= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 541.11:536.7

ТЕРМОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕАКЦИЙ КИСЛОТНО-ОСНОВНОГО ВЗАИМОДЕЙСТВИЯ В ВОДНОМ РАСТВОРЕ β-АМИНОМАСЛЯНОЙ КИСЛОТЫ

© 2020 г. А. И. Лыткин^{*a*}, В. В. Черников^{*a*}, О. Н. Крутова^{*a*,*}, Г. Ньягоя^{*a*}

^аИвановский государственный химико-технологический университет, Иваново, Россия

**e-mail: kdvkonkpd@yandex.ru* Поступила в редакцию 25.04.2019 г. После доработки 02.07.2019 г. Принята к публикации 15.07.2019 г.

Калориметрическим методом измерены тепловые эффекты взаимодействия раствора β -аминомасляной кислоты с растворами HNO₃ и KOH в различных интервалах pH при температуре 298.15 К и значениях ионной силы 0.25; 0.5 и 0.75 (KNO₃). Определены тепловые эффекты ступенчатой диссоциации аминокислоты. Рассчитаны стандартные термодинамические характеристики ($\Delta_r H^\circ$, $\Delta_r G^\circ$, $\Delta_r S^\circ$) реакций кислотно-основного взаимодействия в водных растворах β -аминомасляной кислоты. Рассмотрена связь термодинамических характеристик диссоциации аминокислоты со структурой данного соединения.

Ключевые слова: термодинамика, растворы, химия, калориметр, аминокислоты **DOI:** 10.31857/S0044453720020259

Диссоциацию β -аминомасляной кислоты (C₄H₉NO₂) в водном растворе можно представить схемой:

$$H_2L^+ \leftrightarrow H^+ + HL^+,$$
 (1)

$$\mathrm{HL}^{\mathrm{I}} \leftrightarrow \mathrm{H}^{+} + \mathrm{L}^{-}. \tag{2}$$

В литературе имеются надежные данные по константам ионизации β -аминомасляной кислоты [1–5]. Эти работы выполнены при различных значениях ионной силы, на фоне отличающихся по своей природе поддерживающих электролитов. Для того, чтобы можно было сравнивать значения констант ступенчатой диссоциации β -аминомасляной кислоты, полученные разными авторами, мы пересчитали величины р K_1 и р K_2 на нулевую ионную силу. Термодинамические константы ступенчатой диссоциации β -аминомасляной кислоты определяли также графическим методом по уравнению [6]:

$$pK^{c} = pK^{\circ} - \Delta Z^{2}A \frac{\sqrt{I}}{1 + 1.6\sqrt{I}} + \delta I.$$
 (3)

После графической обработки литературных данных [1–5], в качестве наиболее вероятных значений термодинамических констант диссоциации β -аминомасляной кислоты можно принять при 298.15 К: $pK_1^0 = 3.53 \pm 0.02$, $pK_2^0 = 10.11 \pm 0.03$. На рис. 1 представлена диаграмма равновесий в

водном растворе β-аминомасляной кислоты, построенная на основании расчетов равновесного состава растворов аминокислоты при различных значениях pH с использованием программы KEV [7].

Данные по теплотам реакций кислотно-основного взаимодействия с участием β-аминомасляной кислоты в литературе отсутствуют.

Целью настоящей работы является изучение влияния концентрации фонового электролита на

Рис. 1. Диаграмма равновесий в водном растворе D,L-3 аминомасляной кислоты при 298.15 К и ионной силе I = 0.0.

Ι	т, г	$-\Delta_{ m mix} H,$ Дж/моль	т, г	—Δ _{dil} H, Дж/моль	α	$-\Delta_{\rm dis} H({\rm H_2L^+})$ Дж/моль
0.25	0.5011	1662	0.5001	1052	0.8248	2011 ± 200
	0.5011	1660	0.5005	1089	0.8247	
	0.5011	1656	0.5006	1076	0.8248	
		(1659 ± 170)		(1072 ± 150)		
0.5	0.5022	912	0.5006	890	0.8249	2392 ± 200
	0.5022	915	0.5002	896	0.8248	
	0.5023	910	0.5001	894	0.8248	
		(913 ± 180)		(893 ± 150)		
0.75	0.5011	2706	0.5002	394	0.8245	2834 ± 200
	0.5012	2699	0.5003	383	0.8242	
	0.5012	2703	0.5006	362	0.8243	
		(2702 ± 180)		(379 ± 150)		

Таблица 1. Тепловые эффекты (Дж/моль) взаимодействия 0.02 М раствора β -аминомасляной кислоты с раствором HNO₃ (pH_{исх} 3.8 – pH_{кон} 2.2), T = 298.15 K

Примечание. В скобках приведены средние значения.

тепловые эффекты диссоциации β-аминомасляной кислоты методом прямой калориметрии, расчет стандартных термодинамических характеристик реакций кислотно-основного взаимодействия в растворах аминокислоты; обсуждение полученных результатов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Выбор концентрационных условий проведения калориметрических опытов проводился на основании диаграммы равновесий в водном растворе D,L-3 аминомасляной кислоты (рис. 1). Долевое распределение частиц H_2L^+ , HL^\pm и L^- при различных значениях pH среды (рис. 1) указывает на возможность независимого определения теплот диссоциации катиона и цвиттер-иона D,L-3 аминомасляной кислоты.

Были измерены теплоты смешения растворов D,L-3 аминомасляной кислоты с растворами HNO₃ и КОН в различных интервалах pH на калориметре с изотермической оболочкой и автоматической записью кривой температура-время [8]. Работа калориметрической установки была проверена по общепринятому калориметрическому стандарту – теплоте растворения кристаллического хлорида калия в воде. Препарат KCl очищали двукратной перекристаллизацией реактива марки "х.ч." из бидистиллята. Перед взятием навесок хлорид калия высушивали в сушильном шкафу при 393.15 К до постоянной массы. Согласование экспериментально полученных энтальпий растворения KCl(кр.) в воде $\Delta_{sol}H(\infty H_2 O) =$ $= 17.25 \pm 0.06$ кДж/моль с наиболее надежными литературными данными [9] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески растворов взвешивали на весах марки ВЛР-200 с точностью 2 × 10⁻⁴ г.

В работе использован препарат D,L-3 аминомасляной кислоты фирмы "TCI" (Япония), без дополнительной очистки содержание основного вещества в препарате составляло 98.0%. Растворы аминокислоты готовили растворением навесок препарата в свежеприготовленном бидистилляте непосредственно перед проведением опыта. Перед взятием навесок кристаллические препараты высушивали до постоянной массы при температуре 343.15 К. Бескарбонатный раствор КОН и раствор HNO₃ приготавливали из реактива марки "х.ч." по обычной методике [10].

При определении теплового эффекта присоединения протона к карбоксильной группе D,L-3 аминомасляной кислоты в качестве калориметрической жидкости использовался 0.02 М раствор аминокислоты ($pH_{ucx} = 3.8$), а в ампулу соответственно помещали точную навеску раствора HNO₃ (с концентрацией 0.8814 моль/кг раствора). После смешения растворов величина pH была близка к 2.2. Экспериментальные данные по теплотам смешения и разведения приведены в табл. 1.

При определении тепловых эффектов процесса (2), были измерены теплоты взаимодействия водного раствора аминокислоты (концентрация раствора 0.8927 моль/кг раствора) с 0.1 М раствором КОН, а также теплоты разведения раствора D,L-3 аминомасляной кислоты в растворах фонового электролита (KNO₃). Полученные величины теплот смешения и разведения D,L-3 аминомасляной кислоты представлены в табл. 2.

Ι	т, г	$-\Delta_{\min}H^1$, Дж/моль	$-\Delta_{ m dil}H^{ m l},$ Дж/моль	$-\Delta_{ m neut}H$, Дж/моль	$\Delta_{ m dis} H(m HL^{\pm}),$ Дж/моль
0.25	0.5005	18003	7896	10154	47165 ± 340
	0.4991	18120	7832	10145	
	0.5003	17899	7796	10200	
		(18007 ± 260)	(7841 ± 150)	(10166 ± 260)	
0.5	0.5002	14500	5804	8684	48269 ± 300
	0.4993	14460	5771	8659	
	0.4998	14529	5815	8756	
		(14496 ± 210)	(5797 ± 150)	(8699 ± 220)	
0.75	0.57003	11081	3256	7849	48920 ± 310
	0.5000	10958	3225	7835	
	0.4997	11001	3143	7822	
		(11013 ± 200)	(3174 ± 120)	(7839 ± 220)	

Таблица 2. Тепловые эффекты (Дж/моль) взаимодействия раствора β-аминомасляной кислоты с 0.02 М растворами КОН при *T* = 298.15 К

Примечание. В скобках приведены средние значения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Тепловой эффект диссоциации частицы H_2L^+ ($\Delta_{dis}H^+_{H,L}$) рассчитывали по уравнению:

$$\Delta_{\rm dis}H^+_{\rm H,L} = -(\Delta_{\rm mix}H - \Delta_{\rm dil}H)/\alpha_1, \tag{4}$$

где $\Delta_{\rm mix}H$ – теплота взаимодействия 0.1 М раствора HNO₃ с раствором β-аминомасляной кислоты, $\Delta_{\rm dil}H$ – теплота разведения раствора минеральной кислоты в растворе фонового электролита, α_1 – полнота протекания реакции протонирования частицы HL[±] ($\alpha = 0.83$). Результаты расчетов представлены в табл. 1.

Процесс нейтрализации водного раствора β-аминомасляной кислоты можно представить уравнением:

$$HL^{\pm} + OH^{-} \leftrightarrow L^{-} + H_2O.$$
 (5)

Тепловой эффект диссоциации бетаинового протона β -аминомасляной кислоты ($\Delta_{dis} H_{HL}^{\pm}$) рассчитывали по уравнению:

$$\Delta_{\text{neut}} H = (\Delta_{\text{mix}} H^1 - \Delta_{\text{dil}} H^1) / \alpha_2$$
 (6)

$$\Delta_{\rm dis} H_{HL}^{\pm} = \Delta_{\rm neut} H - \Delta H_w, \tag{7}$$

где $\Delta_{\text{mix}}H^1$ — тепловой эффект смешения раствора аминокислоты с раствором КОН; $\Delta_{\text{dil}}H^1$ — тепловой эффект разведения раствора аминокислоты в растворе фонового электролита; α_2 — полнота протекания процесса (5) 0.999; $\Delta H_{\rm w}$ — теплота нейтрализации сильной кислоты сильным основанием на фоне поддерживающего электролита.

Величина ΔH_w была взята из работы [11] для фонового электролита, использовавшегося в нашей работе. Найденные тепловые эффекты диссоциации аминокислоты приведены в табл. 2.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 2 2020

Погрешность определена как стандартное отклонение средней величины из трех—четырех параллельных опытов.

Тепловые эффекты диссоциации β-аминомасляной кислоты в стандартном растворе найдены экстраполяцией теплот ступенчатой диссоциации при фиксированных значениях ионной силы на нулевую ионную силу по уравнению, предложенному в [6]:

$$\Delta_r H_i - \Delta z^2 \Psi(I) = \Delta_r H_i^0 + bI, \qquad (8)$$

где $\Delta_{\rm r} H_i$, $\Delta_{\rm r} H_i^0$ – изменение энтальпии при конечном значении ионной силы и при I = 0, соответственно, $\Psi(I)$ – функция ионной силы, вычисленная теоретически, Δz^2 – разность квадратов зарядов продуктов реакции и исходных компонентов, b – эмпирический коэффициент.

Точки в координатах ($\Delta H - \Delta Z^2 \Psi(I)$ от *I*), удовлетворительно укладывались на прямую. При обработке по МНК получили энтальпии диссоциации β-аминомасляной кислоты при нулевой ионной силе: $\Delta_{dis}H(H_2L^{\pm}) = -1.56 \pm 0.20$ кДж/моль и $\Delta_{dis}H(HL^{\pm}) = 46.99 \pm 0.30$ кДж/моль.

Стандартные термодинамические характеристики процессов ступенчатой диссоциации βаминомасляной кислоты представлены в табл. 3.

Для анализа данных по термодинамике реакций кислотно-основного взаимодействия и комплексообразования с биолигандами оказывается полезным подход, основанный на представлениях Герни, подробно описанный в работе [12]. Изменение энтальпии можно представить в виде суммы температрно-зависимого ($\Delta_r H_3$) и температурно-независимого ($\Delta_r H_{H3}$) слагаемых

$$\Delta_r H = \Delta_r H_3 + \Delta_r H_{\rm H3}.\tag{9}$$

Процесс	р <i>К</i> ⁰	$\Delta_{\rm r} H^0$,	$\Delta_{\rm r}G^0$,	A	$-\Delta_{ m r} H_3^0$	$\Delta_{ m r} H_{ m { m H3}}^0$	∆ _г S ⁰ , Дж/(мольК)
$H_2L^+ = HL^{\pm} + H^+$	3.53 ± 0.03	-1.56 ± 0.20	20.15 ± 0.35	1301	12.88	11.32	-72.8 ± 1.1
$HL^{\pm} = L^- + H^+$	10.11 ± 0.05	46.99 ± 0.30	57.71 ± 0.35	943	2.52	49.51	-35.9 ± 1.4

Таблица 3. Стандартные термодинамические характеристики (кДж/моль) кислотной диссоциации β-аминомасляной кислоты (*T* = 298.15 K)

В работе [12] было предложено разделить протоноакцепторные частицы на две группы в зависимости от величины вклада $|\Delta_r H_{\rm H3}| = |\Delta_r G_{\rm H3}|$. Первая группа характеризуется высоким значением данного вклада. Сюда относятся все частицы, содержащие аминогруппу. Численные значения вклада $|\Delta_r H_{\rm H3}| = |\Delta_r G_{\rm H3}|$ при протонировании частиц этого типа составляют, как правило 30– 40 кДж/моль и больше. Эту группу называют неэлектростатической. Значение зависящего от температуры вклада при протонировании частиц этого типа невелико.

У частиц второй группы, протонирование которых происходит через кислород, величина независящего от температуры вклада много меньше и лишь в редких случаях превышает 12 кДж/моль. Примерно ту же величину составляет у частиц этой группы и зависящий от температуры вклад $\Delta_r H_3$.

В нашем случае молекула аминокислоты содержит обе эти функциональные группы; протонирование R-NH₂ происходит очевидно, как у частиц первой группы ($\Delta_r H_{\rm H3}$ для β-аминомасляной кислоты составляет 49.51 кДж/моль), а протонирование кислород содержащего фрагмента — как у частиц второй группы ($\Delta_r H_{\rm H3}$ для β-аминомасляной кислоты равняется 11.32 кДж/моль) (табл. 3).

В литературе имеются данные по термодинамическим характеристикам 2-аминомасляной кислоты и 4-аминомасляной кислоты [13, 14]. Аминогруппа 3-аминомасляная кислоты проявляет более сильные основные свойства (более высокое значение р $K_2^{\circ} = 10.11$), чем аминогруппа 2-аминомасляная кислота (р $K_2^{\circ} = 9.18$) и менее сильные чем аминогруппа 4-аминомасляная кислота (р $K_2^{\circ} = 10.48$). Единичный отрицательный заряд карбоксильной группы, приводит к повышению электронной плотности на аминогруппе и электростатическое притяжение (эффект поля) между аммоний-катионом и карбоксилат-анионом затрудняет отрыв протона от аммонийной группы. При переходе от 2-аминомасляная кислоты к 4-аминомасляная кислоте ослабевает действие индукционного эффекта, так как аминогруппа отделена от карбоксильной группы большим количеством углеродных атомов. Ослабление действия индукционного эффекта ведет к ослаблению азот-водордной связи и, как следствие, заряженные амино группы 4-аминомасляная кислоты могут связывать больше воды, чем NH_3^+ -группа в 2-аминомасляная кислоте. Это проявляется, в частности в том, что $|\Delta S_1^0|$ при диссоциации 4-аминомасляная кислота больше по абсолютной величине, чем $|\Delta S_1^0|$ при диссоциации 2-аминомасляная кислота и 3-аминомасляная кислоты.

Работа выполнена в рамках НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть), проект № 4.7104.2017/89 с использованием оборудования Центра коллективного пользования ИГХТУ (ЦКП ИГХТУ).

СПИСОК ЛИТЕРТУРЫ

- 1. Sharma V., Mathur H., Kilarni P. et al. // Indian J. Chem. 1965. V. 3. P. 475.
- Letter J., Bauman J. // J. Am. Chem. Soc. 1970. V. 92. № 3. P. 437.
- Sostaric I., Simeom V. // Monatsh. Chem. 1975. V. 106. P. 169.
- 4. Bottari E. // Ann. Chim. (Rome). 1976. V. 66. P. 193.
- 5. Brandariz I., Fiol S., Sastre de Vicente M. // J. Chem. Eng. Data. 1993. V. 38. № 4. P. 531.
- 6. Васильев В.П. Термодинамические свойства растворов электролитов, М.: Высш. школа, 1982. 313 с.
- Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
- Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Thermal Analysis and Calorimetry. 2017. V. 130 (1). P. 457.
- Parcker W.B. Thermal Properties of Aqueous Uni-Univalent Electrolytes.Washington: NSRDS-NBS, 1965. B. 2. P. 342.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ, М.: Изд-во АН СССР, 1962. С. 398.
- 11. Лобанов Г.А., Васильев В.П. // Изв. вузов. Химия и хим. технология. 1969. Т. 12. № 6. С. 740.
- Васильев В.П. // Журн. неорган. химии. 1984. Т. 29. № 11. С. 2785.
- Lin H.-K., Gu Z.-Z., Chen X.-M. // Thermochim. Acta. 1988. V. 123. P. 201.
- Лыткин А.И., Крутова О.Н., Черников В.В. и др. // Журн. физ. химии. 2017. Том 91. № 1. С. 5.