_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 544.31

ТЕПЛОЕМКОСТЬ ТВЕРДЫХ РАСТВОРОВ LaLnZr₂O₇ (Ln = Sm, Gd, Dy) СО СТРУКТУРОЙ ПИРОХЛОРА В ИНТЕРВАЛЕ ТЕМПЕРАТУР 10–1400 К

© 2020 г. В. Н. Гуськов^{*a*,*}, П. Г. Гагарин^{*a*}, А. В. Тюрин^{*a*}, А. В. Хорошилов^{*a*}, А. В. Гуськов^{*a*}, К. С. Гавричев^{*a*}

^а Российская академия наук, Институт общей и неорганической химии им. Н.С. Курнакова, 119991 Москва, Россия

*e-mail: guskov@igic.ras.ru Поступила в редакцию 03.05.2019 г. После доработки 03.05.2019 г. Принята к публикации 14.05.2019 г.

Методами адиабатической и дифференциальной сканирующей калориметрии измерена изобарная теплоемкость твердых растворов со структурой пирохлора LaLnZr₂O₇ (Ln = Sm, Gd, Dy) в интервале температур 10–1400 К и рассчитаны термодинамические функции – энтропия, приращение энтальпии и приведенная энергия Гиббса без учета магнитных превращений ниже 10 К.

Ключевые слова: калориметрия, термодинамические функции, цирконаты лантаноидов, пирохлоры **DOI:** 10.31857/S0044453720020120

Цирконаты легких лантаноидов общей формулой $Ln_2Zr_2O_7$ (Ln = La-Gd) характеризуются максимальными температурами сушествования ~2300-2600 К, отсутствием структурных превращений, высокими химической, радиационной стойкостью и термической стабильностью. относительно низкой теплопроводностью и минимальным давлением паров [1, 2]. Эти качества определяют перспективу практического использования цирконатов лантаноидов как твердых электролитов [3], материалов атомной промышленности и катализаторов [4, 5], а также термобарьерных покрытий для энергетических установок [6, 7].

В ряду пирохлоров $Ln_2Zr_2O_7$ (Ln = La-Gd) основные физико-химические параметры (параметры решетки, коэффициенты термического расширения, теплопроводность и т.д.) изменяются дискретно. Изучение взаимных твердых растворов пирохлоров лантаноидов позволит получать материалы с заданными физико-химическими характеристиками вариацией содержания компонентов для плавного регулирования целевых параметров [8-10]. Например, при нанесении пленок особое значение имеет кратное или полное совпадение параметров кристаллических решеток, а в случае высокотемпературного использования слоистых структур – совпадение коэффициентов термического расширения материала подложки и покрытия. Необходимо отметить также, что введение лантана в состав флюоритов $Ln_2O_3 \cdot 2ZrO_2$ (Ln = Dy-Lu) позволяет продолжить структурный ряд пирохлоров. Так, в [11] показано, что непрерывный ряд твердых растворов $La_{2-x}Lu_xZr_2O_7$ имеет структуру пирохлора при x = 0.0-1.2.

Изучение термодинамических свойств этих веществ имеет первостепенное значение для прогнозирования их поведения при практическом использовании, особенно при высоких температурах и в контакте с материалами подложки и агрессивными жидкими и газовыми средами.

Цель настоящей работы – определение теплоемкости твердых растворов пирохлоров $LaLnZr_2O_7$ (Ln = Sm, Gd, Dy) в широком интервале температур (10–1400 K), расчет энтропии, приращения энтальпии и приведенной энергии Гиббса без учета низкотемпературных (<10 K) магнитных превращений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы цирконата лантана и твердых растворов двойных цирконатов лантаноидов LaLnZr₂O₇ (Ln = Sm, Gd, Dy) готовили методом "обратного" осаждения, подробно описанным в нашей работе [12]. Для этого оксиды лантаноидов Ln₂O₃ (99.99%) растворяли в соляной кислоте, а источником циркония служил оксохлорид циркония ZrOCl₂ · 8H₂O (99.9%). Исходные реагенты закупали в ООО "Ланхит". Водные растворы компонентов, взятые в стехиометрических соотношениях, осаждали в водном растворе аммиака.

Формула	a, Å	<i>a</i> , Å (I)
$La_2Zr_2O_7$	10.801(9)	10.80470(6) [19]
$\mathrm{Sm}_2\mathrm{Zr}_2\mathrm{O}_7$	10.577(5) [18]	10.5789(3) [20]
$Gd_2Zr_2O_7$	10.518(8) [18]	10.5169(3) [21]
$Dy_2Zr_2O_7$	5.222(4) [18]	5.21 [22]
$LaSmZr_2O_7$	10.696(4)	<i>10.691</i> [18, 20]
$LaGdZr_2O_7$	10.665(5)	<i>10.660</i> [18, 21]
LaDyZr ₂ O ₇	10.645(5)	<i>10.612</i> [18, 22]

Таблица 1. Параметры кристаллических решеток синтезированных образцов и литературные данные (I)

Примечание. Структурный тип для $Dy_2Zr_2O_7 - флюорит$, для остальных образцов – пирохлор.

Окончательный отжиг полученных осадков проводили при температуре 1500-1550°C в течение 4 ч для синтеза пирохлоров и образования кристаллов нормального размера (>100 нм), чтобы избежать влияния наноразмерности на термодинамические свойства. Условия отжига определены опытным путем в наших предыдущих работах [13–15]. Дифракционные исследования образцов проводили порошковым дифрактометром Bruker D 8 Advance (Cu $K_{\alpha 1}$ -излучение, $\lambda = 1.5406$ Å, детектор LYNXEYE с Ni-фильтром). Дифрактограммы обрабатывали программой Bruker EVA с использованием базы данных ICDD PDF. Уточнение параметров элементарных ячеек было выполнено методом полного профильного анализа с применением программы TOPAS. Электронномикроскопические исследования морфологии образцов и анализ рентгено-электронных спектров для подтверждения их химического состава осуществляли электронным микроскопом Cross Beam Zeiss NVision 40 и полевым эмиссионным растровым электронным микроскопом JSM-6700F с приставкой для энергодисперсионной спектрометрии JED-2300F фирмы JEOL (ЦКП "Материаловедение и металлургия" НИТУ МИ-СИС (Технологический университет)).

Теплоемкость в интервале 10–340 К измеряли автоматическим низкотемпературным калориметром БКТ-3. Более подробное описание прибора и условий измерений приведено в работе [12]. Масса измеряемых образцов составляла ~ 1– 2 г. Молекулярные массы рассчитывали с использованием атомных масс [16]. Экспериментальные данные сглаживали полиномом высокой степени по алгоритму [17].

Получение температурных зависимостей теплоемкости в интервале ~ 330–1350 К осуществляли по стандартной методике на установке синхронного термического анализа STA 449 F1 Jupiter Netzsch. Измерения проводили как в динамическом режиме, так и в изотермических условиях при программируемом изменении температуры оболочки (нагревателя) в атмосфере аргона.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для проведения калориметрических исследований синтезированы образцы цирконата лантана и двойных цирконатов $LaLnZr_2O_7$ (Ln = Sm, Gd, Dy), кристаллическая структура которых и отсутствие посторонних фаз подтверждены рентгенофазовым анализом (РФА). Соотношение металлов 1:1:2 в образцах подтверждено анализом рентгено-электронных спектров. Полученные образцы имели структурный тип пирохлора (Fd3m) и параметры кубических решеток, которые содержатся в табл. 1. В табл. 1 для сравнения приведены также параметры соответствующих простых цирконатов из базы ICDD и наших исследований [18]. Так как в базе ICDD отсутствуют данные для двойных цирконатов, для сравнения параметров кристаллических решеток в табл. 1 приведены полусуммы $a = 1/2[a(La_2Zr_2O_7) +$ $+ a(Ln_2Zr_2O_7)$] решеток цирконатов лантана и соответствующего простого лантаноида (Ln = Sm, Gd) [18–21], а для LaDyZr₂O₇ взят удвоенный параметр *а* флюоритной решетки (*Fm*3*m*) твердого раствора $Dy_2O_3 \cdot 2ZrO_2$ [22]. Как видно из табл. 1, в том случае, если структурный тип двойного и исходных простых цирконатов одинаков, то параметр а двойного цирконата практически соответствует полусумме параметров простых цирконатов. Заметные отличия появляются, если исходные структурные типы различны (пирохлор и флюорит), как это происходит в случае LaDyZr₂O₇.

Отсутствие примесей в полученных соединениях показано анализом рентгеноэлектронных спектров, а контроль размера частиц — сканирующей электронной микроскопией и обработкой по Шереру дифракционных рефлексов. Все образцы характеризуются размерами кристаллитов >100 нм, которые не влияют на величины термодинамических функций и пригодны для их измерений.

Теплоемкость охарактеризованных образцов измерена методами адиабатической (5–340 K) и дифференциальной сканирующей калориметрии (330–1400 K). Сглаженные значения низкотемпературной (10–340 K) теплоемкости и термодинамические функции пирохлоров LaLnZr₂O₇ приведены в табл. 2–5. Высокотемпературные (330–1400 K) значения теплоемкости представлены в виде уравнений Майера–Келли [23, 24], коэффициенты которых приведены в табл. 6. В табл. 7

Рис. 1. Теплоемкость пирохлора La₂Zr₂O₇: *1* – настоящая работа, *2* – данные [25].

содержатся стандартные термодинамические свойства при 298.15 К и расчетные значения теплоемкости по полусуммам теплоемкостей компонентов, взятых из работы [18]. Как и при сравнении параметров кристаллических решеток. наблюдается хорошее совпадение экспериментальной и расчетной теплоемкостей при 298.15 К в случае, если имеется совпадение структурных типов двойных и простых цирконатов. Температурные зависимости теплоемкостей всех соединений представляют собой гладкие S-образные кривые, что свидетельствует об отсутствии структурных превращений во всем температурном интервале.

Цирконат лантана готовили и измеряли его теплоемкость для подтверждения соответствия результатов наших исследований ранее полученным данным в других лабораториях. Впервые теплоемкость пирохлора La₂Zr₂O₇ была измерена методами адиабатической калориметрии при 4-380 К и калориметрии сброса в области 480-898 К в работе [25]. Эти данные с точностью до погрешностей измерений полностью совпадают с нашими результатами (табл. 2) при низкой температуре (0-340 К), и находятся в 1% доверительном интервале при высоких температурах (340-1000 К) – рис. 1. Уместно отметить, что суммарная погрешность сравниваемых методов дифференциальной сканирующей калориметрии (ДСК), используемой нами, и калориметрии сброса, примененной в [25], существенно больше указанного интервала сравнения, что подчеркивает достоверность наших экспериментальных процедур, включая синтез и подготовку образцов и, собственно, сами результаты измерения теплоемкости.

На рис. 2–4 приведены экспериментальные результаты измерения высокотемпературной тепло-

Рис. 2. Экспериментальная теплоемкость пирохлора LaSmZr₂O₇ (I) и ее оценка по правилу Неймана—Коппа (2).

емкости LaSmZr₂O₇, LaGdZr₂O₇ и LaDyZr₂O₇ и расчетные кривые по Нейману-Коппу. Как видно, при комнатных температурах измеренные и расчетные значения для первых двух соединений с высокой точностью совпадают, а для LaDyZr₂O₇ экспериментальная величина выше расчетной на 5.3 Дж/(К моль) - табл. 7. Дальнейшее повышение температуры приводит к заметному отставанию величины экспериментальной теплоемкости от расчетных значений. и такие отличия достигают 3-5%, что сравнимо с погрешностями метода ДСК. Тем не менее, прослеживается общая тенденция понижения экспериментальной теплоемкости по сравнению со средней величиной для взаимных твердых растворов пирохлоров. Это же явление наблюдали при исследовании твердого раствора YbGdZr₂O₇ [26]. Необходимо отметить, что при уменьшении радиуса иона лантаноида за счет лантаноидного сжатия следовало бы ожидать и относительного снижения теплоемкости, однако взаимодействие f-электронов и кристаллического поля вносит дополнительный вклад в теплоемкость, известный как аномалия Шоттки [27]. Этот вклад не является монотонной функцией и индивидуален для каждого лантаноида и конкретной кристаллической структуры, поэтому общий вид зависимости теплоемкости от температуры имеет сложный характер.

Таким образом, измерена изобарная теплоемкость твердых растворов пирохлоров LaLnZr₂O₇ (Ln = Sm, Gd, Dy) в области 10–340 К методом адиабатической калориметрии и в интервале 330–1400 К – методом ДСК. Показано отсутствие структурных превращений во всем изученном температурном интервале. Рассчитанные термодинамические функции не учитывают вклады магнитных превращений ниже 10 К. Полученные

Таблица 2.	Температурные	зависимости	изобарной	теплоемкости,	энтропии,	приведенной	энергии	Гиббса и
приращени	ия энтальпии (10-	-340 K) для La	$a_2 Zr_2 O_7, M =$	= 572.25474 г/мс	оль [16]			

ТК	$C_{\rm p}^{\rm o}(T)$	$S^{\circ}(T)$	$\Phi^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
<i>1</i> , K	Дж/(К моль)		Дж/моль	
10	0.3665	0.04319	0.01079	0.3240
15	1.705	0.3510	0.05890	4.382
20	4.490	1.196	0.2260	19.40
25	8.305	2.590	0.5505	51.00
30	12.96	4.505	1.043	103.9
35	18.27	6.894	1.703	181.7
40	24.05	9.708	2.524	287.4
45	30.12	12.89	3.495	422.7
50	36.29	16.38	4.607	588.7
60	48.76	24.10	7.200	1014
70	61.21	32.55	10.21	1564
80	73.42	41.52	13.56	2237
90	85.24	50.86	17.18	3031
100	96.61	60.43	21.03	3941
110	107.5	70.16	25.05	4962
120	117.9	79.96	29.22	6089
130	127.7	89.79	33.50	7318
140	137.0	99.60	37.87	8642
150	145.7	109.3	42.31	10060
160	153.7	119.0	46.80	11550
170	161.2	128.6	51.33	13130
180	168.3	138.0	55.88	14780
190	174.8	147.3	60.45	16490
200	181.0	156.4	65.02	18270
210	186.8	165.3	69.58	20110
220	192.4	174.2	74.14	22010
230	197.7	182.8	78.68	23960
240	202.6	191.4	83.19	25960
250	206.5	199.7	87.69	28010
260	210.1	207.9	92.15	30090
270	213.8	215.9	96.59	32210
280	217.4	223.7	101.0	34360
290	220.7	231.4	105.4	36550
300	223.7	238.9	109.7	38780
310	226.5	246.3	114.0	41030
320	228.9	253.5	118.2	43310
330	231.2	260.6	122.4	45610
340	233.2	267.6	126.6	47930

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

ТЕПЛОЕМКОСТЬ ТВЕРДЫХ РАСТВОРОВ

Т К	$C_{\rm p}^{\rm o}(T)$	$S^{\circ}(T)$	$\Phi^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
1,1		Дж/моль		
10	0.5307	0.2423	0.07519	1.671
15	2.378	0.7505	0.2007	8.246
20	5.749	1.863	0.4638	27.99
25	10.35	3.620	0.9089	67.78
30	15.88	5.984	1.550	133.0
35	22.04	8.888	2.385	227.6
40	28.55	12.25	3.404	354.0
45	35.11	16.00	4.592	513.2
50	41.57	20.03	5.932	704.9
60	54.21	28.73	8.997	1184
70	66.43	38.01	12.47	1788
80	78.23	47.66	16.27	2511
90	89.59	57.53	20.30	3351
100	100.5	67.54	24.52	4302
110	111.1	77.62	28.89	5360
120	121.2	87.72	33.37	6522
130	130.8	97.80	37.94	7782
140	139.9	107.8	42.58	9136
150	148.4	117.8	47.26	10580
160	156.3	127.6	51.97	12100
170	163.6	137.3	56.71	13700
180	170.4	146.8	61.45	15370
190	176.7	156.2	66.19	17110
200	182.5	165.4	70.93	18900
210	188.0	174.5	75.64	20760
220	193.1	183.3	80.34	22660
230	197.9	192.0	85.01	24620
240	202.5	200.6	89.64	26620
250	206.7	208.9	94.25	28670
260	210.8	217.1	98.82	30750
270	214.6	225.1	103.3	32880
280	218.3	233.0	107.8	35050
290	221.8	240.7	112.3	37250
300	225.2	248.3	116.7	39480
310	228.5	255.7	121.1	41750
320	231.8	263.0	125.4	44050
330	234.9	270.2	129.7	46390
340	238.1	277.3	133.9	48750

Таблица 3. Температурные зависимости изобарной теплоемкости, энтропии, приведенной энергии Гиббса и приращения энтальпии (10–340 K) для LaSmZr₂O₇, *M* = 583.7093 г/моль [16]

Таблица 4. Температурные зависимости изобарной теплоемкости, энтропии, приведенной энергии Гиббса и приращения энтальпии (10–340 K) для LaGdZr₂O₇, M = 590.3464 г/моль [16]

Таблица 5. Температурные зависимости изобарной теплоемкости, энтропии, приведенной энергии Гиббса и приращения энтальпии (10–340 K) для LaDyZr₂O₇, M = 595.8479 г/моль [16]

 $H^{\circ}(T) - H^{\circ}(0)$

Дж/моль

1.708

9.207

28.63

65.13 123.2 206.5 318.2

460.5 635.1

	· ·				• 2	17	/	
Т. К	$C_{\rm p}^{\rm o}(T)$	$S^{\circ}(T)$	$\Phi^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$	Т. К	$C_{\rm p}^{\rm o}(T)$	$S^{\circ}(T)$	$\Phi^{\circ}(T)$
_,	Д	(ж/(К молн	.)	Дж/моль	-,	Дж/(К моль)		
10	1.668	0.5598	0.1400	4.198	10	0.6874	0.2277	0.05693
15	3.353	1.513	0.4307	16.24	15	2.508	0.8112	0.1974
20	6.188	2.841	0.8582	39.65	20	5.432	1.908	0.4771
25	9.993	4.614	1.424	79.73	25	9.317	3.521	0.9162
30	14.59	6.832	2.135	140.9	30	14.02	5.625	1.519
35	19.81	9.466	2.989	226.7	35	19.41	8.183	2.283
40	25.46	12.48	3.983	339.7	40	25.33	11.16	3.202
45	31.38	15.82	5.110	481.8	45	31.65	14.50	4.269
50	37.38	19.43	6.359	653.7	50	38.23	18.18	5.473
60	49.27	27.30	9.184	1087	60	51.43	26.32	8.256
70	60.97	35.78	12.37	1639	70	63.63	35.18	11.46
80	72.47	44.67	15.85	2306	80	75.08	44.43	15.00
90	83.73	53.86	19.56	3087	90	86.45	53.93	18.80
100	94.73	63.26	23.46	3980	100	97.72	63.62	22.79
110	105.4	72.79	27.51	4980	110	108.8	73.46	26.95
120	115.6	82.40	31.68	6086	120	119.6	83.39	31.24
130	125.4	92.05	35.95	7292	130	130.0	93.37	35.64
140	134.7	101.7	40.31	8593	140	139.9	103.4	40.12
150	143.5	111.3	44.72	9985	150	149.2	113.3	44.67
160	151.6	120.8	49.18	11460	160	157.9	123.3	49.27
170	159.1	130.2	53.67	13010	170	166.0	133.1	53.91
180	166.0	139.5	58.18	14640	180	173.5	142.8	58.58
190	172.5	148.7	62.70	16330	190	180.5	152.4	63.26
200	178.5	157.7	67.22	18090	200	186.9	161.8	67.95
210	184.1	166.5	71.74	19900	210	192.9	171.0	72.64
220	189.4	175.2	76.25	21770	220	198.5	180.1	77.32
230	194.4	183.7	80.74	23690	230	203.7	189.1	81.99
240	199.1	192.1	85.20	25660	240	208.5	197.9	86.63
250	203.6	200.3	89.64	27670	250	213.1	206.5	91.26
260	207.9	208.4	94.06	29730	260	217.4	214.9	95.85
270	211.9	216.3	98.44	31830	270	221.5	223.2	100.4
280	215.7	224.1	102.8	33970	280	225.4	231.3	104.9
290	219.3	231.7	107.1	36140	290	229.2	239.3	109.4
300	222.7	239.2	111.4	38350	300	232.9	247.1	113.9
310	225.9	246.6	115.6	40590	310	236.6	254.8	118.3
320	228.9	253.8	119.8	42870	320	240.2	262.4	122.7
330	231.7	260.9	124.0	45170	330	243.9	269.8	127.1
340	234.3	267.8	128.1	47500	340	247.6	277.2	131.4

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

ТЕПЛОЕМКОСТЬ ТВЕРДЫХ РАСТВОРОВ

Формула	а	b	- <i>c</i>	R^2
La ₂ Zr ₂ O ₇	254.040	0.039840	3893980	0.99987
$LaSmZr_2O_7$	275.161	0.012485	4799732	0.99980
$LaGdZr_2O_7$	263.073	0.023592	4313576	0.99981
LaDyZr ₂ O ₇	250.508	0.035837	2899003	0.99996

Таблица 6. Коэффициенты уравнения Майера–Келли: $C_{\rm p}^{\circ} = a + bT + c/T^2$ (330–1400 К, P = 101.325 кПа)

Таблица 7. Стандартные термодинамические свойства исследованных образцов, T = 298.15 К

Формула	$C_{\rm p}^{\rm o}(T)$	$C_{\rm p}^{\rm o}(T)^*$	$S^{\circ}(T)$	$\Phi^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
		Дж/моль			
$La_2Zr_2O_7$	223.2 ± 0.4	—	237.6 ± 0.5	108.9 ± 0.2	38360 ± 80
$LaSmZr_2O_7$	224.6 ± 0.4	224.0	246.9 ± 0.5	115.9 ± 0.2	39070 ± 80
$LaGdZr_2O_7$	222.1 ± 0.4	222.4	237.8 ± 0.5	110.6 ± 0.2	37940 ± 80
LaDyZr ₂ O ₇	232.3 ± 0.5	226.6	245.7 ± 0.5	113.1 ± 0.2	39540 ± 80

* Расчет $C_p^{\circ}(T) = 1/2[C_p^{\circ}(\text{La}_2\text{Zr}_2\text{O}_7) + C_p^{\circ}(\text{Ln}_2\text{Zr}_2\text{O}_7)];$ данные для $C_p^{\circ}(\text{Ln}_2\text{Zr}_2\text{O}_7)$ Ln = Sm, Gd, Dy взяты из [18].

данные могут быть использованы для термодинамических расчетов и оптимизации процессов получения и применения высокотемпературных теплозащитных материалов. держке РФФИ (код проекта № 15-03-04388) с использованием оборудования ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований при финансовой под-

Рис. 3. Экспериментальная теплоемкость пирохлора LaGdZr₂O₇ (I) и ее оценка по правилу Неймана–Коппа (2).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

Рис. 4. Экспериментальная теплоемкость пирохлора LaDy $Zr_2O_7(1)$ и оценка по правилу Неймана—Коппа (2).

наты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.

- 2. *Andrievskaya E.R.* // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363.
 - https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
- 3. Шляхтина А.В., Щербакова Л.Г. // Электрохимия. 2012. Т. 48. С. 3.
- 4. Sohn J.M., Woo S.I. // Catalysis Letters. 2002. V. 79. P. 45. https://doi.org/10.1023/A:1015339821135
- Nästren C., Jardin R., Somers J., Walter M. Brendebach B. // J. Solid State Chem. 2009. V. 182. P. 1. https://doi.org/10.1016/j.jssc.2008.09.017
- Cao X.Q., Vassen R., Stoever D. // J. Europ. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
- Fergus J.W. // Metallurgical and Materials Transactions E. 2014. V. 1. P. 118. https://doi.org/10.1007/s40553-014-0012-y
- Liu Z.G., Ouyang J.H., Zhou Y. // J. Alloys and Compd. 2009. V. 475. P. 21. https://doi.org/10.1016/j.jallcom.2008.07.089
- Liu Z.G., Ouyang J.H., Zhou Y. // Bulletin of Materials Science. 2009. V. 32. P. 603. https://doi.org/10.1007/s12034-009-0092-v
- Wang Z., Zhou G., Qin X., Yang Y. et al. // J. Europ. Ceram. Soc. 2013. V. 33. P. 643. https://doi.org/10.1016/j.jeurceramsoc.2012.09.026
- Wang Z., Zhou G., Qin X. et al. // J. Europ. Ceram. Soc. 2014. V. 34. P. 3951. https://doi.org/10.1016/j.jeurceramsoc.2014.05.046
- Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. С. 64–70. https://doi.org/10.7868/S0002337X17010067

- Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. С. 632. https://doi.org/10.7868/S0002337X17010045
- Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. № 9. С. 963. https://doi.org/10.7868/S0002337X17090093
- 15. Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др. // ЖНХ. 2018. Т. 63. С. 1458. https://doi.org/10.1134/S0044457X18110053
- 16. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac200678112051
- 17. Gurevich V.M., Gorbunov V.E., Gavrichev K.S. et al. // Geochem. Int. 1999. V. 37. P. 367.
- Гагарин П.Г. Термодинамические функции соединений и твердых растворов оксидов лантаноидов и диоксида циркония: Автореферат дис. ... канд. хим. наук. М.: ИОНХ РАН, 2018. 19 с.
- 19. ICCD PDF 01-074-8764
- 20. ICCD PDF 01-075-8266
- 21. ICCD PDF 01-075-8269
- 22. ICCD PDF 01-078-1293
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932.
 V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Qiu L., White M.A. // J. Chem. Education. 2001. V. 78. P.1076. https://doi.org/10.1021/ed078p1076
- Bolech M., Cordfunke E.H.P., van Genderen et al. // J. Phys. Chem. Solids. 1997. V. 58. P. 433. https://doi.org/10.1016/s0022-3697(06)00137-5
- Liu Z.-G., Ouyang J.-H., Zhou Y. // Bull. Mater. Sci. 2009. V. 32. P 603. https://doi.org/10.1007/s12034-009-0092-y
- 27. Westrum E.F. // J. Thermal Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/bf01914288