ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

УДК 544.431.2+544.473:577.15

КИНЕТИКА ОКИСЛЕНИЯ ПРОТОКАТЕХОВОЙ И ГАЛЛОВОЙ КИСЛОТ КИСЛОРОДОМ ВОЗДУХА В ПРИСУТСТВИИ ЛАККАЗЫ *T. Versicolor*

© 2020 г. Г. А. Гамов^{*a*,*}, М. Н. Завалишин^{*a*}, А. Ю. Хохлова^{*a*}, А. В. Гашникова^{*a*}, А. Н. Киселев^{*b*}, А. В. Завьялов^{*a*}, В. В. Александрийский^{*a*,*b*}

^а Ивановский государственный химико-технологический университет, Иваново, Россия ^b Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия

**e-mail: oxt705@isuct.ru* Поступила в редакцию 19.03.2019 г. После доработки 19.03.2019 г. Принята к публикации 09.04.2019 г.

Методом электронной спектроскопии поглощения исследовано окисление 3,4-дигидроксибензойной и 3,4,5-тригидроксибензойной кислот кислородом воздуха в присутствии лакказы *T. versicolor*. Молярные коэффициенты светопоглощения промежуточных и конечных продуктов, константы скорости и начальные скорости окисления определены с использованием принципа максимального правдоподобия. Рассчитаны параметры уравнения Михаэлиса–Ментен. Выделены полимерные продукты окисления, их состав исследован методами масс- и ¹³С ЯМР-спектроскопии.

Ключевые слова: лакказа *T. versicolor*, протокатеховая кислота, галловая кислота, окисление, уравнение Михаэлиса—Ментен

DOI: 10.31857/S0044453720020119

Лакказа (ЕС 1.10.3.2) является представителем большого семейства медь-зависимых оксидаз с низкой субстратной специфичностью. Грибки и бактерии используют этот фермент для разрушения лигнина [1–3]. С другой стороны, лакказа необходима растениям для биосинтеза лигнина из монолигнолов [4].

Способность лакказ катализировать окисление различных органических соединений (полифенолов, полиаминов и др. [2]) позволяет использовать их для очистки сточных вод от производных фенола [5, 6].

Гидроксибензойные кислоты, в том числе 3,4дигидробензойная (протокатеховая кислота, PCA) и 3,4,5-тригидроксибензойная (галловая кислота, GA) кислоты:

являются типичными загрязнителями сточных вод пищевой промышленности [7] и производства пробковых изделий [8–10]. Для очистки вод от гидроксибензойных кислот применяются УФоблучение с обработкой реактивом Фентона (смесь H_2O_2 и солей Fe(II) [9, 11]), некоторые микроорганизмы [8] и биокатализаторы [7]. Использование относительно дешевого фермента для окисления гидроксибензойных кислот представляется рациональным.

Продукты реакции окисления, протекающей под действием лакказы, могут представлять самостоятельный интерес. Так, в результате реакции 8-гидроксихинолина, катализируемой лакказой *T. pubescens*, был синтезирован ароматический полимер с антиоксидантной активностью [12]. Из галловой кислоты под действием лакказы *T. versicolor* был получен материал со свойствами полупроводника [13].

Кинетика окисления галловой кислоты в водных растворах лакказ была описана немногими авторами [13, 14]. Целью настоящей работы является определение констант скорости реакций окисления галловой и протокатеховой кислот (см. схему) в присутствии лакказы *T. versicolor* (TvL), определение параметров уравнения Михаэлиса–Ментен, синтез продуктов окисления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. TvL активностью >0.5 ед/мг (Германия), моногидрат GA ≥98.0% (КНР), PCA ≥97% (КНР), 2,6-диметоксифенол (DMP) ≥99.0% (Индия) использовались без дополнительной очист-

ки. Точная концентрация гидроксибензойных кислот устанавливалась путем титрования предварительно стандартизованным свежеприготовленным раствором NaOH. Буферный раствор с pH 5.9 был приготовлен с использованием Na₂HPO₄ · 12H₂O и NaH₂PO₄ · 2H₂O (Россия). Кислотность буфера контролировалась потенциометрически. Значение pH 5.9 было выбрано, основываясь на результатах работы [15], в которой изучалась зависимость устойчивости TvL от pH и температуры. Буферные растворы насыщались воздухом перед экспериментами.

Растворы готовились на бидистиллированной воде ($\kappa = 3.6 \text{ мкСм/см}$, pH 6.6). Ионная сила I = 0.25 моль/л создавалась за счет компонентов буферного раствора.

Приборы. Спектрофотометрическое определение активности TvL по отношению к DMP, GA и РСА проводилось с помощью двухлучевого спектрофотометра Shimadzu UV1800 (США) в диапазоне длин волн 200-600 нм и оптических плотностей 0-4. Буферный раствор использовался в каобразца сравнения. Погрешность честве измерения длины волны не превышала 0.5 нм, наибольшая погрешность измерения оптической плотности составляла ±0.006 ед. Температура поддерживалась на уровне 298.2 ± 0.1 K с использованием внешнего термостата. Применялись кварцевые кюветы с толщиной поглощающего слоя 1 см.

Масс-спектры (MALDI TOF) регистрировались на спектрометре Shimadzu Biotech Axima Confidence (США). В качестве матрицы для полимеризованных продуктов окисления использовался 1,8-дигидроксиантрацен-9(10Н)-он. Измерения спектров ¹³С ЯМР растворов полимеризованных продуктов в D₂O (pD ~ 12) проводились с помощью спектрометра Bruker Avance III 500 NMR с рабочей частотой 125.77 МГц на ядрах ¹³С. Погрешность определения химических сдвигов при 298.0 \pm 0.3 K по отношению к внешнему стандарту ГМДСО (Sigma Aldrich) оценивалась на уровне \pm 0.01 млн.д. Спектры регистрировались в течение 17 ч каждый.

Для отнесения сигналов РСА был зарегистрирован спектр ¹H, ¹³C HSQC.

Определение активности TvL. Спектофотометрическое определение активности лакказы было проведено аналогично описанному [13, 15, 16], однако, в качестве субстрата использовался диметоксифенол вместо ABTS. К 2.9 мл буферного раствора, содержащего DMP концентрацией 5 × $\times 10^{-4}$ моль/л, добавлялось 10 мкл раствора лакказы концентрацией 10 мг/мл. После перемещивания, измерялась оптическая плотность при 470 нм ($\varepsilon = 35$ 645 для продукта окисления DMP) [16] в течение 10 мин с шагом 10 с. Активность *U* (мкмоль/мин) рассчитывалась по уравнению:

$$U = \frac{\Delta A}{\epsilon \tau}.$$
 (1)

Рассчитанная активность лакказы во всех случаях составляла примерно 2 мкмоль/мин. Растворы TvL хранили при 5°С, поскольку лакказа наиболее устойчива при этой температуре [15]. Ее активность проверялась каждый день перед другими экспериментами с использованием свежеприготовленных растворов DMP.

Исследование окисления GA и PCA проводилось двумя способами. При низких концентрациях субстрата регистрировалось 20 электронных спектров поглощения в диапазоне длин волн 200-600 нм с задержкой между спектрами 2 мин. Это позволило идентифицировать отдельные полосы поглощения, относящиеся к продуктам, и выбрать оптимальные длины волн для второго способа. В случаях, когда концентрация субстрата была слишком высокой для записи спектра во всем диапазоне длин волн, в течение 40 мин каждые 2 мин измерялась оптическая плотность при длине волны, соответствующей максимальному светопоглощению продукта. Исследовались растворы, содержащие 50 мкл TvL активностью U в 2 ед. (см. уравнение 1), 50-2000 мкл раствора субстрата и буферный раствор, который добавлялся до общего объема смеси 2.9 мл. Конечные общие концентрации в кювете спектрофотометра составляли 10 ед. лакказы, 27-817 мкмоль/л GA и 53-1047 мкмоль/л РСА.

Полимеризация GA и PCA. Эксперимент проводился по аналогии с [12, 13]. Субстрат (GA или РСА, 0.25 г) растворяли в 5 мл ацетатного буфера (рН 5.0), а лакказу (10 ед.) растворяли в 1 мл ацетатного буфера. Растворы помещали в круглодонную колбу объемом 50 мл и добавляли 2.5 мл ацетона и 22.5 мл ацетатного буфера. Итоговый раствор перемешивали (180 об./мин) при комнатной температуре ($\sim 20^{\circ}$ C) в течение 48 ч, пропуская через него воздух. При этом прозрачная реакционная смесь становилась темно-коричневой. Полнота протекания реакции контролировалась спектрофотометрически. После завершения реакции, воду частично отогнали и добавили в колбу ~30 мл 95% этилового спирта. После охлаждения при 5°C в течение 20 мин продукт, выпавший в осадок, был отфильтрован на стеклянном фильтре (размер пор 40 мкм), промыли 3х5 мл холодного этанола и высушили на воздухе до постоянного веса.

РСА, ¹³С ЯМР, млн.д.: 174.2 (С₇), 146.4 (С₃), 142.3 (С₄), 127.4 (С₁), 121.4 (С₆), 115.8 (С₂), 114.3 (С₅). Полимеризованный продукт окисления РСА, ¹³С ЯМР, млн.д.: 175.2, 172.5, 155.3, 146.2, 143.3, 122.3, 121.3, 114.9, 114.2, 106.2, 98.7. MS: 449 (100%), 673 (15.1%), 898 (5.9%). Полимеризован**ный продукт окисления GA**, ¹³С ЯМР, млн.д.: 180.6, 172.5. MS: 495 (14.7%), 673 (0.2%).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Примеры электронных спектров поглощения растворов РСА и GA во время окисления, катализируемого TvL, приведены на рис. 1а,б.

Спектры исследуемых кислот при pH 5.9 удовлетворительно согласуются с литературными данными для PCA при pH 6.0 [17] и GA при pH 5.5 [18]. Максимум поглощения галловой кислоты при 260 нм был отмечен [14]. Пик продукта окисления при 455 нм (рис. 16) также согласуется с результатами [13].

Из рис. 1 можно видеть, что окисление гидроксибензойных кислот, вероятно, является двухстадийным процессом. На первом этапе для РСА наблюдается уменьшение A_{250} , A_{288} и увеличение A_{399} , в то время как светопоглощение раствора GA ослабевает при 259 нм и усиливается при 455 нм. В дальнейшем, оптическая плотность растворов РСА несколько увеличивается при 250 и 288 нм и уменьшается при 399 нм. Светопоглощение раствора галловой кислоты понижается при 300 и 455 нм. Вероятно, на первом этапе образуется хиноидная структура. Это предположение можно подтвердить тем, что образование хинонов характерно для полифенолов в присутствии лакказы [19–21]. Другим доводом является факт, что производные фенолов, не способные к образованию хиноидной структуры (например, салициловая кислота [22], метилсалицилат [22], 4-гидроксибензойная и 2,4-дигидроксибензойная кислота (наши экспериментальные данные)) не окисляются в присутствии TvL.

Для того, чтобы определить начальные скорости окисления GA и PCA, необходимо рассчитать эффективные константы скорости реакции образования интермедиата. Для этой цели целесообразно использовать метод максимального правдоподобия.

Если в растворе протекают реакции $A_1 \xrightarrow{k_1} A_2 \xrightarrow{k_2} A_3$, текущие концентрации соединений $A_1 - A_3$ могут быть выражены следующим образом:

$$c_1 = c_1^0 e^{-k_1 \tau},$$
 (2)

$$c_{2} = c_{1}^{0} \frac{k_{1}}{k_{2}' - k_{1}'} (e^{-k_{1}'\tau} - e^{-k_{2}'\tau}), \qquad (3)$$

$$c_{3} = c_{1}^{0} \left(1 + \frac{k_{1}'}{k_{2}' - k_{1}'} e^{-k_{2}'\tau} - \frac{k_{2}'}{k_{2}' - k_{1}'} e^{-k_{1}'\tau} \right).$$
(4)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

В любой момент времени и при любой выбранной длине волны, в соответствии с законом Ламберта–Бугера–Бера:

$$4_{\lambda_i} = (c_1 \varepsilon_{1\lambda_i} + c_2 \varepsilon_{2\lambda_i} + c_3 \varepsilon_{3\lambda_i})l.$$
 (5)

Для совместного решения уравнений (2)–(5), т.е. нахождения величин k'_1 , k'_2 , необходимо минимизировать функцию:

$$F = \sum_{\tau=0}^{T} \sum_{i=1}^{\Lambda} (A_{\tau\lambda_i}(\exp) - A_{\tau\lambda_i}(\operatorname{calc}))^2, \qquad (6)$$

где τ – время, Λ – количество длин волн.

Начальные приближенные значения k'_1 , k'_2 подставляются в (2)–(4), что дает значения текущих концентраций. Из них, а также из экспериментально определенных значений оптической плотности при разных длинах волн, можно рассчитать величины молярных коэффициентов светопоглощения при помощи МНК. Расчетные текущие концентрации и величины є позволяют рассчитать $\mathbf{A}_{\tau\lambda i}$ (calc) по (5) и сумму квадратичных отклонений (6). Варьируя k'_1 , k'_2 , необходимо получить минимальное значение F (6).

Оптимизированные значения k'_1 , k'_2 и $\varepsilon_{\lambda i}$ для процессов окисления PCA и GA, а также начальные скорости окисления r_1 сведены в таблицу 1. Коэффициенты поглощения PCA и GA были предварительно определены методом градуировочного графика.

Следует отметить, что молярные коэффициенты светопоглощения интермедиатов и продуктов, рассчитанные в рамках предлагаемой модели, находятся в соответствии с экспериментальными наблюдениями (рис. 1). Например, при 250 нм, значения є для окисления РСА действительно отвечают условию $\varepsilon_{intermediate} < \varepsilon_{product} < \varepsilon_{reagent}$ (рис. 1а).

Эффективные константы скорости k'_1 уменьшаются с ростом общей концентрации субстрата. Произведение k'_1 C^0 (substrate), представляющее собой начальную скорость окисления гидроксибензойной кислоты становится практически постоянным с увеличением C^0 (substrate), показывая, что к исследуемым системам применимо уравнение Михаэлиса–Ментен. Для нахождения его параметров могут применяться графические методы (Лайнуивера–Берка, Иди–Хофсти, Хейнса–Вульфа), а также метод максимального правдоподобия, аналогичный использованному при определении эффективных констант скорости.

Рис. 1. Изменения в электронных спектрах поглощения а) РСА (1.055×10^{-4} моль/л); б) GA (1.341×10^{-4} моль/л) в присутствии лакказы *T. versicolor*. Задержка между двумя спектрами составляет 2 мин. Спектры, снятые спустя сутки после начала эксперимента, показаны пунктиром. Символы $\uparrow \downarrow$ означают, что оптическая плотность при данной длине волны сначала увеличивалась, потом уменьшалась со временем, символы $\downarrow \uparrow$ относятся к противоположной ситуации.

В этом случае минимизационная функция имеет вид:

где *М* – число рассчитанных начальных скоростей реакции, *r_i*(exp) – начальная скорость реакции при *i*-той общей концентрации субстрата, и

$$F = \sum_{i=1}^{M} \left(r_i(\exp) - \frac{V_{\max} \cdot C_i(\text{substrate})}{K_M + C_i(\text{substrate})} \right)^2 w_i, \quad (7)$$

$$w_{i} = \frac{1}{s_{i}^{2}} \left[\sum_{i=1}^{M} s_{i}^{2} / M \right],$$
(8)

С ⁰ (субстрат), мкмоль/л	<i>k</i> ₁ ', мин ⁻¹	<i>k</i> ₂ ', мин ⁻¹	<i>r</i> _l , мкмоль/л мин	€ _{reagent}	E _{intermediate}	€ _{product}
PCA						
52.8	0.050 ± 0.003^{a}	n/d ^d	2.64 ± 0.14	$\epsilon_{250} = 8762 \pm 126^{b};$	$\varepsilon_{250} = 3143 \pm 50^{\circ};$	$\epsilon_{250} = 6387 \pm 84^{\circ};$
105.6	$0.046\pm0.002^{\rm a}$	n/d ^d	4.86 ± 0.22	$\epsilon_{288} = 3942 \pm$	$\varepsilon_{288} = 1852 \pm 16^{\circ};$	$\epsilon_{288} = 4406 \pm 27^{\circ};$
158.4	$0.040\pm0.002^{\rm a}$	n/d ^d	6.34 ± 0.30	$\pm 105^{\rm b}; \epsilon_{398} = 0^{\rm b}$	$\epsilon_{398}=2129\pm57^c$	$\epsilon_{398}=1375\pm95^c$
261.7	0.034 ± 0.002^{a}	n/d ^d	8.90 ± 0.60			
392.6	0.024 ± 0.001^{a}	n/d ^d	9.42 ± 0.39			
523.4	0.0185 ± 0.0009^{a}	n/d ^d	9.68 ± 0.47			
785.2	$0.0135 \pm 0.0009^{\rm a}$	0.060 ± 0.003^{a}	10.60 ± 0.71			
1046.9	0.0105 ± 0.0005^{a}	0.082 ± 0.005^a	10.99 ± 0.70			
GA						
27.2	$0.070 \pm 0.005^{\mathrm{a}}$	n/d ^d	1.91 ± 0.13	$\epsilon_{250} = 8831 \pm 45^{\text{b}};$	$\epsilon_{250} = 6926$	$\varepsilon_{250} = 6483 \pm 106^{\circ};$
67.1	$0.047\pm0.004^{\rm a}$	n/d ^d	3.15 ± 0.27	$\epsilon_{455} = 0^b$	$\pm 181^{\rm c}; \epsilon_{455} =$	$\epsilon_{455} = 3220 \pm 101^{\circ}$
134.1	0.030 ± 0.002^{a}	n/d ^d	4.02 ± 0.28		$= 3660 \pm 117^{\circ}$	
201.2	0.0235 ± 0.0025^{a}	n/d ^d	4.73 ± 0.50			
335.3	0.0145 ± 0.0005^{a}	n/d ^d	4.86 ± 0.14			
503.0	0.0095 ± 0.0005^a	$0.008\pm0.004^{\rm a}$	4.78 ± 0.24			
670.7	0.0071 ± 0.0005^{a}	0.009 ± 0.005^{a}	4.76 ± 0.33			
817.2	0.006 ± 0.0005	0.010 ± 0.008^{a}	4.90 ± 0.41			

Таблица 1. Параметры модели, описывающей двухстадийный процесс окисления протокатеховой (PCA) и галловой (GA) кислот в присутствии лакказы *T. versicolor*

^а Стандартные отклонения уточненных величин;

^b Погрешности линейной регрессии (градуировочный график);

^с Погрешности линейной регрессии (МНК);

^d n/d означает, что функция (6) была нечувствительной к изменению k'_2 ; таким образом величины k'_2 было затруднительно определить.

где s_i — стандартное отклонение r_i , приведенное в таблице 1. Весовой коэффициент w_i позволяет учитывать неравноточность данных.

Варьируя V_{max} и K_M , необходимо минимизировать функцию (7). Экспериментальные значения и расчетные кривые для разных методов приведены на рис. 2 а,б. Величины V_{max} и K_M , определенные по методу максимального правдоподобия, составляют 12.94 ± 0.95 мкмоль/л мин, 161.5 ± 24.9 мкмоль с коэффициентом парной корреляции 0.8979 для PCA; 5.28 ± 0.11 мкмоль/л мин, 42.8 ± 4.9 мкмоль с коэффициентом парной корреляции 0.7179 для GA соответственно.

Галловая кислота окисляется существенно медленнее, чем РСА в тех же условиях (фосфатный буфер, pH 5.9, температура 25.0°С), несмотря на то, что эти соединения различаются одной гидроксогруппой. В настоящий момент затруднительно указать причину различия в скорости окисления. Однако, стоит отметить, что при высоких общих концентрациях GA в кювете образовывался мелкодисперсный черный осадок. Он мог адсорбировать молекулы лакказы, снижая ее активность.

Анализ масс-спектров продуктов окисления показал, что олигомер PCA состоит преимущественно из тримеров со значением m/z 449 (анионная форма). Менее интенсивные пики с величинами m/z 673 и 898, вероятно, относятся к частично разрушенным частицам (PCA)₅ и (PCA)₆.

Масс-спектр полимеризованной галловой кислоты содержит пики, относящиеся к тримеризованной форме (GA)₃ со значением m/z = 495, а также продуктам ее деструкции. Вероятно, при-

Рис. 2. Графики уравнения Михаэлиса–Ментен для реакции окисления в присутствии лакказы *T. versicolor* а) протокатеховой; б) галловой кислот; методы: *1* – эксперимент, *2* – Лайнуивера–Берка, *3* – Иди–Хофсти, *4* – Хейнса–Вульфа), *5* – метод максимального правдоподобия.

сутствуют также следовые количества (GA)₄ с величиной m/z = 673.

Спектр ¹³С ЯМР мономера РСА обладает сходством со спектром полимеризованной формы. Резонансы олигомера, практически совпадающие с пиками РСА могут относиться к внешним ароматическим циклам, в то время как внутренние обладают несколькими новыми сигналами при 172.5, 155.3, 106.2, 98.7 м.д.

Нам не удалось обнаружить сигналы, относящиеся к карбонильной группе хиноидной структуры (~180–190 м.д.) РСА. Однако, в слу-

218

чае полимеризованной GA, был обнаружен сигнал δ = 180.6 м.д. Его можно отнести к фрагменту >C=O хинона.

Таким образом, в настоящей работе было исследовано окисление 3,4-дигидроксибензойной и 3,4,5-тригидроксибензойной кислот в водном растворе при рН 5.9 (фосфатный буфер) в присутствии лакказы *Т. versicolor*. Оба соединения окисляются в две стадии. На первой, вероятно, образуются хиноидные структуры, которые в дальнейшем полимеризуются. При помощи метода максимального правдоподобия определены молярные коэффициенты светопоглощения интермедиатов и продуктов, а также константы скорости первой стадии. Рассчитаны параметры уравнения Михаэлиса–Ментен для ферментативного окисления гидроксибензойных кислот по зависимости начальной скорости реакции от концентрации субстрата. Значения V_{max} и K_m существенно больше в случае РСА, окисление протокатеховой кислоты протекает быстрее. чем галловой. Полимеризованнтый продукт окисления РСА состоит преимущественно из тримеров с примесями (PCA), и (PCA), в то время как полимеризованная галловая кислота содержит (GA)₃ со следовыми количествами (GA)₄. Спектры ¹³С ЯМР полимеризованных частиц подтверждают образование С-С-сшитых пролуктов.

Работа выполнена в НИИ термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания Министерства науки и высшего образования (проект 4.7305.2017/8.9) при поддержке Совета по грантам при Президенте Российской Федерации (проект 14.Z56.18.877-МК). Масс-спектры и спектры ¹³С ЯМР были зарегистрированы на установках, относящихся к центрам коллективного пользования ИГХТУ и ИХР РАН соответственно.

СПИСОК ЛИТЕРАТУРЫ

 Abdel-Hamid A.M., Solbiati J.O., Cann I.K.O. / Insights into Lignin Degradation and its Potential Industrial Applications (в книге: Advances in Applied Microbiology / под ред. Sariaslani S., Gadd G.M.), 2013. V. 82. P. 1–28.

https://doi.org/10.1016/B978-0-12-407679-2.00001-6

 Chandra R.P., Ragauskas A.J. // Progr. Biotechn. 2002. V. 21. P. 165. https://doi.org/10.1016/S0921-0423(02)80018-1

3. Youn H.-D., Hah Y.C., Kang S.-O. // FEMS Microbiol.

Let. 1995. V. 132 (3). P. 183. https://doi.org/10.1016/0378-1097(95)00315-V

- Tobimatsu Y., Schuetz M. // Curr. Opin. Biotechn. 2019. V. 56. P. 75. https://doi.org/10.1016/j.copbio.2018.10.001
- Arca-Ramos A., Ammann E.M., Gasser C.A. et al. // Environ. Sci. Pollut. Res. 2016. V. 23 (4). P. 3217. https://doi.org/10.1007/s11356-015-5564-6
- Durán N., Esposito E. // Appl. Cat. B: Environ. 2000. V. 28 (2). P. 83. https://doi.org/10.1016/S0926-3373(00)00168-5
- Das R., Hamid S.B.A., Annuar M.S.M. // Sci. Rep. 2016. V. 6. article ID 33572. https://doi.org/10.1038/srep33572
- Guo D., Zhang Z., Liu D. et al. // Water Sci. Techn. 2014. V. 70 (1). P. 175. https://doi.org/10.2166/wst.2014.213
- Benitez F.J., Real F.J., Acero J.L. et al. // J. Hazard. Mater. 2005. V. 126 (1–3). P. 31. https://doi.org/10.1016/j.jhazmat.2005.04.040
- Martinez-Haya R., Barecka M.H., Miro P. et al. // Appl. Cat. B: Environ. 2015. V. 179. P. 433. https://doi.org/10.1016/j.apcatb.2015.05.039
- Haddou M., Benoit-Marquie F., Maurette M.-T., Oliveros E. // Helv. Chim. Acta 2010. V. 93 (6). P. 1067. https://doi.org/10.1002/hlca.200900380
- Ncanana S., Burton S. // J. Mol. Cat. B.: Enz. 2007. V. 44. P. 66. https://doi.org/10.1016/j.molcatb.2006.09.005
- Lopez J., Hernandez-Alcantara J.M., Roquero P. et al. // J. Mol. Cat. B.: Enz. 2013. V. 97. P. 100. https://doi.org/10.1016/j.molcatb.2013.07.020
- 14. Juarez-Gomez J., Rosas-Tate E.-S., Roa-Morales G. et al. // Hindawi J. Chem. 2018. article ID 7462697. https://doi.org/10.1155/2018/7462697
- Kurniawati S., Nicell J.A. // Biores. Technol. 2008. V. 99. P. 7825. https://doi.org/10.1016/j.biortech.2008.01.084
- Lorenzo M., Moldes D., Rodriguez Couto S., Sanroman M.A. // Chemosph. 2005. V. 60. P. 1124. https://doi.org/10.1016/j.chemosphere.2004.12.051
- Borah J.M., Sarma J., Mahiuddin S. // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 387. P. 50. https://doi.org/10.1016/j.colsurfa.2011.07.024
- Martínez-Alonso A., Losada-Barreiro S., Bravo-Diaz C. // J. Mol. Liq. 2015. V. 210. P. 143. https://doi.org/10.1016/j.molliq.2014.12.016
- Goncalves I., Silva C., Cavaco-Paulo A. // Green Chem. 2015. V. 17. P. 1362. https://doi.org/10.1039/c4gc02221a
- Sun X., Bai R., Zhang Y. et al. // Appl. Biochem. Biotechnol. 2013. V. 171. P. 1673. https://doi.org/10.1007/s12010-013-0463-0
- Cannatelli M.D., Ragauskas A.J. // J. Mol. Cat. B.: Enz. 2015. V. 119. P. 85. https://doi.org/10.1016/j.molcatb.2015.05.016
- 22. Ciecholewski S., Hammer E., Manda K. et al. // Tetrahedron 2005. V. 61. P. 4615. https://doi.org/10.1016/j.tet.2005.03.007