ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

УЛК 544.431.2+544.473:577.15

КИНЕТИКА ОКИСЛЕНИЯ ПРОТОКАТЕХОВОЙ И ГАЛЛОВОЙ КИСЛОТ КИСЛОРОДОМ ВОЗДУХА В ПРИСУТСТВИИ ЛАККАЗЫ *T. Versicolor*

© 2020 г. Г. А. Гамов^{а,*}, М. Н. Завалишин^а, А. Ю. Хохлова^а, А. В. Гашникова^а, А. Н. Киселев^b, А. В. Завьялов^а, В. В. Александрийский^{а,b}

^а Ивановский государственный химико-технологический университет, Иваново, Россия ^b Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия *e-mail: oxt705@isuct.ru

> Поступила в редакцию 19.03.2019 г. После доработки 19.03.2019 г. Принята к публикации 09.04.2019 г.

Методом электронной спектроскопии поглощения исследовано окисление 3,4-дигидроксибензойной и 3,4,5-тригидроксибензойной кислот кислородом воздуха в присутствии лакказы *T. versicolor*. Молярные коэффициенты светопоглощения промежуточных и конечных продуктов, константы скорости и начальные скорости окисления определены с использованием принципа максимального правдоподобия. Рассчитаны параметры уравнения Михаэлиса—Ментен. Выделены полимерные продукты окисления, их состав исследован методами масс- и ¹³С ЯМР-спектроскопии.

Ключевые слова: лакказа *T. versicolor*, протокатеховая кислота, галловая кислота, окисление, уравнение Михаэлиса—Ментен

DOI: 10.31857/S0044453720020119

Лакказа (ЕС 1.10.3.2) является представителем большого семейства медь-зависимых оксидаз с низкой субстратной специфичностью. Грибки и бактерии используют этот фермент для разрушения лигнина [1-3]. С другой стороны, лакказа необходима растениям для биосинтеза лигнина из монолигнолов [4].

Способность лакказ катализировать окисление различных органических соединений (полифенолов, полиаминов и др. [2]) позволяет использовать их для очистки сточных вод от производных фенола [5, 6].

Гидроксибензойные кислоты, в том числе 3,4дигидробензойная (протокатеховая кислота, PCA) и 3,4,5-тригидроксибензойная (галловая кислота, GA) кислоты:

являются типичными загрязнителями сточных вод пищевой промышленности [7] и производства пробковых изделий [8–10]. Для очистки вод от гидроксибензойных кислот применяются УФоблучение с обработкой реактивом Фентона

(смесь H_2O_2 и солей Fe(II) [9, 11]), некоторые микроорганизмы [8] и биокатализаторы [7]. Использование относительно дешевого фермента для окисления гидроксибензойных кислот представляется рациональным.

Продукты реакции окисления, протекающей под действием лакказы, могут представлять самостоятельный интерес. Так, в результате реакции 8-гидроксихинолина, катализируемой лакказой *Т. риbescens*, был синтезирован ароматический полимер с антиоксидантной активностью [12]. Из галловой кислоты под действием лакказы *T. versicolor* был получен материал со свойствами полупроводника [13].

Кинетика окисления галловой кислоты в водных растворах лакказ была описана немногими авторами [13, 14]. Целью настоящей работы является определение констант скорости реакций окисления галловой и протокатеховой кислот (см. схему) в присутствии лакказы *T. versicolor* (TvL), определение параметров уравнения Михаэлиса—Ментен, синтез продуктов окисления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. TvL активностью >0.5 ед/мг (Германия), моногидрат GA ≥98.0% (КНР), PCA ≥97% (КНР), 2,6-диметоксифенол (DMP) ≥99.0% (Индия) использовались без дополнительной очист-

ки. Точная концентрация гидроксибензойных кислот устанавливалась путем титрования предварительно стандартизованным свежеприготовленным раствором NaOH. Буферный раствор с рН 5.9 был приготовлен с использованием $Na_2HPO_4 \cdot 12H_2O$ и $NaH_2PO_4 \cdot 2H_2O$ (Россия). Кислотность буфера контролировалась потенциометрически. Значение рН 5.9 было выбрано, основываясь на результатах работы [15], в которой изучалась зависимость устойчивости TvL от рН и температуры. Буферные растворы насыщались воздухом перед экспериментами.

Растворы готовились на бидистиллированной воде ($\kappa = 3.6 \text{ мкСм/см}$, pH 6.6). Ионная сила I = 0.25 моль/л создавалась за счет компонентов буферного раствора.

Приборы. Спектрофотометрическое определение активности TvL по отношению к DMP, GA и РСА проводилось с помощью двухлучевого спектрофотометра Shimadzu UV1800 (США) в диапазоне длин волн 200-600 нм и оптических плотностей 0-4. Буферный раствор использовался в каобразца сравнения. Погрешность честве измерения длины волны не превышала 0.5 нм, наибольшая погрешность измерения оптической плотности составляла ± 0.006 ед. Температура поддерживалась на уровне $298.2 \pm 0.1 \; \mathrm{K}$ с использованием внешнего термостата. Применялись кварцевые кюветы с толщиной поглощающего слоя 1 см.

Масс-спектры (MALDI TOF) регистрировались на спектрометре Shimadzu Biotech Axima Confidence (США). В качестве матрицы для полимеризованных продуктов окисления использовался 1,8-дигидроксиантрацен-9(10H)-он. Измерения спектров 13 С ЯМР растворов полимеризованных продуктов в D_2 О (pD \sim 12) проводились с помощью спектрометра Bruker Avance III 500 NMR с рабочей частотой 125.77 МГц на ядрах 13 С. Погрешность определения химических сдвигов при 298.0 \pm 0.3 K по отношению к внешнему стандарту ГМДСО (Sigma Aldrich) оценивалась на уровне \pm 0.01 млн.д. Спектры регистрировались в течение 17 ч каждый.

Для отнесения сигналов PCA был зарегистрирован спектр 1 H, 13 C HSQC.

Определение активности TvL. Спектофотометрическое определение активности лакказы было проведено аналогично описанному [13, 15, 16], однако, в качестве субстрата использовался диметоксифенол вместо ABTS. К 2.9 мл буферного раствора, содержащего DMP концентрацией 5×10^{-4} моль/л, добавлялось 10 мкл раствора лакказы концентрацией 10 мг/мл. После перемешивания, измерялась оптическая плотность при 470 нм ($\epsilon = 35$ 645 для продукта окисления DMP) [16] в течение 10 мин с шагом 10 с. Активность U (мкмоль/мин) рассчитывалась по уравнению:

$$U = \frac{\Delta A}{\varepsilon \tau}.$$
 (1)

Рассчитанная активность лакказы во всех случаях составляла примерно 2 мкмоль/мин. Растворы TvL хранили при 5°C, поскольку лакказа наиболее устойчива при этой температуре [15]. Ее активность проверялась каждый день перед другими экспериментами с использованием свежеприготовленных растворов DMP.

Исследование окисления GA и PCA проводилось двумя способами. При низких концентрациях субстрата регистрировалось 20 электронных спектров поглощения в диапазоне длин волн 200-600 нм с задержкой между спектрами 2 мин. Это позволило идентифицировать отдельные полосы поглощения, относящиеся к продуктам, и выбрать оптимальные длины волн для второго способа. В случаях, когда концентрация субстрата была слишком высокой для записи спектра во всем диапазоне длин волн, в течение 40 мин каждые 2 мин измерялась оптическая плотность при длине волны, соответствующей максимальному светопоглощению продукта. Исследовались растворы, содержащие 50 мкл TvL активностью U в 2 ед. (см. уравнение 1), 50-2000 мкл раствора субстрата и буферный раствор, который добавлялся до общего объема смеси 2.9 мл. Конечные общие концентрации в кювете спектрофотометра составляли 10 ед. лакказы, 27-817 мкмоль/л GA и 53-1047 мкмоль/л РСА.

Полимеризация GA и PCA. Эксперимент проводился по аналогии с [12, 13]. Субстрат (GA или РСА, 0.25 г) растворяли в 5 мл ацетатного буфера (pH 5.0), а лакказу (10 ед.) растворяли в 1 мл ацетатного буфера. Растворы помещали в круглодонную колбу объемом 50 мл и добавляли 2.5 мл ацетона и 22.5 мл ацетатного буфера. Итоговый раствор перемешивали (180 об./мин) при комнатной температуре (~20°C) в течение 48 ч, пропуская через него воздух. При этом прозрачная реакционная смесь становилась темно-коричневой. Полнота протекания реакции контролировалась спектрофотометрически. После завершения реакции, воду частично отогнали и добавили в колбу ~30 мл 95% этилового спирта. После охлаждения при 5°C в течение 20 мин продукт, выпавший в осадок, был отфильтрован на стеклянном фильтре (размер пор 40 мкм), промыли 3х5 мл холодного этанола и высушили на воздухе до постоянного веса.

РСА, ¹³С ЯМР, млн.д.: 174.2 (C_7), 146.4 (C_3), 142.3 (C_4), 127.4 (C_1), 121.4 (C_6), 115.8 (C_2), 114.3 (C_5). Полимеризованный продукт окисления РСА, ¹³С ЯМР, млн.д.: 175.2, 172.5, 155.3, 146.2, 143.3, 122.3, 121.3, 114.9, 114.2, 106.2, 98.7. MS: 449 (100%), 673 (15.1%), 898 (5.9%). Полимеризован-

ный продукт окисления GA, ¹³С ЯМР, млн.д.: 180.6, 172.5. MS: 495 (14.7%), 673 (0.2%).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Примеры электронных спектров поглощения растворов PCA и GA во время окисления, катализируемого TvL, приведены на рис. 1а,б.

Спектры исследуемых кислот при рН 5.9 удовлетворительно согласуются с литературными данными для РСА при рН 6.0 [17] и GA при рН 5.5 [18]. Максимум поглощения галловой кислоты при 260 нм был отмечен [14]. Пик продукта окисления при 455 нм (рис. 16) также согласуется с результатами [13].

Из рис. 1 можно видеть, что окисление гидроксибензойных кислот, вероятно, является двухстадийным процессом. На первом этапе для РСА наблюдается уменьшение A_{250} , A_{288} и увеличение A_{399} , в то время как светопоглощение раствора GA ослабевает при 259 нм и усиливается при 455 нм. В дальнейшем, оптическая плотность растворов РСА несколько увеличивается при 250 и 288 нм и уменьшается при 399 нм. Светопоглощение раствора галловой кислоты понижается при 300 и 455 нм. Вероятно, на первом этапе образуется хиноидная структура. Это предположение можно подтвердить тем, что образование хинонов характерно для полифенолов в присутствии лакказы [19-21]. Другим доводом является факт, что производные фенолов, не способные к образованию хиноидной структуры (например, салициловая кислота [22], метилсалицилат [22], 4-гидроксибензойная и 2,4-дигидроксибензойная кислота (наши экспериментальные данные)) не окисляются в присутствии TvL.

Для того, чтобы определить начальные скорости окисления GA и PCA, необходимо рассчитать эффективные константы скорости реакции образования интермедиата. Для этой цели целесообразно использовать метод максимального правдоподобия.

Если в растворе протекают реакции $A_1 \xrightarrow{k_1} A_2 \xrightarrow{k_2} A_3$, текущие концентрации соединений A_1 — A_3 могут быть выражены следующим образом:

$$c_1 = c_1^0 e^{-k_1'\tau}, (2)$$

$$c_2 = c_1^0 \frac{k_1'}{k_2' - k_1'} (e^{-k_1'\tau} - e^{-k_2'\tau}), \tag{3}$$

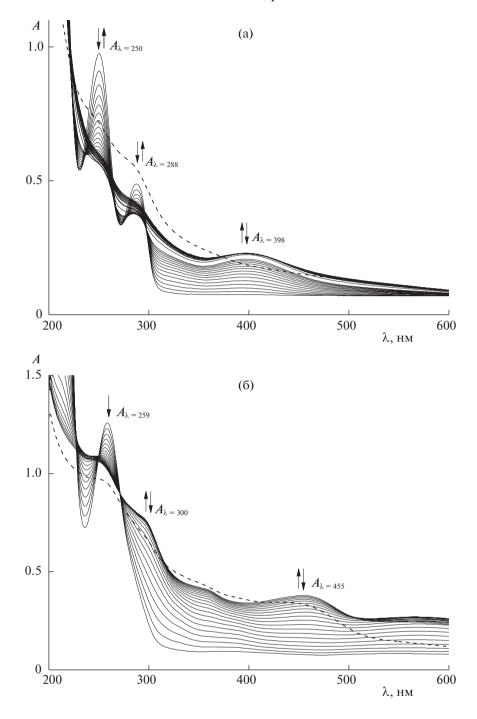
$$c_3 = c_1^0 \left(1 + \frac{k_1'}{k_2' - k_1'} e^{-k_2'\tau} - \frac{k_2'}{k_2' - k_1'} e^{-k_1'\tau} \right). \tag{4}$$

В любой момент времени и при любой выбранной длине волны, в соответствии с законом Ламберта—Бугера—Бера:

$$A_{\lambda_i} = (c_1 \varepsilon_{1\lambda_i} + c_2 \varepsilon_{2\lambda_i} + c_3 \varepsilon_{3\lambda_i})l. \tag{5}$$

Для совместного решения уравнений (2)—(5), т.е. нахождения величин k'_1 , k'_2 , необходимо минимизировать функцию:

$$F = \sum_{\tau=0}^{T} \sum_{i=1}^{\Lambda} (A_{\tau \lambda_i}(\exp) - A_{\tau \lambda_i}(\operatorname{calc}))^2,$$
 (6)


где τ — время, Λ — количество длин волн.

Начальные приближенные значения k_1' , k_2' подставляются в (2)—(4), что дает значения текущих концентраций. Из них, а также из экспериментально определенных значений оптической плотности при разных длинах волн, можно рассчитать величины молярных коэффициентов светопоглощения при помощи МНК. Расчетные текущие концентрации и величины ε позволяют рассчитать $\mathbf{A}_{\tau\lambda i}(\mathrm{calc})$ по (5) и сумму квадратичных отклонений (6). Варьируя k_1' , k_2' , необходимо получить минимальное значение F (6).

Оптимизированные значения k_1' , k_2' и $\varepsilon_{\lambda i}$ для процессов окисления PCA и GA, а также начальные скорости окисления r_1 сведены в таблицу 1. Коэффициенты поглощения PCA и GA были предварительно определены методом градуировочного графика.

Следует отметить, что молярные коэффициенты светопоглощения интермедиатов и продуктов, рассчитанные в рамках предлагаемой модели, находятся в соответствии с экспериментальными наблюдениями (рис. 1). Например, при 250 нм, значения ϵ для окисления PCA действительно отвечают условию ϵ _{intermediate} ϵ ϵ _{reapent} (рис. 1a).

Эффективные константы скорости k_1' уменьшаются с ростом общей концентрации субстрата. Произведение k_1' C^0 (substrate), представляющее собой начальную скорость окисления гидроксибензойной кислоты становится практически постоянным с увеличением C^0 (substrate), показывая, что к исследуемым системам применимо уравнение Михаэлиса—Ментен. Для нахождения его параметров могут применяться графические методы (Лайнуивера—Берка, Иди—Хофсти, Хейнса—Вульфа), а также метод максимального правдоподобия, аналогичный использованному при определении эффективных констант скорости.

Рис. 1. Изменения в электронных спектрах поглощения а) PCA (1.055×10^{-4} моль/л); б) GA (1.341×10^{-4} моль/л) в присутствии лакказы *Т. versicolor*. Задержка между двумя спектрами составляет 2 мин. Спектры, снятые спустя сутки после начала эксперимента, показаны пунктиром. Символы $\uparrow \downarrow$ означают, что оптическая плотность при данной длине волны сначала увеличивалась, потом уменьшалась со временем, символы $\downarrow \uparrow$ относятся к противоположной ситуации.

В этом случае минимизационная функция имеет вид:

где M — число рассчитанных начальных скоростей реакции, r_i (exp) — начальная скорость реакции при i-той общей концентрации субстрата, и

$$F = \sum_{i=1}^{M} \left(r_i(\exp) - \frac{V_{\text{max}} \cdot C_i(\text{substrate})}{K_M + C_i(\text{substrate})} \right)^2 w_i, \qquad (7) \qquad \qquad w_i = \frac{1}{s_i^2} \left[\sum_{i=1}^{M} s_i^2 / M \right], \tag{8}$$

Jobon (GA) knesiot B tipheytetBith hakkasbi 1. versicotor						
C^0 (субстрат), мкмоль/л	k_{1}^{\prime} , мин $^{-1}$	$k_{2}^{\prime},$ мин $^{-1}$	r_1 , мкмоль/л мин	$\epsilon_{ m reagent}$	$oldsymbol{arepsilon}_{ ext{intermediate}}$	$\epsilon_{ ext{product}}$
PCA						
52.8	0.050 ± 0.003^{a}	n/d ^d	2.64 ± 0.14	$\varepsilon_{250} = 8762 \pm 126^{\text{b}};$	$\varepsilon_{250} = 3143 \pm 50^{\circ};$	$\varepsilon_{250} = 6387 \pm 84^{\circ};$
105.6	0.046 ± 0.002^{a}	n/d ^d	4.86 ± 0.22		$\varepsilon_{288} = 1852 \pm 16^{\circ};$	$\varepsilon_{288} = 4406 \pm 27^{\circ};$
158.4	0.040 ± 0.002^{a}	n/d ^d	6.34 ± 0.30	$\pm 105^{\rm b}; \epsilon_{398} = 0^{\rm b}$	$\varepsilon_{398} = 2129 \pm 57^{\circ}$	$\varepsilon_{398} = 1375 \pm 95^{\circ}$
261.7	0.034 ± 0.002^{a}	n/d ^d	8.90 ± 0.60			
392.6	0.024 ± 0.001^{a}	n/d ^d	9.42 ± 0.39			
523.4	0.0185 ± 0.0009^{a}	n/d ^d	9.68 ± 0.47			
785.2	0.0135 ± 0.0009^{a}	0.060 ± 0.003^{a}	10.60 ± 0.71			
1046.9	0.0105 ± 0.0005^{a}	0.082 ± 0.005^{a}	10.99 ± 0.70			
GA						
27.2	0.070 ± 0.005^{a}	n/d ^d	1.91 ± 0.13	$\varepsilon_{250} = 8831 \pm 45^{\text{b}};$	$\varepsilon_{250} = 6926$	$\varepsilon_{250} = 6483 \pm 106^{\circ};$
67.1	0.047 ± 0.004^{a}	n/d ^d	3.15 ± 0.27	$\varepsilon_{455} = 0^{\mathrm{b}}$		$\varepsilon_{455} = 3220 \pm 101^{\circ}$
134.1	0.030 ± 0.002^{a}	n/d ^d	4.02 ± 0.28		$= 3660 \pm 117^{\circ}$	
201.2	0.0235 ± 0.0025^{a}	n/d ^d	4.73 ± 0.50			
335.3	0.0145 ± 0.0005^{a}	n/d ^d	4.86 ± 0.14			
503.0	0.0095 ± 0.0005^{a}	0.008 ± 0.004^{a}	4.78 ± 0.24			
670.7	0.0071 ± 0.0005^{a}	0.009 ± 0.005^{a}	4.76 ± 0.33			

Таблица 1. Параметры модели, описывающей двухстадийный процесс окисления протокатеховой (PCA) и галловой (GA) кислот в присутствии лакказы *T. versicolor*

 0.006 ± 0.0005

 0.010 ± 0.008^{a}

817.2

 4.90 ± 0.41

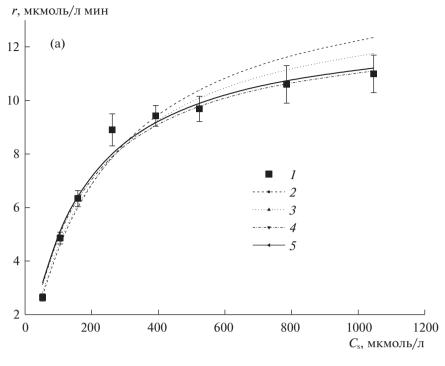
где s_i — стандартное отклонение r_i , приведенное в таблице 1. Весовой коэффициент w_i позволяет учитывать неравноточность данных.

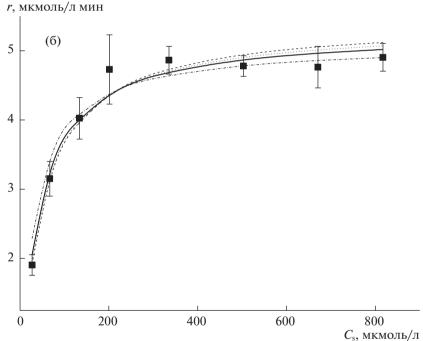
Варьируя $V_{\rm max}$ и K_M , необходимо минимизировать функцию (7). Экспериментальные значения и расчетные кривые для разных методов приведены на рис. 2 а,б. Величины $V_{\rm max}$ и K_M , определеные по методу максимального правдоподобия, составляют 12.94 \pm 0.95 мкмоль/л мин, 161.5 \pm 24.9 мкмоль с коэффициентом парной корреляции 0.8979 для PCA; 5.28 \pm 0.11 мкмоль/л мин, 42.8 \pm 4.9 мкмоль с коэффициентом парной корреляции 0.7179 для GA соответственно.

Галловая кислота окисляется существенно медленнее, чем PCA в тех же условиях (фосфатный буфер, рН 5.9, температура 25.0°С), несмотря на то, что эти соединения различаются одной гидроксогруппой. В настоящий момент затруд-

нительно указать причину различия в скорости окисления. Однако, стоит отметить, что при высоких общих концентрациях GA в кювете образовывался мелкодисперсный черный осадок. Он мог адсорбировать молекулы лакказы, снижая ее активность.

Анализ масс-спектров продуктов окисления показал, что олигомер PCA состоит преимущественно из тримеров со значением m/z 449 (анионная форма). Менее интенсивные пики с величинами m/z 673 и 898, вероятно, относятся к частично разрушенным частицам (PCA)₅ и (PCA)₆.


Масс-спектр полимеризованной галловой кислоты содержит пики, относящиеся к тримеризованной форме $(GA)_3$ со значением m/z = 495, а также продуктам ее деструкции. Вероятно, при-


^а Стандартные отклонения уточненных величин;

^b Погрешности линейной регрессии (градуировочный график);

^с Погрешности линейной регрессии (МНК);

 $^{^{\}rm d}$ n/d означает, что функция (6) была нечувствительной к изменению k_2' ; таким образом величины k_2' было затруднительно определить.

Рис. 2. Графики уравнения Михаэлиса—Ментен для реакции окисления в присутствии лакказы T. versicolor а) протокатеховой; б) галловой кислот; методы: I — эксперимент, 2 — Лайнуивера—Берка, 3 — Иди—Хофсти, 4 — Хейнса—Вульфа), 5 — метод максимального правдоподобия.

сутствуют также следовые количества (GA)₄ с величиной m/z = 673.

Спектр ¹³С ЯМР мономера РСА обладает сходством со спектром полимеризованной формы. Резонансы олигомера, практически совпадающие с пиками РСА могут относиться к внешним

ароматическим циклам, в то время как внутренние обладают несколькими новыми сигналами при 172.5, 155.3, 106.2, 98.7 м.д.

Нам не удалось обнаружить сигналы, относящиеся к карбонильной группе хиноидной структуры (~180—190 м.д.) РСА. Однако, в слу-

чае полимеризованной GA, был обнаружен сигнал $\delta = 180.6$ м.д. Его можно отнести к фрагменту >C=O хинона.

Таким образом, в настоящей работе было исследовано окисление 3,4-дигидроксибензойной и 3,4,5-тригидроксибензойной кислот в водном растворе при рН 5.9 (фосфатный буфер) в присутствии лакказы T. versicolor. Оба соединения окисляются в две стадии. На первой, вероятно, образуются хиноидные структуры, которые в дальнейшем полимеризуются. При помощи метода максимального правдоподобия определены молярные коэффициенты светопоглощения интермедиатов и продуктов, а также константы скорости первой стадии. Рассчитаны параметры уравнения Михаэлиса-Ментен для ферментативного окисления гидроксибензойных кислот по зависимости начальной скорости реакции от концентрации субстрата. Значения V_{\max} и K_m существенно больше в случае РСА, окисление протокатеховой кислоты протекает быстрее, чем галловой. Полимеризованнтый продукт окисления РСА состоит преимущественно из тримеров с примесями $(PCA)_5$ и $(PCA)_6$, в то время как полимеризованная галловая кислота содержит (GA), со следовыми количествами (GA)₄. Спектры ¹³С ЯМР полимеризованных частиц подтверждают образование С-С-сшитых продуктов.

Работа выполнена в НИИ термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания Министерства науки и высшего образования (проект 4.7305.2017/8.9) при поддержке Совета по грантам при Президенте Российской Федерации (проект 14.Z56.18.877-МК). Масс-спектры и спектры ¹³С ЯМР были зарегистрированы на установках, относящихся к центрам коллективного пользования ИГХТУ и ИХР РАН соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Abdel-Hamid A.M., Solbiati J.O., Cann I.K.O. / Insights into Lignin Degradation and its Potential Industrial Applications (в книге: Advances in Applied Microbiology / под ред. Sariaslani S., Gadd G.M.), 2013. V. 82. P. 1–28.
 - https://doi.org/10.1016/B978-0-12-407679-2.00001-6
- Chandra R.P., Ragauskas A.J. // Progr. Biotechn. 2002.
 V. 21. P. 165. https://doi.org/10.1016/S0921-0423(02)80018-1
- 3. *Youn H.-D., Hah Y.C., Kang S.-O.* // FEMS Microbiol. Let. 1995. V. 132 (3). P. 183. https://doi.org/10.1016/0378-1097(95)00315-V

- Tobimatsu Y., Schuetz M. // Curr. Opin. Biotechn. 2019.
 V. 56. P. 75.
 https://doi.org/10.1016/j.copbio.2018.10.001
- Arca-Ramos A., Ammann E.M., Gasser C.A. et al. // Environ. Sci. Pollut. Res. 2016. V. 23 (4). P. 3217. https://doi.org/10.1007/s11356-015-5564-6
- Durán N., Esposito E. // Appl. Cat. B: Environ. 2000.
 V. 28 (2). P. 83.
 https://doi.org/10.1016/S0926-3373(00)00168-5
- Das R., Hamid S.B.A., Annuar M.S.M. // Sci. Rep. 2016. V. 6. article ID 33572. https://doi.org/10.1038/srep33572
- 8. *Guo D., Zhang Z., Liu D. et al.* // Water Sci. Techn. 2014. V. 70 (1). P. 175. https://doi.org/10.2166/wst.2014.213
- 9. *Benitez F.J.*, *Real F.J.*, *Acero J.L. et al.* // J. Hazard. Mater. 2005. V. 126 (1–3). P. 31. https://doi.org/10.1016/j.jhazmat.2005.04.040
- 10. *Martinez-Haya R., Barecka M.H., Miro P. et al.* // Appl. Cat. B: Environ. 2015. V. 179. P. 433. https://doi.org/10.1016/j.apcatb.2015.05.039
- Haddou M., Benoit-Marquie F., Maurette M.-T., Oliveros E. // Helv. Chim. Acta 2010. V. 93 (6). P. 1067. https://doi.org/10.1002/hlca.200900380
- Ncanana S., Burton S. // J. Mol. Cat. B.: Enz. 2007.
 V. 44. P. 66.
 https://doi.org/10.1016/j.molcatb.2006.09.005
- 13. Lopez J., Hernandez-Alcantara J.M., Roquero P. et al. // J. Mol. Cat. B.: Enz. 2013. V. 97. P. 100. https://doi.org/10.1016/j.molcatb.2013.07.020
- 14. *Juarez-Gomez J., Rosas-Tate E.-S., Roa-Morales G. et al.* // Hindawi J. Chem. 2018. article ID 7462697. https://doi.org/10.1155/2018/7462697
- Kurniawati S., Nicell J.A. // Biores. Technol. 2008.
 V. 99. P. 7825.
 https://doi.org/10.1016/j.biortech.2008.01.084
- Lorenzo M., Moldes D., Rodriguez Couto S., Sanroman M.A. // Chemosph. 2005. V. 60. P. 1124. https://doi.org/10.1016/j.chemosphere.2004.12.051
- 17. *Borah J.M., Sarma J., Mahiuddin S.* // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 387. P. 50. https://doi.org/10.1016/j.colsurfa.2011.07.024
- Martínez-Alonso A., Losada-Barreiro S., Bravo-Diaz C. // J. Mol. Liq. 2015. V. 210. P. 143. https://doi.org/10.1016/j.molliq.2014.12.016
- Goncalves I., Silva C., Cavaco-Paulo A. // Green Chem. 2015. V. 17. P. 1362. https://doi.org/10.1039/c4gc02221a
- Sun X., Bai R., Zhang Y. et al. // Appl. Biochem. Biotechnol. 2013. V. 171. P. 1673. https://doi.org/10.1007/s12010-013-0463-0
- Cannatelli M.D., Ragauskas A.J. // J. Mol. Cat. B.: Enz. 2015. V. 119. P. 85. https://doi.org/10.1016/j.molcatb.2015.05.016
- Ciecholewski S., Hammer E., Manda K. et al. // Tetrahedron 2005. V. 61. P. 4615. https://doi.org/10.1016/j.tet.2005.03.007