗВЕТВЛЕННОГО ПИРИДИНСОДЕРЖАЩЕГО ПОЛИФЕНИЛЕНА В ОБЛАСТИ ОТ $T \rightarrow 0$ до 650 к

© 2020 г. Н. Н. Смирнова^{*a*,*}, А. В. Маркин^{*a*}, С. С. Сологубов^{*a*}, Е. С. Серкова^{*b*}, Н. В. Кучкина^{*b*}, З. Б. Шифрина^{*b*}

^аНациональный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия ^bРоссийская академия наук, Институт элементоорганических соединений им. А.Н. Несмеянова, Москва, Россия *e-mail: smirnova@ichem.unn.ru Поступила в редакцию 15.02.2019 г. После доработки 12.03.2019 г. Принята к публикации 09.04.2019 г.

Впервые методами прецизионной адиабатической вакуумной калориметрии и дифференциальной сканирующей калориметрии исследованы термодинамические свойства аморфного сверхразветвленного пиридинсодержащего полифенилена в температурной области 6–650 К. В низкотемпературном интервале 9–14 К у полимера обнаружено аномальное изменение теплоемкости, напоминающее по форме G-переход. Начиная с T = 400 К, выявлен экзотермический эффект, связанный, предположительно, со сшивкой изученного образца. По полученным экспериментальным данным методами классической термодинамики вычислены стандартные термодинамические функции полимера для области от $T \rightarrow 0$ до 400 К, а также стандартная энтропия его образования при T = 298.15 К.

Ключевые слова: сверхразветвленный пиридинсодержащий полифенилен, адиабатическая вакуумная калориметрия, дифференциальная сканирующая калориметрия, теплоемкость, термодинамические функции

DOI: 10.31857/S0044453720010318

За последнее двалиатилетие к одним из наиболее важных достижений в области химии высокомолекулярных соединений относятся синтез и исследование свойств сверхразветвленных полимеров, которые представляют собой трехмерные макромолекулы различного строения с высокой плотностью ветвления [1]. Благодаря своей сферической форме и дендритоподобной архитектуре они характеризуются высокой растворимостью и низкой вязкостью растворов (по сравнению с линейными полимерами), а также наличием внутримолекулярных полостей и большого количества внешних функциональных групп [2, 3]. Сверхразветвленные полимеры являются нерегулярными аналогами структурно-совершенных монодисперсных дендримеров [4, 5], но при этом обладают рядом достоинств последних в сочетании с простотой синтеза "классических" полимеров [6]. Разработанные к настоящему времени стратегии синтеза позволяют получать такие практически важные полимерные соединения, как полиуретаны, поликарбонаты, полиамиды, полиэфиры и др.

Внимание к сверхразветвленным полимерам определяется как глубоким фундаментальным интересом к их исследованиям, так и потенциальной практической значимостью при использовании в различных отраслях современных технологий. Они находят широкое применение в катализе [7–9], оптоэлектронике [10], биомедицине [11–13], технологиях получения композиционных наноматериалов, покрытий и модификаторов [14–16].

Ранее методами прецизионной калориметрии в широком температурном диапазоне нами были изучены сверхразветвленные дендритоподобные перфторированные полифениленгерманы (ПФГ) [17, 18], фенилированный полифенилен (ФПФ) [19, 20], а также пиридинсодержащие полифениленовые дендримеры первой-четвертой генераций [21, 22] и дендроны второй-третьей генераций [23–25]. Цель данной работы — калориметрическое изучение сверхразветвленного пиридинсодежащего полифенилена (ППФ) в температурной области 6–650 К (определение теплоемкости полимера в указанном интервале температур; выявление возможных физических превращений и определение их термодинамических характеристик; расчет стандартных термодинамических функций полимера для области от $T \rightarrow 0$ до 400 K, а также стандартной энтропии его образования при T = 298.15 K).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристики изученного образца. Схематическое изображение структуры исследуемого сверхразветвленного ППФ приведено на рис. 1. Образец синтезирован и охарактеризован в Институте элементоорганических соединений им. А.Н. Несмеянова РАН (Москва). Состав и структура полимера подтверждены методами ¹Н и ¹³С ЯМР-спектроскопии, а также MALDI-TOF массспектрометрии. Молекулярная масса и степень полидисперсности соединения ($M_{\rm w} = 40300$ г/моль, PDI = 2.94) определены с помощью метода эксклюзионной хроматографии [26]; погрешность определения указанных характеристик была не хуже 5%. Результаты исследования гидродинамических и оптических свойств сверхразветвленного ППФ представлены в работе [27].

Авторами работы [26] была предложена брутто-формула повторяющегося звена сверхразветвленного ППФ – $[C_{270}H_{174}N_6O_3]$, структура которого представлена на рис. 2. Молярная масса звена (M = 3549.99 г/моль) была определена по таблице стандартных атомных масс, рекомендованной ИЮПАК [28]. Отметим, что все термодинамические характеристики полимера были рассчитаны на указанный выше моль структурного звена.

Аппаратура и методики измерений. Теплоемкость сверхразветвленного ППФ в области температур 6-350 К была измерена с использованием высокоточного адиабатического вакуумного калориметра БКТ-3 (АО "Термис", Московская обл.). Конструкция установки и методика измерений подробно описаны в работах [29, 30]. В калориметрическую ампулу помещали 0.1932 г сверхразветвленного ППФ. Взвешивание образца для калориметрических экспериментов проводили на аналитических весах Shimadzu AUX 220 (Япония); точность взвешивания составляла ±0.0001 г. Перед измерением теплоемкости ампулу с исследуемым полимером заполняли при комнатной температуре сухим гелием особой чистоты, служащим в качестве теплообменного газа. В качестве хладагентов использовали жилкие гелий и азот. Скорость нагревания ампулы с веществом в калориметрическом опыте составляла 0.2 К/мин. Поверку калориметра осуществляли путем измерения теплоемкостей эталонных веществ – бензойной кислоты и синтетического сапфира (ВНИИМ им. Д.И. Менделеева, Санкт-Петербург) [31]. Установлено, что используемая

калориметрическая установка позволяет определять теплоемкости веществ с относительной стандартной неопределенностью $u_r(C_p^o) = 0.02 - 0.03$ в области температур 6–15 К, $u_r(C_p^o) = 0.005$ в интервале температур 15–40 К, $u_r(C_p^o) = 0.002 - 0.003$ в температурной области 40–350 К; стандартная неопределенность u(T) = 0.01 К.

Для определения теплоемкости сверхразветвленного ППФ в интервале 350–650 К использовали дифференциальный сканирующий калориметр DSC 204 F1 Phoenix (NETZSCH-Gerätebau, Германия). Конструкция калориметра и методика измерений подробно описаны в работах [32, 33] и программном обеспечении NETZSCH Proteus Software. Калибровку калориметра осуществляли посредством определения теплофизических характеристик плавления индия, висмута, цинка, олова, ртути, калия, хлорида цезия и бифенила. Стандартная неопределенность u(T) = 0.5 К. Для

определения C_p^{o} сверхразветвленного ППФ выполняли три последовательных измерения: базовой линии, стандартного образца (корунда) и образца полимера. Скорость нагревания ампулы с веществом составляла 5 К/мин. Измерения проводили в атмосфере высокочистого аргона со скоростью потока газа 25 мл/мин. Установлено, что используемый калориметр позволяет определять теплоемкости веществ с относительной стандартной неопределенностью $u_r(C_p^{o}) = 0.02$ в температурной области 350–650 К.

Термогравиметрический анализ (ТГА) сверхразветвленного ППФ проводили с помощью термомикровесов TG 209 F1 Iris (NETZSCH-Gerätebau, Германия) в температурном интервале 300– 850 К в атмосфере аргона. Скорость нагревания ампулы с веществом составляла 5 К/мин. Установлено, что температура начала разложения исследуемого полимера T = 685 К.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость. Температурная зависимость теплоемкости сверхразветвленного ППФ представлена на рис. 3. Экспериментальные значения C_p^{o} исследуемого соединения приведены в табл. 1 (серии 1–3 получены с использованием адиабатического вакуумного калориметра, серии 4, 5 – с использованием ДСК). Относительное отклонение экспериментальных значений C_p^{o} от сглаженной кривой $C_p^{o} = f(T)$ в температурной области 6–400 К представлено на рис. 4. Теплоемкость исследуемого полимера составляла 25–30% от суммарной теплоемкости калориметрической ампулы с веществом при ее исследовании в БКТ-3. Сглаживание экспериментальных значений C_p^{o}

Рис. 1. Схематическое изображение структуры сверхразветвленного пиридинсодежащего полифенилена.

проводили с помощью логарифмических полиномов вида

$$\ln C_p^{\rm o} = \ln(a + bT + cT^2 + dT^3 + eT^4 + fT^5 + gT^6).$$

При T = 6-15 К сглаживание осуществляли по T^3 -закону Дебая.

Первоначально образец сверхразветвленного ППФ охлаждали от комнатной температуры до температуры начала измерений ($T \sim 6$ K). В процессе его нагревания измеряли теплоемкость

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

(рис. 3, кривая *I*), которая плавно увеличивалась с ростом температуры вплоть до T = 400 К (рис. 3, участок *AB*) за исключением области T = 9-14 К, где проявлялось аномальное изменение теплоемкости, напоминающее расстеклование. При T > > 400 К наблюдалось уменьшение "кажущейся теплоемкости" полимера; получены отрицательные значения C_p^o в интервале от 520 до 650 К, что ниже по сравнению с температурой термической деструкции сверхразветвленного ППФ (T = = 685 K). Наблюдаемое изменение C_p^o связано с

Рис. 2. Структура повторяющегося звена сверхразветвленного пиридинсодержащего полифенилена [26].

экзотермическим процессом, обусловленным, вероятнее всего, сшивкой макромолекул изученного соединения. Это также согласуется с повторным измерением C_p^{o} полимера после того, как он был охлажден от 650 до 310 К.

Повторное измерение теплоемкости сверхразветвленного ППФ выполняли методом ДСК (рис. 3, кривая 2). Определили, что значения C_p^{o} в области (310–400 К ниже, чем C_p^{o} первоначально загруженного образца на 8–9%, что вполне логично в предположении термической сшивки исходного полимера. Известно [34], что теплоемкости сшитых полимеров всегда меньше аналогичных значений для несшитых полимеров. При повторном нагревании соединения этот процесс продолжается вплоть до T = 544 K, после чего наблюдается уменьшение C_p^{o} полимера (рис. 3, участок *B'C'*). Отметим, что подобное поведение C_p^{o} наблюдалось и в случае ранее исследованных сверхразветвленных дендритоподобных ПФГ [17, 18].

Рис. 3. Температурная зависимость теплоемкости сверхразветвленного пиридинсодержащего полифенилена.

Рис. 4. Относительное отклонение экспериментальных значений теплоемкости сверхразветвленного пиридин-содержащего полифенилена от сглаженной кривой.

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

	-	, 270) 1/4 0 5	-	, ,	1					
<i>Т</i> , К	C_p^{o}										
Серия 1		71.48	1098	211.34	2957	361.8	5343	493.8	3585	624.8	-2660
6.20	26.6	75.12	1145	215.09	3022	364.8	5399	496.8	3251	627.8	-2680
6.62	31.3	78.77	1197	218.83	3071	367.8	5425	499.8	2895	630.8	-2730
7.00	34.2	82.42	1249	222.58	3123	370.8	5487	502.8	2509	633.8	-2767
7.38	37.1	Cep	ия 3	226.33	3156	373.8	5504	505.8	2115	636.8	-2812
7.81	40.8	81.42	1237	230.10	3218	376.8	5562	508.8	1669	Сер	ия 5
8.13	42.8	85.54	1292	233.84	3273	379.8	5581	511.8	1217	310.8	4182
8.37	44.9	88.35	1342	237.76	3325	382.8	5617	514.8	752	313.8	4222
8.72	48.0	91.24	1391	242.00	3385	385.8	5648	517.8	328	316.8	4262
9.25	53.3	93.45	1425	245.28	3441	388.8	5642	520.8	-108	319.8	4302
Cep	ия 2	97.21	1475	249.02	3494	391.8	5684	523.8	-525	322.8	4342
8.93	50.7	100.48	1529	252.76	3526	394.8	5698	526.8	-907	325.8	4382
9.28	54.1	101.13	1534	256.50	3582	397.8	5704	529.8	-1281	328.8	4422
9.82	59.7	104.27	1575	260.23	3650	400.8	5704	531.8	-1482	331.8	4462
10.23	69.2	105.39	1596	263.97	3704	403.8	5721	534.8	-1776	334.8	4502
10.64	78.2	107.81	1625	267.70	3750	406.8	5715	537.8	-2021	337.8	4542
11.09	88.5	108.15	1632	271.42	3823	409.8	5738	540.8	-2231	340.8	4582
11.55	98.7	111.36	1669	275.14	3870	412.8	5721	543.8	-2407	343.8	4622
12.05	112.0	114.93	1709	278.85	3941	415.8	5715	546.8	-2575	346.8	4662
12.71	131.0	119.14	1763	282.55	3986	418.8	5721	549.8	-2672	349.8	4789
13.35	148.9	123.31	1820	286.24	4066	421.8	5708	552.8	-2756	352.8	4802
14.23	167.7	126.89	1861	289.92	4121	424.8	5704	555.8	-2795	355.8	4810
14.96	181.7	130.47	1919	293.59	4189	427.8	5701	558.8	-2869	358.8	4841
15.68	197.2	134.06	1964	297.36	4258	430.8	5684	561.8	-2877	361.8	4871
16.40	210.8	137.66	2014	301.01	4334	433.8	5684	564.8	-2877	364.8	4908
17.10	225.3	141.26	2066	304.63	4398	436.8	5654	567.8	-2895	367.8	4920
17.80	242.2	145.24	2119	308.25	4454	439.8	5612	570.8	-2851	370.8	4957
18.56	257.6	148.48	2147	311.83	4511	442.8	5599	573.8	-2852	373.8	4990
19.24	270.3	152.10	2188	315.39	4551	445.8	5569	576.8	-2813	376.8	5048
19.92	285.1	155.73	2236	318.93	4622	448.8	5535	579.8	-2802	379.8	5063
22.01	325.1	159.36	2281	322.45	4684	451.8	5504	582.8	-2784	382.8	5130
25.36	390.5	163.00	2318	325.95	4765	454.8	5472	585.8	-2742	385.8	5146
28.75	450.6	166.65	2363	329.45	4811	457.8	5429	588.8	-2713	388.8	5185
32.18	513.4	170.32	2408	332.93	4877	460.8	5362	591.8	-2711	391.8	5214
35.64	576.9	173.99	2469	336.39	4960	463.8	5303	594.8	-2702	394.8	5253
39.13	631.0	177.77	2515	339.83	5013	466.8	5233	597.8	-2672	397.8	5278
42.65	688.0	181.45	2572	343.24	5095	469.8	5187	600.8	-2654	400.8	5322
46.20	743.5	185.16	2616	Cep	ия 4	472.8	5085	603.8	-2634	403.8	5359
49.77	793.0	188.86	2669	343.6	5101	475.8	4922	606.8	-2660	406.8	5390
53.36	843.5	192.57	2718	346.5	5144	478.8	4780	609.8	-2645	409.8	5413
56.96	899.1	196.32	2779	349.8	5195	481.8	4597	612.8	-2639	412.8	5456
60.58	956.6	200.40	2829	352.8	5218	484.8	4386	615.8	-2628	415.8	5483
64.20	1002	203.84	2864	355.8	5264	487.8	4145	618.8	-2674	418.8	5503
67.83	1045	207.10	2902	358.8	5288	490.8	3889	621.8	-2671	421.8	5544

Таблица 1. Экспериментальные значения теплоемкости [Дж/(К моль)] сверхразветвленного пиридинсодержащего полифенилена, $M(C_{270}H_{174}N_6O_3) = 3549.99$ г/моль, $p^\circ = 0.1$ МПа

<i>Т</i> , К	C_p^{o}										
424.8	5560	463.8	5975	499.8	6329	538.8	6719	574.8	6648	610.8	5999
427.8	5604	466.8	5979	502.8	6381	541.8	6719	577.8	6652	613.8	5915
430.8	5652	469.8	6041	505.8	6392	544.8	6747	580.8	6633	616.8	5780
433.8	5683	472.8	6088	508.8	6424	547.8	6737	583.8	6573	619.8	5640
436.8	5718	475.8	6114	511.8	6450	550.8	6719	586.8	6548	622.8	5503
439.8	5740	478.8	6159	514.8	6485	553.8	6715	589.8	6491	625.8	5339
442.8	5755	481.8	6145	517.8	6521	556.8	6742	592.8	6455	628.8	5177
445.8	5792	484.8	6201	520.8	6545	559.8	6700	595.8	6414	631.8	4974
448.8	5832	487.8	6227	523.8	6577	562.8	6696	598.8	6367	634.8	4738
451.8	5877	490.8	6250	526.8	6615	565.8	6685	601.8	6298	637.8	4506
454.8	5898	493.8	6273	529.8	6626	568.8	6700	604.8	6186	640.8	4239
457.8	5918	496.8	6314	532.8	6661	571.8	6684	607.8	6112	643.8	3936
460.8	5947										

Таблица 1. Окончание

Примечание. Стандартные неопределенности u(p) = 10 кПа, u(T) = 0.01 К. Относительная стандартная неопределенность $u_r(C_p^0) = 0.02$ в области температур 6–15 К, $u_r(C_p^0) = 0.005$ в интервале температур 15–40 К, $u_r(C_p^0) = 0.002$ в области температур 40–343 К, $u_r(C_p^0) = 0.02$ в интервале температур 343–650 К. Для серий 4 и 5 приведено каждое третье значение теплоемкости.

Стандартные термодинамические характеристики аномального изменения теплоемкости в гелиевой области температур. В интервале T = 9— 14 К обнаружено аномальное изменение теплоемкости сверхразветвленного ППФ, напоминающее по форме G-переход. Экспериментальные значения C_p^0 в этой области представлены на рис. 5. За температуры начала ($T_{\text{нач}}$) и конца ($T_{\text{кон}}$)

Рис. 5. Низкотемпературная зависимость теплоемкости сверхразветвленного пиридинсодержащего полифенилена; T_G^0 – температура G-перехода.

перехода принимали температуры начала и конца аномальной зависимости теплоемкости: при $T_{\rm нач}$ имеет место отклонение зависимости $C_p^{\rm o} = f(T)$ от нормального хода (рис. 5, участок *BC*); при $T_{\rm кон}$ зависимость $C_p^{\rm o} = f(T)$ вновь становится нормальной (рис. 5, участок *CD*). Увеличение теплоемкости при G-переходе $\Delta C_p^{\rm o}(T_{\rm G}^{\rm o}) = 69.8 \pm 0.8 \, \text{Дж/(К моль)}$ определяли графически экстраполяцией усредняющих кривых зависимости $C_p^{\rm o} = f(T)$ на участках до и после перехода к температуре перехода $T_{\rm G}^{\rm o} =$ $= 12 \pm 1$ К (рис. 5, участок *EF*). Конфигурационную энтропию $S_{\rm conf}^{\rm o} = 18 \pm 2 \, \text{Дж/(К моль)}$ рассчитывали по уравнению, предложенному в работе [35]:

$$S_{\rm conf}^{\rm o} = \Delta C_p^{\rm o}(T_{\rm G}^{\rm o}) \ln(T_{\rm G}^{\rm o}/T_{\rm K}), \qquad (1)$$

где $T_{\rm K}$ – температура Кауцманна [36]. При определении $S_{\rm conf}^{\rm o}$ сверхразветвленного ППФ принимали, что отношение ($T_{\rm G}^{\rm o}/T_{\rm K}$) = 1.29 [37]. Полагали, что уравнение (1) справедливо для оценки $S_{\rm conf}^{\rm o}$ при G-переходе полимера.

Необходимо отметить, что сверхразветвленные дендритоподобные ПФГ также имеют низкотемпературное превращение в этом интервале [17, 18]. Природа этих превращений не ясна, поскольку их интерпретация требует дополнительных исследований в области, близкой к $T \rightarrow 0$.

Мультифрактальная обработка низкотемпературной теплоемкости. С использованием экспериментальных данных о низкотемпературной

	$C_n^{\rm o}(T),$	$[H^{\circ}(T) - H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$		
1, К	Дж/(К моль)	кДж/моль	Дж/(К моль)	кДж/моль		
5	15.3	0.0210	5.37	0.00682		
10	63.3	0.210	29.9	0.0887		
15	181.9	0.8285	78.31	0.3462		
20	286.4	2.003	145.2	0.9014		
25	383.0	3.679	219.6	1.811		
30	475.3	5.826	297.7	3.104		
35	564.1	8.426	377.6	4.791		
40	647.7	11.46	458.5	6.881		
45	725.1	14.89	539.3	9.376		
50	797.6	18.70	619.5	12.27		
60	946.6	27.40	777.8	19.26		
70	1076	37.53	933.6	27.82		
80	1214	48.96	1086	37.92		
90	1370	61.88	1238	49.54		
100	1519	76.34	1390	62.68		
110	1652	92.22	1544	77.60		
120	1776	109.4	1693	93.79		
130	1907	127.8	1840	111.5		
140	2047	147.5	1987	130.6		
150	2168	168.7	2132	151.2		
160	2284	190.9	2276	173.2		
170	2410	214.4	2418	196.7		
180	2546	239.1	2560	221.6		
190	2685	265.3	2701	247.9		
200	2819	292.8	2842	275.6		
210	2949	321.7	2983	304.7		
220	3079	351.8	3123	335.3		
230	3216	383.3	3263	367.2		
240	3362	416.2	3403	400.5		
250	3499	450.5	3543	435.2		
260	3640	486.2	3683	471.4		
270	3790	523.3	3823	508.9		
280	3955	562.0	3964	547.8		
290	4130	602.5	4106	588.2		
298.15	4274	636.7	4222	622.1		
300	4306	644.6	4249	630.0		
310	4477	688.6	4393	673.2		
320	4647	734.2	4537	717.8		
330	4825	781.5	4683	763.9		
340	5024	830.8	4830	811.5		
350	5190	881.9	4978	860.5		
360	5320	934.4	5126	911.0		
370	5460	988.3	5274	963.0		
380	5590	1044	5421	1017		
390	5670	1100	5568	1071		
400	5707	1157	5712	1128		

Таблица 2. Стандартные термодинамические функции сверхразветвленного пиридинсодержащего полифенилена, $M(C_{270}H_{174}N_6O_3) = 3549.99$ г/моль, $p^\circ = 0.1$ МПа

Примечание. Стандартные неопределенности $u(p) = 10 \text{ к}\Pi a$, u(T) = 0.01 K в области 5-350 K, u(T) = 0.5 K в интервале 350-400 K. Расширенные относительные неопределенности $U_r(C_p^0(T)) = 0.02, 0.005, 0.002 \text{ и} 0.02; U_r[H^\circ(T) - H^\circ(0)] = 0.022, 0.007, 0.005 \text{ и} 0.022; U_r[S^\circ(T) - S^\circ(0)] = 0.023, 0.008, 0.006 \text{ и} 0.023; U_r[G^\circ(T) - H^\circ(0)] = 0.03, 0.01, 0.009 \text{ и} 0.03 \text{ в температурных интервалах } 5-15, 15-40, 40-350 \text{ и} 350-400 \text{ K}$ соответственно (уровень достоверности $0.95, k \approx 2$).

теплоемкости сверхразветвленного ППФ оценено значение фрактальной размерности *D*. Значения *D* позволяют делать заключения о типе топологии структуры твердых тел: D = 1 соответствует телам цепочечной структуры, D = 2 – слоистой структуры, D = 3 – пространственной структуры. Основное уравнение мультифрактальной модели обработки низкотемпературной теплоемкости [38, 39] имеет вид:

202

$$C_{v} = 3D(D+1)kN\gamma(D+1)\xi(D+1)(T/\Theta_{\max})^{D}, \quad (2)$$

где k — постоянная Больцмана; N — число атомов в молекуле; $\gamma(D + 1) - \gamma$ -функция; $\xi(D + 1) - \xi$ функция Римана; Θ_{max} — характеристическая температура. Для конкретного твердого тела $D(D + 1)kN\gamma(D+1)\xi(D+1)(1/\Theta_{max})^D = A$ — постоянная величина. Тогда, логарифмируя уравнение (2), можно записать:

$$\ln C_v = \ln A + D \ln T. \tag{3}$$

Экспериментальные значения C_p^0 при T < 50 К можно принять равными C_v . Таким образом, с использованием соответствующих экспериментальных данных о теплоемкости сверхразветвленного ППФ в интервале T = 30-50 К получено значение D = 1.1; характеристическая температура $\Theta_{\text{max}} = 253$ К. Эти значения определены с погрешностью $\pm 0.9\%$. Полученное значение фрактальной размерности D указывает на цепочечно-слоистую топологию структуры изученного полимера.

Стандартные термодинамические функции. Стандартные термодинамические функции сверхразветвленного ППФ приведены в табл. 2. Для расчета термодинамических функций температурную зависимость теплоемкости экстраполировали к $T \rightarrow 0$ от температуры начала измерений по функции теплоемкости Дебая [40]:

$$C_n^{\rm o} = n \mathbf{D}(\Theta_{\rm D}/T), \tag{4}$$

где **D** – функция теплоемкости Дебая; n = 15 и $\Theta_{\mathbf{D}} = 41.9$ К – специально подобранные параметры. Уравнение (4) воспроизводит значения C_p° в интервале T = 7-9 К с погрешностью $\pm 1.7\%$. Расчет энтальпии [$H^{\circ}(T) - H^{\circ}(0)$] и энтропии [$S^{\circ}(T) - S^{\circ}(0)$] проводили численным интегрированием зависимостей $C_p^{\circ} = f(T)$ и $C_p^{\circ} = f(\ln T)$ соответственно. Расчет энергии Гиббса [$G^{\circ}(T) - H^{\circ}(0)$] осуществляли по уравнению Гиббса–Гельмгольца:

$$[G^{\circ}(T) - H^{\circ}(0)] = [H^{\circ}(T) - H^{\circ}(0)] - -T[S^{\circ}(T) - S^{\circ}(0)].$$
(5)

Подробная методика расчета стандартных термодинамических функций опубликована в работе [41].

Стандартную энтропию образования $\Delta_{\rm P}S^{\circ}$ сверхразветвленного ППФ при T = 298.15 К рассчитывали с использованием энтропии полимера при той же температуре (табл. 2) и абсолютных энтропий простых веществ: $C_{(rp)}$, $H_{2(r)}$, $N_{2(r)}$ и $O_{2(r)}$ [42]. Полученное значение $\Delta_P S^{\circ}([C_{270}H_{174}N_6O_3],$ 298.15) = -9157 ± 74 Дж/(К моль) соответствует уравнению реакции:

$$270C_{(rp)} + 87H_{2(r)} + 3N_{2(r)} + 1.5O_{2(r)} \rightarrow \rightarrow [C_{270}H_{174}N_6O_3],$$
(6)

где (гр) – графит; (г) – газ.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 19-03-00248, 17-03-00578) и Министерства науки и высшего образования Российской Федерации (задание № 4.5510.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hyperbranched Polymers*: Synthesis, Properties, and Applications / Ed. by *D. Yan, C. Gao, H. Frey.* John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2011. 481 p.
- Voit B.I., Lederer A. // Chem. Rev. 2009. V. 109. № 11. P. 5924.
- 3. Konkolewicz D., Monteiro M.J., Perrier S. // Macromolecules. 2011. V. 44. № 18. P. 7067.
- 4. *Newkome G.R., Shreiner C.D.* // Polymer. 2008. V. 49. № 1. P. 1.
- Музафаров А.М., Василенко Н.Г., Татаринова Е.А. и др. // Высокомолек. соед. Сер. С. 2011. Т. 53. № 7. С. 1217.
- Muzafarov A.M., Tatarinova E.A., Vasilenko N.V. et al. // in Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications (Ed. by V.Ya. Lee). Academic Press: Cambridge, Massachusetts, USA, 2017. P. 323.
- 7. Zheng X., Oviedo I.R., Twyman L.J. // Macromolecules. 2008. V. 41. № 21. P. 7776.
- 8. *Hu N., Yin J.Y., Tang Q. et al.* // J. Polym. Sci. Part A: Polym. Chem. 2011. V. 49. № 17. P. 3826.
- 9. Baird N., Dittmar J.W., Losovyj Y.B. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 3. P. 2285.
- 10. *Wu W., Tang R., Li Q. et al.* // Chem. Soc. Rev. 2015. V. 44. № 12. P. 3997.
- 11. Zhang H., Patel A., Gaharwar A.K. et al. // Biomacromolecules. 2013. V. 14. № 5. P. 1299.
- Duncan R., Vicent M.J. // Adv. Drug Deliv. Rev. 2013. V. 65. № 1. P. 60.
- Li S., Omi M., Cartieri F. et al. // Biomacromolecules. 2018. V. 19. № 9. P. 3754.
- Wang D.H., Mirau P., Li B. et al. // Chem. Mater. 2008.
 V. 20. № 4. P. 1502.
- Zheng Y., Li S., Weng Z. et al. // Chem. Soc. Rev. 2015. V. 44. № 12. P. 4091.
- Ghiyasi S., Sari M.G., Shabanian M. et al. // Prog. Org. Coat. 2018. V. 120. P. 100.
- 17. Zakharova O.G., Smirnova N.N., Markin A.V. et al. // Thermochim. Acta. 2008. V. 468. № 1–2. P. 61.
- Смирнова Н.Н., Захарова Ю.А., Рученин В.А. и др. // Журн. физ. химии. 2012. Т. 86. № 4. С. 617.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

- 19. *Lebedev B.V., Kulagina T.G., Smirnova N.N. et al.* // J. Therm. Anal. Calorim. 2003. V. 74. № 3. P. 735.
- 20. Smirnova N.N., Kulagina T.G., Markin A.V. et al. // Thermochim. Acta. 2005. V. 425. № 1–2. P. 39.
- Смирнова Н.Н., Маркин А.В., Захарова Ю.А. и др. // Изв. АН. Сер. хим. 2011. № 1. С. 127.
- 22. Смирнова Н.Н., Захарова Ю.А., Маркин А.В. и др. // Там же. 2013. № 10. С. 2258.
- 23. *Смирнова Н.Н., Маркин А.В., Цветкова Л.Я. и др. //* Журн. физ. химии. 2016. Т. 90. № 5. С. 643.
- 24. Смирнова Н.Н., Маркин А.В., Кучкина Н.В. и др. // Там же. 2016. Т. 90. № 12. С. 1759.
- Smirnova N.N., Samosudova Ya.S., Markin A.V. et al. // J. Chem. Thermodyn. 2017. V. 105. P. 443.
- Kuchkina N.V., Zinatullina M.S., Serkova E.S. et al. // RSC Adv. 2015. V. 5. № 120. P. 99510.
- 27. Tsvetkov N.V., Gubarev A.S., Lebedeva E.V. et al. // Polym. Int. 2017. V. 66. № 4. P. 583.
- 28. *Meija J., Coplen T.B., Berglund M. et al.* // Pure Appl. Chem. 2016. V. 88. № 3. P. 265.
- 29. Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. // Приб. техн. экспер. 1985. № 6. С. 195.
- 30. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623.

- 31. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. № 2. P. 93.
- Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2003. 310 p.
- 33. *Drebushchak V.A.* // J. Therm. Anal. Calorim. 2005. V. 79. № 1. P. 213.
- 34. *Вундерлих Б., Баур Г*. Теплоемкость линейных полимеров. М.: Мир, 1972. 238 с.
- 35. Adam G., Gibbs J.H. // J. Chem. Phys. 1965. V. 43. P. 139.
- 36. Kauzmann W. // Chem. Rev. 1948. V. 43. № 2. P. 219.
- Bestul A.B., Chang S.S. // J. Chem. Phys. 1964. V. 40. P. 3731.
- Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269–270. P. 109.
- Шеберинева О.В., Изотов А.Д., Гавричев К.С. и др. // Неорган. материалы. 1996. Т. 32. № 1. С. 36.
- 40. Debye P. // Ann. Phys. 1912. V. 344. № 14. P. 789.
- Experimental Thermodynamics. Vol. I: Calorimetry of Non-reacting Systems / Ed. by J.P. McCullough, D.W. Scott. Butterworth & Co. (Publishers) Ltd.: London, England, 1968. 626 p.
- 42. *Chase M.W.Jr.* // J. Phys. Chem. Ref. Data, Monograph No. 9. 1998. V. 1–2. P. 1.