_____ ХИМИЧЕСКАЯ КИНЕТИКА __ И КАТАЛИЗ

УДК 548.128

РАСКРЫТИЕ ЦИКЛОВ НАФТЕНОВЫХ УГЛЕВОДОРОДОВ НА ЦЕОЛИТНЫХ КАТАЛИЗАТОРАХ

© 2020 г. Л. М. Кустов^{*a,b,**}, А. Л. Кустов^{*a,b*}

^а Российская академия наук, Институт органической химии им. Н.Д. Зелинского, 119991 Москва, Россия ^b Московский государственный университет им. М.В. Ломоносова, Химический факультет, 119992 Москва, Россия

> *e-mail: lmk@ioc.ac.ru Поступила в редакцию 12.05.2019 г. После доработки 12.05.2019 г. Принята к публикации 14.05.2019 г.

Проведена оценка каталитической активности цеолитных катализаторов, содержащих нанесенные наночастицы металлов в раскрытии циклов модельных циклических соединений. Установлено, что наилучшие результаты — селективность в раскрытии метилциклопентана до 58% и выход *н*-гексана до 23.4% достигаются при использовании цеолита 1% Pt/NaX.

Ключевые слова: цеолитные катализаторы, каталитическая активность, раскрытие циклов модельных соединений

DOI: 10.31857/S0044453720020181

Одна из основных проблем переработки топлив – удаление полициклических ароматических и нафтеновых углеводородов, присутствие которых вызывает образование продуктов уплотнения на катализаторах или сажи в выхлопных газах двигателя в случае дизельного топлива, а также приводит к снижению цетанового числа. Присутствие полициклических нафтенов и ароматических углеводородов нежелательно и в бензиновых топливах. Наличие тяжелых полициклических соединений в дизельном топливе приводит также к повышению точки замерзания и снижению качества зимних топлив. Улучшение качественных характеристик моторных топлив тесно связано с ужесточением требований к содержанию в них ароматических углеводородов, в частности бензола. Одним из направлений решения данной проблемы может быть селективное раскрытие циклов ароматических и нафтеновых углеводородов с образованием алканов с тем же числом атомов углерода, что и в исходном углеводороде [1]. В случае раскрытия полициклических соединений положительным эффектом может считаться и образование моноциклических соединений, которые менее склонны к образованию сажи и имеют более низкую температуру замерзания. Процессы раскрытия циклов, безусловно, более актуальны для конверсии тяжелого углеводородного сырья, содержащего полициклические нафтеновые и ароматические углеводороды, чем для конверсии легких моноциклических соединений бензинового ряда. Раскрытие циклов наряду с получением бензил-алкилата (алкилированием изобутана бутенами), скелетной изомеризацией алканов и риформингом составляют группу методов, направленных на повышение октанового числа бензинов.

Литературные данные о раскрытии циклов нафтенов, содержащих циклы С₆, и тем более полициклические углеводороды, весьма ограничены. Имеется несколько ключевых публикаций в этой области [1-8], тогда как упоминания реакции раскрытия циклов в других работах связаны скорее с побочно протекающими процессами, в которых во многих случаях образуются, в основном, легкие газообразные продукты (скорее продукты крекинга или гидрокрекинга, чем раскрытия циклов). Следует отметить, однако, что реакции гидрокрекинга и раскрытия циклов очень близки, так как требуют присутствия водорода, и раскрытие циклов, по-видимому, протекает на части активных центров, ответственных за гидрокрекинг. По сути дела, раскрытие циклов – это мягкий гидрокрекинг применительно к циклическим структурам. Реакции раскрытия циклов протекают при сравнительно невысоких температурах: от 220-240°С для рутениевых нанесенных катализаторов до 380–400°С для платиновых систем, а большинство из известных систем активны при 280-320°С (Ir, Rh, многие биметаллические системы). Диапазон давлений, наиболее благоприятных для этой реакции, - 20-50 атм. При этом более низкие давления способствуют преобладанию процессов крекинга (образования легких газообразных продуктов), тогда как более высокие давления приводят к снижению активности благодаря конкуренции за адсорбционные центры между углеводородом и водородом. Что касается характерных объемных скоростей, использующихся в раскрытии циклов, то они достаточно велики $(1-4 \, q^{-1})$. Мольное соотношение водород : углеводород варьируется от 10 до 2–3, причем в случае ароматических субстратов требуется дополнительное избыточное количество водорода для гидрирования ароматического кольца в нафтеновую структуру.

Наиболее полный анализ активности нанесенных металлов в реакциях с участием водорода (раскрытие циклов, гидрирование, гидрогенолиз) лан в книге Соморджаи [9]. Однако подавляющее большинство данных приведено для реакций раскрытия циклов циклопропана и циклобутана, имеется несколько примеров конверсии циклопентана и бензола. Приведена лишь небольшая таблица, в которой сведены результаты по гидрогенолизу (раскрытию циклов) циклогексана. Известно, что раскрытие молекул циклопропана и циклобутана протекает достаточно легко при низких температурах, часто на катализаторах, не содержащих металлов [10]. Тем не менее, анализ данных для C₃- и C₄-циклов показывает, что для катализаторов на основе оксида алюминия активность в раскрытии этих циклов уменьшается в ряду Ru > Rh > Pt. Введение меди в катализатор (биметаллические композиции Pt-Cu, Ni-Cu) подавляет процесс раскрытия циклов [11, 12], тогда как модифицирование этих металлов рением оказывает благоприятный эффект [13].

Одна из первых работ по раскрытию циклов на примере циклогексана и метилциклопентана опубликована в 1977 г. японскими учеными, которые использовали катализатор Ni/Al₂O₃ [14]. Из циклогексана была получена смесь состава *н*-гексан : 2-метилпентан : 3-метилпентан = 2-6 : 1 : 1, состав которой сильно зависел от температуры реакции. В случае метилциклопентана была получена смесь *н*-гексан : 2-метилпентан : 3-метилпентан = 1 : 5 : 5, и ее состав не изменялся существенным образом с повышением температуры в достаточно широком диапазоне. Краткий обзор некоторых оксидных систем, активных в раскрытии циклов дан в [15].

Задача настоящего исследования — оценка каталитической активности цеолитных катализаторов, содержащих нанесенные наночастицы металлов в раскрытии циклов модельных циклических соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали цеолиты NaX (Si/Al = = 1.25), NaY (Si/Al = 3.0), K-LTL (Si/Al = 3.5), LaY,

LaCaNaY, LaNaY, H-BEA (Si/Al = 13), H-ZSM-5 (Si/Al = 30) в качестве носителей наночастиц платины, родия, палладия или рутения. Металлы наносили пропиткой высушенного при 150°С носителя водным раствором H₂PtCl₆, [(Rh(NH₃)₆]Cl₃, PdCl₂, RuCl₃ с последующим прокаливанием при 300–400°С и восстановлением в токе водорода при 300–400°С. Содержание металла составляло 0.5-1 мас. %.

Реакцию гидрогенолиза проводили в импульсной или непрерывной проточной установке с варьированием температуры реакции от 200 до 400°С. Состав продуктов определяли методом газовой хроматографии на хроматографе ЛХМ-8МД с пламенно-ионизационным детектором, колонка SE-30 (1 мм × 50 м).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассмотрим чисто теоретически вероятности раскрытия различных циклических углеводородов с целью получения линейных алканов, наиболее ценных с точки зрения повышения цетанового числа, без учета термодинамических и кинети-Лишь ческих факторов. В случае моноциклических структур (рис. 1) вероятность такого процесса (P_n) достаточно велика, тогда как в случае декалина и других полициклических соединений эта вероятность существенно снижается (24%). Очевидно, что наиболее сложно разорвать внутреннюю связь в молекуле декалина, поэтому реальная возможность получения линейных алифатических структур еще ниже приведенных оценок.

Термодинамические данные для модельной реакции гидрогенолиза циклогексана в н-гексан представлены в табл. 1. Приведенные данные свидетельствуют о том, что достаточно высокие выходы целевых продуктов могут быть достигнуты при относительно невысоких температурах. На основании этих оценок в качестве модельных субстратов были выбраны циклогексан и метилциклопентан. Предварительные исследования показали, что механизм процесса достаточно сложен и включает ряд реакций, таких как крекинг, скелетная изомеризация, раскрытие цикла, сужение цикла (получение циклопентановых структур из циклогексана), дегидрирование и гидрогенолиз. Активность цеолитных катализаторов в значительной степени определяется составом катализатора, содержанием нанесенного металла, соотношением кислотных центров различной природы, а также условиями реакции, в частности, температурой, давлением, соотношением углеводород : водород.

Условия реакции для проточной системы выбрали следующими: температуру варьировали от 180 до 450°С с оптимальным интервалом 200-

 $\Sigma P_n = 24\%$

Рис. 1. Вероятность получения *н*-алканов раскрытием циклов нафтенов.

300°С, объемная скорость составляла $0.4-0.5 \text{ y}^{-1}$, разбавление (соотношение углеводород : водород) – 1 : 11; загрузка катализатора – 0.5 г. Эксперименты в импульсной установке проводили в тех же режимах, что и для проточной установки, за исключением подачи углеводорода, который подавали через петлю объемом 1 мл, загрузка катализатора составляла 0.2 г.

Каталитические данные для конверсии циклогексана и метилциклогексана в импульсной и проточной установке представлены в табл. 2-4. Из состава продуктов видно, что в случае цеолитов вместо целевой реакции раскрытия циклов преобладают реакции дегидрирования и крекинга, особенно при высоких температурах. Эти реакции приводят к образованию бензола и легких продуктов С1-С3. Также идут реакции изомеризации циклогексана в метилциклопентан и н-гексана в метилпентаны. Наилучшие результаты в раскрытии циклогексана показал цеолит 0.5Pt/LaNaX. При конверсии циклогексана около 86% содержание гексанов в смеси составило несколько более 4%. На основных формах цеолитов основным процессом является дегидрирование с образованием бензола, а на кислотных формах (Н- и La-формы) преобладают реакции крекинга и изомеризации в метилциклопентан. Отметим, что рутениевые системы катализируют реакцию гидрогенолиза с получением легких газов C_1-C_4 . Для кислотных форм цеолитов отмечено также образование некоторого количества более тяжелых продуктов C_{6+} , видимо, за счет вторичных реакций олигомеризации продуктов крекинга (олефинов) и алкилирования циклических углеводородов ненасыщенными продуктами крекинга.

Таблица 1. Равновесный состав (мас.%) реакционной смеси для раскрытия циклогексана

<i>T</i> , °C	Циклогексан	H ₂	$H-C_6H_{14}$
100	1.0	0.02	98.98
200	3.9	0.1	96.0
300	10.7	0.3	89.0
400	20.6	0.5	78.9
500	33.3	0.8	65.9
	Циклогексан	H ₂	2-Метилпентан
100	0.5	0.01	99.49
200	2.9	0.1	97
300	7.8	0.2	92
400	16.6	0.4	83
500	29.3	0.7	70

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

Таблица 2. Конверсия циклогексана на цеолитных катализаторах в импульсном режиме при атмосферном давлении (C₆H₁₂ : H₂ = 1 : 11 (об.); загрузка катализатора – 200 мг; Не –газ-носитель, 1.2 л/ч; объем импульса смеси 1 мл)

V	T, °C	Состав смеси углеводородов, мас. %						
катализатор		C ₁ -C ₅	C ₆	МЦП	ЦГ	C ₆ H ₆	C ₆₊	
0.5Pt/NaY	210	1.9	_	-	98.1	—		
	265	0.2	_	_	_	99.8		
	315	0.7	_	_	_	99.3		
1Pt/NaX	265-320	—	—	_	-	≈100		
1Rh/KL	210	0.8	_	0.2	86.7	12.3		
	265	3.0	0.05	0.05	39.9	57.0		
	320	11.3	_	_	0.2	87.6		
1Rh/NaY	210	3.0	_	4.4	83.6	9.0		
	265	3.6	—	—	—	96.4		
	315	4.3	—	—	—	94.3	0.9	
1Ru/KL	210	0.8	_	0.1	99.1	—		
	265	5.5	_	0.1	92.7	1.7		
	315	22.5	—	0.1	72.0	5.3	0.1	
1Ru/NaY	210	0.5	—	1.1	98.2	0.2		
	265	2.1	_	0.9	96.4	0.4	0.2	
	315	11.1	_	0.7	86.8	1.4		
0.5Pt/LaY, FAU	210	0.1	—	20.1	26.3	53.5	—	
	230	3.4	—	16.9	12.0	65.3	2.4	
	265	6.0	0.7	4.5	0.9	84.1	3.8	
	315	6.8	0.75	0.05	_	91.3	1.1	
0.5Pt/H-β	210	—	1.4	35.9	54.0	8.7	—	
	265	10.6	1.4	16.0	10.6	58.5	2.9	
	315	13.0	_	_	_	79.0	8.0	
0.5Pt/0.65La 0.33Ca0.02NaY	210	_	0.2	26.2	68.2	5.4	-	
	265	8.6	0.9	13.4	16.7	60.4	_	
	315	9.5	0.9	0.5	0.1	88.0	1.0	
0.5Pt/LaNaX	210	—	—	19.0	80.7	0.3		
	265	15.4	2.1	23.4	58.5	0.6		
	315	71.4	4.1	10.5	14.0			
1Rh/LaNaX	210	1.9	_	8.3	89.6	0.2		
	265	21.2	2.1	8.3	67.3	1.1		
	315	99.6		—	_	0.4		
1Ru/LaNaX	210	0.7	_	0.5	98.8			
	265	4.4	—	2.8	92.8	_		
	315	20.1	0.8	7.8	71.2	0.1		
	350	30.0	2.2	11.5	56.1	0.2		

242

Таблица 3. Конверсия метилциклопентана на цеолитных катализаторах в импульсном режиме при атмосферном давлении (S – селективность в раскрытии цикла, C_6H_{12} : $H_2 = 1$: 11 (об.); загрузка катализатора – 200 мг; He – газ-носитель, 1.2 л/ч; объем импульса смеси 1 мл)

Катализатор	T, ℃	<i>S</i> , %	Состав смеси углеводородов, мас. %					
			C ₁ -C ₅	C ₆ H ₁₄	МЦП	ЦГ	C ₆ H ₆	C ₆₊
0.5Pt/NaY	265	12.4	0.05	1.6	87.1	8.2	3.0	0.05
1Pt/NaX	320	50.6	1.1	13.2*	73.9	5.3	6.1	0.4
	350	58.2	3.2	23.5*	59.6	4.6	7.4	1.7
1Rh/KL	265	33.1	4.6	4.6	86.1	3.8	0.9	—
	315	14.0	16.4	3.8	72.9	2.1	3.9	0.9
1Rh/NaY	265	23.1	11.3	4.3	81.4	2.7	—	0.3
1Ru/KL	265	7.8	4.2	0.7	91.0	4.1	—	
	315	4.3	14.3	0.7	83.9	1.1	—	
1Ru/NaY	315	4.5	8.2	0.7	84.4	6.7	_	
0.5Pt/H-β	210	7.2	—	1.3	81.9	14.0	2.8	—
	265	1.8	17.9	1.8	1.9	0.3	27.5	50.6
	315	_	33.2	_	_	_	55.6	11.2
0.5Pt/0.65La	210	—	3.6	—	86.1	8.7	1.6	
0.33Ca0.02NaY	265	17.1	15.4	6.3	63.2	7.2	7.9	
0.5Pt/LaNaX	265	16.7	23.3	7.3	56.4	10.5	2.3	0.2
1Rh/LaNaX	265	26.0	11.0	6.9	73.5	7.8	0.7	0.1
	280	24.9	21.9	9.7	61.0	6.7	0.7	
	315	14.3	50.8	9.4	34.4	4.6	0.8	
1Ru/LaNaX	265	14.2	7.2	2.0	85.9	4.7	0.2	
	315	16.0	26.5	6.2	61.2	5.4	0.7	
	350	12.9	57.2	9.5	26.4	6.4	0.5	

* Доля *н*-С₆Н₁₄ в С₆ парафинах ~6–7%.

Обращает на себя внимание различие в поведении катализаторов в конверсии циклогексана и метилциклопентана (табл. 2 и 3). В отличие от циклогексана конверсия метилциклопентана протекает с образованием значительного количества гексанов (до 23.5%), в том числе *н*-гексана (до 6-7% в реакционной смеси), причем это более характерно для щелочных форм цеолитов, тогда как на кислотных формах, как и в случае циклогексана идут процессы крекинга. Для цеолита 1% Pt/NaX селективность в образовании гексанов (продуктов прямого раскрытия цикла) достигает 50-60% в отличие от конверсии циклогексана на том же катализаторе. С другой стороны, образование бензола незначительно, поскольку оно должно протекать через образование циклогексана и его последующего дегидрирования. Отметим, что и содержание циклогексана в смеси невелико, даже при использовании в качестве катализаторов кислотных форм цеолитов, в отличие

от содержания метилциклопентана при конверсии циклогексана.

Все эти данные свидетельствуют о том, что конверсия этих двух углеводородов протекает по различным маршрутам на цеолитных катализаторах. Обычно полагают, что раскрытие циклогексановых структур происходит через образование метилциклопентановых структур, однако полученные результаты свидетельствуют о том, что это не совсем так.

Проведение процесса в проточной непрерывной системе показало, что конверсия циклогексана на щелочных формах цеолитов, содержащих благородные металлы, приводит, в основном, к продуктам дегидрирования. Выход метилциклопентана на этих системах невелик (<3–5%). Напротив, на кислотных формах цеолитов (Н- или La-формы) кроме бензола образуются метилциклопентан, С₆-парафины и продукты крекинга. Выход метилциклопентана увеличивается с по-

РАСКРЫТИЕ ЦИКЛОВ НАФТЕНОВЫХ УГЛЕВОДОРОДОВ

Катализатор	<i>t</i> , мин	<i>T</i> , °C	Состав продуктов, мас. %						
			C ₁ -C ₅	ΜЦΠ	C_6H_{14}	ЦГ	C_6H_6	C ₆₊	
0.5Pt/NaX	10	265	_	_	—	85	15	_	
	20	265	_	_	_	84	16	_	
	30	315	_	_	—	24	76	_	
	60	210	_	_	—	98	2	_	
	70	265	_	_	—	83	17	_	
0.5Pd/NaY	5	265	_	_	—	74	26	_	
	40	315	_	1	—	64	35	_	
0.5Pt/NaY	10	265	_	_	—	96	4	_	
	25	315	_	2	—	77	21	_	
	40	335	_	3	_	67	30	_	
0.5Pt/KL	5	330	_	5	_	66	6	_	
	20	315	_	2	—	89	9	_	
	30	280	_	1	—	94	5	-	
	40	265	_	_	—	97	3	-	
	100	210	_	_	—	100	_	-	
0.5Pt/NaLaX	5	265	10	46	—	36	8	-	
	20	265	21	34	1	37	8	_	
	30	315	29	27	2	28	24	-	
$0.5Pt/H-\beta$	5	265	31	40	5	9	15	_	
	20	265	25	45	4	10	16	-	
	40	265	18	51	3	10	18	_	
	70	315	9	3	2	_	79	_	
	140	265	2	50	1	13	34	_	
0.5Pt/HZSM-5	10	340	48	1	1	7	2	2	
	25	315	43.5	5	2.5	45	2	2	
	60	280	22	6	2	69	1	_	
	70	265	8	5	1	86	—	—	

Таблица 4. Конверсия циклогексана в непрерывной проточной установке при атмосферном давлении. C_6H_{12} : $H_2 = 1:11$ (об.); VHSV = 0.3 ч⁻¹; загрузка катализатора 0.8 г.

нижением температуры реакции в отличие от продуктов крекинга. Наибольшие выходы метилциклопентана (~20–23%) наблюдаются для 0.5% Pt/LaNaX и 1% Pt/LaY. Максимальная активность в раскрытии циклогексана установлена для 0.5% Pt/LaNaX (4.1% алканов C₆), 1% Rh/LaNaX (2.1%), и 1% Ru/LaNaX (2.2%). На этих катализаторах ароматические продукты не образуются, а доля продуктов крекинга значительна. Однако селективность по продуктам раскрытия циклов остается низкой (4–5%). Отметим цеолит Pt/H-BEA, который проявляет умеренную активность в раскрытии циклов.

Таким образом, полученные результаты могут быть объяснены схемой, которая включает реакции изомеризации метилциклопентана в циклогексан и наоборот, крекинг, дегидрирование циклогексана, раскрытие обоих циклов:

Очевидно, что присутствие сильных кислотных центров в высокой концентрации (Н-формы) приводит к образованию значительного количества продуктов крекинга. Однако некоторое количество кислотных центров (желательно средней силы) все же необходимо для осуществления процесса.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 19-03-00808).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tailleur R.G.* // Fuel Proc. Technol. 2006. V. 87. № 9. P. 759.
- 2. *Cusher N.A.* // In: Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 1986.
- McVicker G.B., Daage M., Touvelle M.S. et al. // J. Catal. 2002. V. 210. № 1. P. 137.
- Vaarkamp M., Dijkstra P., van Grondelle J. et al. // Ibid. 1995. V. 151. P. 330.

- 5. Martens J.A. // Thesis, Univ. Leuven, 1985.
- 6. Lam Y.L., Sinfelt J.H. // J. Catal. 1976. V. 42. P. 319.
- Anderson J.B.F., Burch R. // J. Chem. Soc., Faraday Trans. 1987. V. 83. P. 913.
- 8. Sinfelt J.H. // J. Catal. 1973. V. 29. P. 308.
- 9. Somorjai G.A. // Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994.
- Torok B., Pálinkó I., Bartók M. // Catal. Lett. 1995. V. 31. P. 421.
- Schepers F.J., van Senden J.G., van Broekhoven E.H., Ponec V.J. // J. Catal. 1985. V. 94. P. 400.
- Roberti A., Ponec V., Sachtler W.M.H. // Ibid. 1973. V. 28. P. 381.
- Bolivar C., Leclercq G., Maurelet R. et al. // Ibid. 1976. V. 45. P. 179.
- Miki Y., Yamadaya S., Oba M. // Ibid. 1977. V. 49. № 3. P. 278.
- 15. Kustov L.M., Finashina E.D., Avaev V.I., Ershov B.G. // Fuel Process. Technol. 2018. V. 173. P. 270.