_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.8

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ СИСТЕМ, СОДЕРЖАЩИХ АЛКАНЫ И ЦИКЛОДОДЕКАН

© 2020 г. А. А. Шамитов^{а,*}, И. К. Гаркушин^а, А. В. Колядо^а

^а Самарский государственный технический университет, Самара, Россия *e-mail: Sansher@mail.ru Поступила в редакцию 06.04.2019 г. После доработки 04.06.2019 г. Принята к публикации 09.07.2019 г.

Трехкомпонентные системы с участием циклододекана и *н*-алканов исследованы методом дифференциального термического анализа (ДТА) на установке дифференциального сканирующего микрокалориметра (ДСК). Сделан вывод, что экспериментально исследованные 13 трехкомпонентных систем ряда $h-C_nH_{2n+2}-C_{12}H_{24}-h-C_mH_{2m+2}$ (n, m = 2k, k = 5, ..., 12), характеризуются образованием тройных эвтектик, большинство систем удовлетворительно согласуются с ранее предложенными и разработанными методами по прогнозированию систем.

Ключевые слова: н-алкан, циклододекан, теплоноситель, трехкомпонентная система **DOI:** 10.31857/S0044453720030279

В настоящее время актуальна разработка новых алгоритмов и методов моделирования фазовой диаграммы, а также ее отдельных элементов, отвечающих моновариантным и нонвариантным равновесиям в системе [1-11]. Современный подход к разработке новых составов для тепловых аккумуляторов невозможно представить без исследования фазовых равновесий в многокомпонентной системе. Для этого необходимо подобрать теплоаккумулирующий материал, обладающий работоспособностью в определенном узком диапазоне температур. Для тепловых аккумуляторов в качестве рабочего тела могут служить сплавы эвтектического состава в трехкомпонентных системах на основе углеводородов циклического строения и алканов нормального строения. Другое направление промышленного использования инвариантных составов на основе углеводородов (в том числе и циклододекана), состоящих из двух-, трех- и более компонентов, - создание теплоносителей с низким давлением насышенных паров компонентов и температурой вспышки в закрытом тигле более 61°С [12-16].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В качестве объектов исследования для поиска новых теплоносителей выбраны системы ряда *н*- $C_nH_{2n+2}-C_{12}H_{24}-\mu-C_mH_{2m+2}$ (*n*, *m* = 2*k*, *k* = 5, ..., 12). Предварительный расчет фазовых диаграмм двух- и трехкомпонентных систем осуществлялся с использованием уравнения Вильсона, в котором с целью уменьшения отклонения расчетных данных от эксперимента дополнительно в систему уравнений были введены коэффициенты активности компонентов. Основная идея ее состоит в том, что вследствие различия в межмолекулярных взаимодействиях локальный состав вблизи конкретной молекулы в растворе будет отличаться от состава жидкости. Для бинарной пары два параметра (Λ_{ij} , Λ_{ji}) связаны со степенью, в которой каждая молекула влияет на состав своего локального окружения [17]. Зависимость коэффициентов активности определяется в системах по уравнениям:

$$\ln \gamma_i = \frac{\Delta_m H_i}{R} \left(\frac{1}{T_i} - \frac{1}{T_e} \right) - \ln x_i, \tag{1}$$

$$\ln \gamma_{i} = -\ln(x_{i} + \Lambda_{ij}x_{j}) + x_{j} \left(\frac{\Lambda_{ij}}{x_{i} + \Lambda_{ij}x_{j}} - \frac{\Lambda_{ji}}{x_{j} + \Lambda_{ji}x_{i}} \right),$$
(2)

где T_e — температура плавления эвтектики в трехкомпонентной системе, К; T_i — температура плавления компонента в системе, К; x_i — мольная доля компонента *i* в сплаве эвтектического состава двухкомпонентной системы; $\Delta_m H_i$ — энтальпия плавления компонента *i*, Дж/моль; R — универсальная газовая постоянная, равная 8.314 Дж/(моль K).

Параметры взаимодействия Λ_{12} , Λ_{21} (табл. 1) определяли по данным о взаимной растворимо-

1	2	Λ_{12}	Λ_{21}	1	2	Λ_{12}	Λ_{21}
<i>н</i> -С ₁₀ Н ₂₂	$H-C_{20}H_{42}$	3.4475	0.0027	<i>н</i> -С ₁₆ Н ₃₄	<i>н</i> -С ₂₂ Н ₄₆	3.4475	0.0027
$H-C_{10}H_{22}$	$H-C_{22}H_{46}$	3.4475	0.0027	$H-C_{16}H_{34}$	$H-C_{24}H_{50}$	3.4475	0.0027
$H-C_{12}H_{26}$	$H-C_{18}H_{38}$	3.4475	0.0027	$H-C_{14}H_{30}$	$C_{12}H_{24}$	0.3522	0.3991
$H-C_{12}H_{26}$	$H-C_{20}H_{42}$	3.4475	0.0027	$H-C_{20}H_{42}$	$C_{12}H_{24}$	0.8311	0.2455
$H-C_{12}H_{26}$	$H-C_{22}H_{46}$	3.4475	0.0027	$H-C_{22}H_{46}$	$C_{12}H_{24}$	1.1065	0.2087
$H-C_{14}H_{30}$	$H-C_{20}H_{42}$	3.4475	0.0027	$H-C_{24}H_{50}$	$C_{12}H_{24}$	1.4731	0.1775
$H-C_{14}H_{30}$	$H-C_{22}H_{46}$	3.4475	0.0027				
$H-C_{14}H_{30}$	μ -C ₂₄ H ₅₀	3.4475	0.0027				

Таблица 1. Расчетные значения параметров взаимодействия $\Lambda_{12}, \Lambda_{21}$ (первого со вторым и второго с первым) для компонентов 1 и 2 эвтектик двойных систем

сти компонентов путем решения системы, составленной из системы уравнений (1)–(2):

$$\begin{vmatrix} \frac{\Delta_m H_1}{R} \left(\frac{1}{T_1} - \frac{1}{T_e} \right) - \ln x_1 = -\ln(x_1 + \Lambda_{12}x_2) + \\ + x_2 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right), \\ \frac{\Delta_m H_2}{R} \left(\frac{1}{T_2} - \frac{1}{T_e} \right) - \ln x_2 = -\ln(x_2 + \Lambda_{21}x_1) + \\ + x_1 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1} \right). \end{aligned}$$
(3)

Как видно из табл. 1, в системах из двух алканов, коэффициенты одинаковы. Для систем *н*-алкан — циклододекан значение Λ_{12} *н*-алкана увеличивается, а величина Λ_{21} циклододекана снижается.

Для трехкомпонентной системы расчетные уравнения примут вид:

$$\ln \gamma_i = 1 - \ln[x_i + x_j \Lambda_{ij} + x_k \Lambda_{ik}] - \frac{x_i}{x_i + x_i \Lambda_{ii} + x_k \Lambda_{ik}} -$$
(4)

$$-\frac{x_{j}\Lambda_{ji}}{x_{i}\Lambda_{ji}+x_{j}+x_{k}\Lambda_{jk}}-\frac{x_{k}\Lambda_{ki}}{x_{i}\Lambda_{ki}+x_{j}\Lambda_{kj}+x_{k}},$$
$$T = \left[\frac{1}{T_{i}}-\frac{R}{\Delta_{m}H_{i}}(\ln x_{i}+\ln \gamma_{i})\right]^{-1}.$$
(5)

Состав эвтектики в трехкомпонентной системе определяется путем решения системы уравнений:

$$\begin{cases} T = \left[\frac{1}{T_i} - \frac{R}{\Delta_m H_i} (\ln x_i + \ln \gamma_i)\right]^{-1}, \\ T = \left[\frac{1}{T_j} - \frac{R}{\Delta_m H_j} (\ln x_j + \ln \gamma_j)\right]^{-1}, \\ T = \left[\frac{1}{T_k} - \frac{R}{\Delta_m H_k} (\ln x_k + \ln \gamma_k)\right]^{-1}, \\ x_i + x_j + x_k = 1. \end{cases}$$
(6)

С использованием приведенны выше формул были рассчитаны фазовые диаграммы по уравнению Вильсона для двух- и трехкомпонентных систем на основе *н*-алканов с четным числом атомов углерода в основной цепи с общей формулой $h-C_nH_{2n+2}$, где n = 10, ..., 24 и циклододеканом.

Данные по температурам и энтальпиям плавления индивидуальных компонентов взяты из литературы [18]. Исходя из элементов огранения эвтектических двухкомпонентных систем, можно заключить, что системы ряда H- C_nH_{2n+2} - $C_{12}H_{24}$ -H- C_mH_{2m+2} (n, m = 2k, k = 5, ..., 12), относятся к системам эвтектического типа. Расчет по уравнению Вильсона позволил определить температуры плавления и составы тройных эвтектик E, которые приведены в табл. 2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные исследования фазовых превращений в системах ряда $H - C_n H_{2n+2} - C_{12} H_{24} - C_{12} H_{24}$ $H-C_mH_{2m+2}$ (*n*, *m* = 2*k*, *k* = 5, ..., 12) [19] проводили на установке дифференциального термического анализа. Основным инструментальным методом исследования служил дифференциальный сканирующий микрокалориметр (ДСК-500С), на котором снимали кривые нагревания и охлаждения образцов [19]. Съемку кривых нагрева (охлаждения) проводили 3 раза. Скорость нагрева 4 К/мин обеспечивала четкое разделение пиков для образцов с массой навески 15-20 мг. Хладагент - твердый СО₂. Для исследований использовали вещества заволского изготовления квалификаций "ч". "х.ч." и "ч.д.а." Составы готовили взвешиванием на аналитических весах CAS марки CAUW 120D специального класса точности по ГОСТ Р 53228-2008. масса приготовленных смесей составляла от 1.0 до 8.0 г, точность взвешивания ± 0.0001 г. Составы всех смесей на диаграммах, исследованных экспериментально, выражены в мас. %, температура – в °C.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 3 2020

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ

Системо	Содержа	ние компоненто	тк	Истонник	
Система	1	2	3	т _{пл} , к	источник
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{16}H_{34}$	84.2	11.6	4.2	241.5	[23]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{18}H_{38}$	86.7	13.1	0.2	241.5	[25]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{20}H_{42}$	87.0	12.9	0.1	241.6	[21]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{22}H_{46}$	86.8	13.1	0.1	241.6	[22]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{16}H_{34}$	69.9	19.1	11.0	259.8	[24]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{18}H_{38}$	82.0	16.8	1.2	261.0	[29]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{20}H_{42}$	79.6	17.4	3.0	261.0	*
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{22}H_{46}$	75.5	18.5	6.0	261.0	[30]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{20}H_{42}$	65.4	24.2	10.4	274.0	[28]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{22}H_{46}$	61.6	24.4	14.0	274.4	[27]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{24}H_{50}$	75.9	21.9	2.2	276.1	[26]
$H - C_{16}H_{34} - C_{12}H_{24} - H - C_{22}H_{46}$	46.5	32.8	20.7	283.9	*
${}^{_{\!$	61.9	32.4	5.6	287.1	*

Таблица 2. Характеристики сплава эвтектического состава, рассчитанные с использованием уравнения Вильсона

Примечание. Нумерация компонентов системы соответствует порядку, в котором указаны компоненты в графе "Система", * наши данные.

С учетом координат эвтектик двойных систем, системы ряда $h-C_nH_{2n+2}-C_{12}H_{24}-h-C_mH_{2m+2}$ (*n*, m = 2k, k = 5, ..., 12), относятся к системам эвтектического типа.

Системы исследовались проекционно-термографическим методом (ПТГМ) [20]. Согласно правилам ПТГМ для исследования каждой системы был выбран политермический разрез $A [\% H - C_n H_{2n+2} - \% C_{12} H_{24}] - B [\% H - C_m H_{2m+2} - \%$ С₁₂Н₂₄], расположенный в поле кристаллизации циклододекана [21, 22]. Из Т-х-диаграммы политермического разреза АВ определено соотношение алканов в эвтектике, точка \overline{E} на разрезе AB и температура плавления тройной эвтектики Е [23]. Исследование политермического разреза $C_{12}H_{24} \rightarrow$ $\rightarrow \overline{E} \rightarrow E$, исходящего из циклододекана и проходящего через найденное направление \overline{E} на эвтектику Е, позволило определить ее состав. Данные по всем системам представлены в табл. 3. На фазовом комплексе систем *н*-C_nH_{2n+2}- C₁₂H₂₄-*н*- $C_m H_{2m+2}$ (*n*, *m* = 2*k*, *k* = 5, ..., 12), расположены три поля кристаллизации: $H-C_nH_{2n+2}$, $H-C_mH_{2m+2}$ и циклододекана [24, 25].

На рис. 1 и 2 представлены проекции некоторых фазовых комплексов системы $H-C_nH_{2n+2}-C_{12}H_{24}-H-C_mH_{2m+2}$ (*n*, *m* = 2*k*, *k* = 5, ..., 12) с данными по элементам огранения.

Полученные данные в процессе эксперимента по температурам плавления и составам двойных и тройных эвтектик позволяют определить коэффициенты активности компонентов в эвтектиках по уравнению:

$$\ln \gamma_i = \frac{\Delta_m H_i}{R} \left(\frac{1}{T_i} - \frac{1}{T_e} \right) - \ln x_i, \tag{7}$$

где T_e — температура плавления двойной (тройной) эвтектики, K; T_i — температура плавления компонента в системе, K; x_i — мольная доля компонента *i* в сплаве двойного (тройного) эвтекти-

Рис. 1. Фазовый комплекс системы $H-C_{10}H_{22}-H-C_{16}H_{34}-C_{12}H_{24}$

Система	x_1	<i>x</i> ₂	x_3	<i>Т</i> _e , К	Источник
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{16}H_{34}$	85.0	11.0	4.0	238.2	[23]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{18}H_{38}$	84.5	10.0	5.5	238.2	[25]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{20}H_{42}$	89.2	8.0	2.8	239.4	[21]
$H - C_{10}H_{22} - C_{12}H_{24} - H - C_{22}H_{46}$	86.5	10.0	3.5	239.7	[22]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{16}H_{34}$	73.0	18.0	9.0	255.5	[24]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{18}H_{38}$	80.0	19.0	1.0	256.6	[29]
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{20}H_{42}$	83.0	14.0	3.0	256.8	*
$H - C_{12}H_{26} - C_{12}H_{24} - H - C_{22}H_{46}$	82.0	15.0	3.0	257.0	[30]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{20}H_{42}$	68.0	29.7	2.3	270.3	[28]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{22}H_{46}$	65.0	33.8	1.2	270.9	[27]
$H - C_{14}H_{30} - C_{12}H_{24} - H - C_{24}H_{50}$	65.0	33.0	2.0	274.0	[26]
$H - C_{16}H_{34} - C_{12}H_{24} - H - C_{22}H_{46}$	65.0	28.5	6.5	280.5	*
$H - C_{16}H_{34} - C_{12}H_{24} - H - C_{24}H_{50}$	62.0	34.0	4.0	280.6	*

Таблица 3. Температуры плавления (T_e) и составы эвтектических сплавов (x_i , мас. %), выявленных экспериментальным методом

Примечание. Нумерация компонентов системы соответствует порядку, в котором указаны компоненты в графе "Система", * наши данные.

Таблица 4. Данные по коэффициентам активности компонентов 1-3 в сплавах эвтектических составов

1	2	3	<i>T_e</i> , K	γ_1	γ_2	γ ₃
<i>н</i> -С ₁₄ Н ₃₀	$C_{12}H_{24}$	—	275.7	0.06	1.19	
$H-C_{20}H_{42}$	$C_{12}H_{24}$	—	303.2	0.001	1.27	
<i>н</i> -С ₂₂ Н ₄₆	$C_{12}H_{24}$	—	305.1	0.004	1.11	
$H-C_{24}H_{50}$	$C_{12}H_{24}$	—	310.2	0.00003	1.18	
$H-C_{10}H_{22}$	$H-C_{20}H_{42}$	$C_{12}H_{24}$	239.4	0.86	0.01	3.62
$H-C_{10}H_{22}$	$H-C_{22}H_{46}$	$C_{12}H_{24}$	239.7	0.90	0.03	2.94
$H-C_{12}H_{26}$	$H-C_{18}H_{38}$	$C_{12}H_{24}$	256.6	0.21	0.10	1.75
$H-C_{12}H_{26}$	$H-C_{20}H_{42}$	$C_{12}H_{24}$	256.8	0.21	0.02	2.42
$H-C_{12}H_{26}$	$H-C_{22}H_{46}$	$C_{12}H_{24}$	257.0	0.21	0.04	2.27
$H-C_{14}H_{30}$	$H-C_{20}H_{42}$	$C_{12}H_{24}$	270.3	0.05	0.02	1.26
$H-C_{14}H_{30}$	$H-C_{22}H_{46}$	$C_{12}H_{24}$	270.9	0.06	0.11	1.10
$H-C_{14}H_{30}$	$H-C_{24}H_{50}$	$C_{12}H_{24}$	274.0	0.06	0.0004	1.13
$H-C_{16}H_{34}$	$H-C_{22}H_{46}$	$C_{12}H_{24}$	280.5	0.01	0.02	1.48
$H-C_{16}H_{34}$	μ -C ₂₄ H ₅₀	$C_{12}H_{24}$	280.6	0.01	0.0002	1.21

ческого состава; $\Delta_m H_i$ — энтальпия плавления компонента *i*, Дж/моль.

Результаты расчета по коэффициентам активности трехкомпонентной системы приведены в табл. 4.

Как видно из табл. 4, коэффициенты активности отличается от 1. Следовательно, системы не являются идеальными. Таким образом, системы $h-C_nH_{2n+2}-C_{12}H_{24}$ $h-C_mH_{2m+2}$ (n, m = 2k, k = 5, ..., 12) относятся к системам эвтектического типа. Сплавы эвтектических составов могут быть использованы в качестве рабочего тела низкотемпературных аккумуляторов тепла или в качестве среднетемпературных теплоносителей в гелиоэнергетических установках с температурой эксплуатации от 5 до 240°C. Все рас-

Рис. 2. Фазовый комплекс системы $H-C_{14}H_{30}-H-C_{24}H_{50}-C_{12}H_{24}$.

сматриваемые системы имеют отклонение от идеальности, поэтому необходимо учитывать коэффициент активности компонентов системы при расчете параметров эвтектики.

СПИСОК ЛИТЕРАТУРЫ

- Ten Y.S., Rangaiah G.P. // Chem. Eng. Res. and Design. 2002. V. 80. Part A. P. 745.
- Goff M.J., Suppes G.J., Dasari M.A. // Fluid Phase Equilib. 2005. V. 238. P. 149.
- 3. Allal F., Dahmani A. // Ibid. 2001. V. 190. P. 33.
- Abildskov J., Gani R., Rasmussen P., O'Connell J.P. // Ibid.2001. V. 181. P. 163.
- Kuramochi H., Maeda K., Kato S. et al. // Fuel. 2009. V. 88. P. 1472.
- Domanska U., Gloskowska M. // Fluid Phase Equilib. 2004. V. 216. P. 135.
- 7. Santiago R.S., Aznar M. // Ibid. 2011. V. 303. P. 111.
- Espada J.J., Coto B., Pena J.L. // Ibid. 2007. V. 259. P. 201.
- 9. Nebig S., Gmehling J. // Ibid. 2010. V. 294. P. 206.
- Гаркушин И.К., Агафонов И.А., Копнина А.Ю., Калинина И.П. Фазовые равновесия с участием н-алканов, циклоалканов и аренов. Екатеринбург: УрО РАН, 2006. 127с. ISBN 5-7691-1697-8.

- Копнина А.Ю., Агафонов И.А., Гаркушин И.К. // Изв. вузов. Химия и хим. технология. 2001. Т. 44. Вып. 5. С. 84.
- Котельников Е.Н., Филатов С.К. Кристаллохимия парафинов // СПб.: Изд-во "Журнал Нева". 2002. 352 с.
- Гаркушин И.К., Люстрицкая Д.В., Мощенский Ю.В. Теплоаккумулирующий состав / Пат. РФ 2357995. 2009.
- Данилин В.Н., Железняк А.В., Марцинковский А.В., Долесов А.Г., Доценко С.П. Фазопереходный теплоаккумулирующий состав / Пат. РФ 2282652. 2006.
- Гаркушин И.К., Калинина И.П., Копнина А.Ю. Теплоаккумулирующее вещество / Пат. РФ 2280668. 2006.
- Гаркушин И.К., Калинина И.П., Копнина А.Ю. Теплоноситель / Пат. РФ 2243249. 2004.
- 17. *Рид Р., Шервуд Т.* Свойства газов и жидкостей. Л.: Химия, 1971. 704 с.
- Татевский В.М. Физико-химические свойства углеводородов. М.: Гостоптехиздат, 1960. 412 с.
- 19. *Мощенский Ю.В.* Микрокалориметр ДСК: Метод. указ. к лаб. работе. Самара: Самар. гос. техн. ун-т, 2004. 19 с.
- Космынин А.С., Трунин А.С. // Тр. Самарской научной школы по физ.-хим. анализу многокомпонентных систем. Т. 9. Самара: Самар. гос. техн. ун-т, 2006. 183 с.
- 21. Гаркушин И.К., Колядо А.В., Шамитов А.А. // Журн. физ. химии. 2016. Т. 90. № 5. С. 815.
- 22. Шамитов А.А., Гаркушин И.К., Колядо А.В. // Там же. 2016. Т. 90. № 7. С. 1124.
- 23. Шамитов А.А., Гаркушин И.К., Колядо А.В., Петров Е.П. // Там же. 2018. Т. 92. № 2. С. 282.
- 24. Шамитов А.А., Гаркушин И.К., Колядо А.В., Петров Е.П. // Там же. 2018. Т. 92. № 3. С. 370.
- 25. Шамитов А.А., Гаркушин И.К., Колядо А.В., Петров Е.П. // Там же. 2018. Т. 92. № 9. С. 1421.
- 26. Шамитов А.А., Колядо А.В., Гаркушин И.К. // Там же. 2015. Т. 89. № 10. С. 1598.
- Шамитов А.А., Колядо А.В., Гаркушин И.К., Журавлев И.А. // Башкирский хим. журн. 2015. Т. 22. № 4. С. 3.
- Шамитов А.А., Колядо А.В., Гаркушин И.К., Журавлев И.А. Использование метода // Вестн. СамГ-ТУ. Сер. Техн. науки. 2015. № 1 (45). С. 189.
- Шамитов А.А., Колядо А.В., Гаркушин И.К. // Теоретическая и экспериментальная химия жидкофазных систем. Крестовские чтения. 2015. С. 39.
- Шамитов А.А., Колядо А.В., Гаркушин И.К. // Матер. IV Межд. конф. "Возобновляемая энергетика: проблемы и переспективы". Махачкала, 2015. Т. 2. С. 342.