— ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 543.544.08

ВЛИЯНИЕ ПРИРОДЫ ГАЗА-НОСИТЕЛЯ НА ХАРАКТЕРИСТИКИ УДЕРЖИВАНИЯ СОРБАТОВ

© 2020 г. В. Е. Ширяева^{*a*}, Т. П. Попова^{*a*}, А. Ю. Канатьева^{*a*}, А. А. Королев^{*a*}, А. А. Курганов^{*a*,*}

^а Российская академия наук, Федеральное государственное бюджетное учреждение науки Институт нефтехимического синтеза им. А.В. Топчиева, 119991 Москва, Россия

*e-mail: kurganov@ips.ac.ru Поступила в редакцию 16.04.2019 г. После доработки 14.05.2019 г. Принята к публикации 07.08.2019 г.

Проверена возможность определения фазового соотношения хроматографической колонки хроматографическим методом исходя из полуэмпирической зависимости времени удерживания гомологов от числа атомов углерода в его структуре. Рассмотрено влияние природы и давления газа-носителя на величину фазового отношения. Показано, что независимо от природы газа-носителя среднее значение для полярной фазы составляет 1190 \pm 100, а для неполярной фазы 380 \pm 50 за исключением газа-носителя СО₂, для которого, после проведения коррекции исходных данных, наблюдалось сильное уменьшение величины фазового отношения β . В то же время отмечено, что хроматографически находимые значения фазового соотношения сильно отличаются от величин, сообщаемых производителями колонок, тогда как мертвое время системы $t_{\rm M}$ и значение энергии сорбции метиленового звена гомологического ряда $\Delta G_{\rm CH_2}$ надежно определяются экстраполяционным методом.

Ключевые слова: газовая хроматография, мертвое время, фазовое отношение **DOI:** 10.31857/S0044453720030292

Применение газовой хроматографии для определения физико-химических характеристик аналитов неизбежно связано с определением таких характеристик хроматографической системы как мертвое время системы $t_{\rm M}$ и фазовое соотношение β , необходимых для расчета чистого времени удерживания $t_{\rm R}^{\circ}$, исправленного объема удерживания $V_{\rm R}^{\circ}$, фактора удерживания k и т.д. При определении термодинамических параметров сорбции — энтальпии ΔH и энтропии ΔS сорбции, мертвое время системы $t_{\rm M}$ обычно определяют по времени выхода "несорбируемого" соединения, например, метана ($t_{\rm M}^{\rm CH_4}$) или легких инертных газов [1, 2]. В то же время, при построении теоретических моделей для предсказания времен удерживания при программировании температуры и/или давления в капиллярной газовой хромато-

графии широко используется мертвое время $t_{\rm M}^{\rm th}$, находимое из уравнения Пуазейля—Дарси, адаптированного для сжимаемого флюида [3, 4]:

$$t_M^{\rm th} = \frac{4}{3} \frac{L^2 \eta}{K_V} \frac{(P^3 - 1)}{(P^2 - 1)^2 p_{\rm o}},\tag{1}$$

где *L* – длина колонки, *P* – относительное давление, равное отношению входного давления на ко-

лонке p_i к выходному давлению p_o , $K_V = d_c^2/32$ – проницаемость капиллярной колонки (d_c – внутренний диаметр колонки), η – вязкость газа-носителя.

Альтернативный метод нахождения мертвого времени газохроматографической системы заключается в использовании известной полуэмпирической линейной корреляции логарифма чистого времени удерживания гомологов алканов с числом атомов углерода *n* в их структуре [1, 2, 5]:

$$\ln(t_{\rm R} - t_{\rm M}) = a + bn. \tag{2}$$

С термодинамической точки зрения, более обосновано использовать в корреляции (2) не чистое время удерживания сорбата, а фактор удерживания $k = (t_{\rm R} - t_{\rm M})/t_{\rm M}$. В этом случае коэффициенты *a* и *b* приобретают смысл энергии сорбции нулевого члена гомологического ряда ($a = \Delta G_{\rm o}$) и энергии сорбции метиленового звена ($b = \Delta G_{\rm CH_2}$):

$$-RT\ln k\beta = -RT\ln \frac{t_{\rm R} - t_{\rm M}}{t_{\rm M}}\beta = \Delta G_{\rm o} + n * \Delta G_{\rm CH_2}.$$
 (3)

Комбинируя уравнение (3) с известным термодинамическим соотношением $\Delta G = -RT \ln K =$ $= -RT \ln k\beta = \Delta H - T\Delta S$, авторы [6] получили вы-

ШИРЯЕВА и др.

Номер	Производитель	Обозначение	Тип стационарной фазы	<i>L</i> , м	<i>d</i> , мм	<i>l</i> , мкм
1	Phenomenex	ZB-1	100% ПДМС	30.0	0.25	0.25
2	J&W Scientific	DB-WAX	100% ПЭГ	30.0	0.25	0.25
3	J&W Scientific	DB-WAX	100% ПЭГ	30.0	0.25	0.25
4	Chrompack	CP-Sil 8CB	5% фенил-силоксана в ПДМС	30.0	0.25	0.5
5	GL Science	TC-1	100% ПДМС	30.0	0.25	1.0
6	Chrompack	CP-Sil 8CB	5% фенил-силоксана в ПДМС	25.0	0.15	2.0

Таблица 1. Свойства колонок, использованных для экспериментов

Обозначения: *L* – длина, *d* – диаметр, *l* – толщина пленки, ПДМС – полидиметилсилоксан, ПЭГ – полиэтиленгликоль.

ражение позволявшее описать зависимость фактора удерживания гомологов k не только от числа атомов углерода, но и от температуры:

$$\ln k = a + b * n + \frac{c}{T} + \frac{d * n}{T},$$
(4)

где

$$a = \frac{\Delta S_{o}}{R} - \ln \beta \quad b = \frac{\Delta S_{CH_{2}}}{R},$$

$$c = -\frac{\Delta H_{o}}{R}, \quad d = -\frac{\Delta H_{CH_{2}}}{R}.$$
(5)

Если измерения проводятся при постоянной температуре, то уравнение (4) превращается в уравнение (3):

$$\ln k = a_1 + b_1 n, \tag{6}$$

где

$$a_1 = a + c/T$$
 и $b_1 = b + d/T$. (7)

Таким образом, измерив зависимость удерживания гомологов при нескольких температурах и построив соответствующие линейные корреляции (уравнения (6) и (7)), можно определить все коэффициенты уравнения (4) и, соответственно, рассчитать мертвое время системы. Правда, для построения зависимостей мертвое время должно быть известно заранее и его обычно определяют, как время удерживания "неудерживаемого" сорбата (т.н. первичное мертвое время), которое потом уточняется по уравнению 4 (вторичное мертвое время) [7, 8].

Однако методы современной нелинейной аппроксимации позволяют обходиться без знания первичного мертвого времени и позволяют находить не только мертвое время системы t_M , но и фазовое соотношение колонки β , равное отношению объема подвижной фазы в колонке V_M к объему стационарной фазы V_S [9]. Обычно объем стационарной фазы V_S находят делением массы стационарной фазы в колонке на ее плотность [10]. В случае капиллярной колонки масса стационарной фазы составляет всего нескольких миллиграммов, и точность определения фазового соотношения и рассчитываемой из него толщины пленки стационарной фазы d_f оставляют желать лучшего. Кроме того, колонки в ГХ обычно работают при повышенной температуре, что предполагает знание зависимости плотности стационарной фазы от температуры. Еще менее изучен вопрос о влиянии природы газа-носителя на величину фазового соотношения. Газ-носитель принято считать инертной средой, осуществляющей транспортировку сорбата по колонке и не оказывающей существенного влияния на результаты разделения. Однако в ряде публикаций этот подход был подвергнут критике (см. обзор [11] и ссылки там) и, если точка зрения этих авторов справедлива, то растворение газа-носителя в стационарной фазе может заметно влиять на величину фазового соотношения колонки. Цель данной публикации – проверить возможность определения фазового соотношения хроматографическим методом и проследить влияние природы газа-носителя на величину этого соотношения на примере ряда традиционных для ГХ стационарных фаз и газов-носителей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все хроматографические измерения проведены на газовых хроматографах фирмы Shimadzu моделей GC-2010 или GC-17A с газами носителями гелием, азотом, углекислым газом и оксидом азота в изотермическом режиме при 70°С. Свойства капиллярных колонок, использованных в работе, приведены в табл. 1. Температура испарителя 250°С, деление потока 1:50, детектор ПИД при температуре 250°С.

Стандартная смесь нормальных углеводородов C_5-C_{10} была приготовлена растворением индивидуальны компонентов в хлористом метилене в концентрации от 0.2 до 1.5%.

Рис. 1. Аппроксимация уравнением (7) экспериментальной зависимости времени удерживания углеводородов C_1 , C_6-C_{10} от числа атомов углерода *n*. Полярная колонка с ПЭГ фазой (номер 2, табл. 1), газноситель азот, температура колонки 70°С, давление на колонке 30 кПа (P = 1.3).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Аппроксимация экспериментально измеренных зависимостей времени удерживания сорбатов C_1 и C_6 - C_{10} от числа атомов угдерода проводилась уравнением (3), в форме, предложенной в работе [9]:

$$t_{\rm R} = t_{\rm M} \left(1 + \frac{1}{\beta} \exp\left(-\frac{\Delta G_{\rm o}}{RT} - \frac{n^* \Delta G_{\rm CH_2}}{RT} \right) \right). \tag{8}$$

Анализ зависимостей показал, что два параметра уравнения (8), а именно, β и ΔG_0 , взаимосвязаны и не могут быть одновременно определены аппроксимацией экспериментальных точек. Одна из этих величин должна быть определена независимым методом и фиксирована в процессе аппроксимации. Нулевым членом гомологического ряда углеводородов H-(CH₂)_n-Н является водород, который слабо сорбируется на большинстве стационарных фаз. Учитывая это обстоятельство, мы приняли изменение свободной энергии водорода при сорбции ΔG_0 равной нулю. С учетом этого допущения экспериментальные точки, полученные на двух колонках с различной полярностью и с несколькими газами-носителями, хорошо аппроксимируются уравнением (8) (фактор сходимости R^2 лучше 0,999), позволяя найти значения трех других параметров: $t_{\rm M}$, $\Delta G_{\rm CH_2}$ и β . Типичная аппроксимация экспериментальных точек уравнением (8) показана на рис. 1, а на рис. 2 показана зависимость искомых параметров от величины фактора Халаша. Из рис. 2 видно, что энергия сорбции метиленового звена $\Delta G_{\rm CH_2}$

как мертвое время t_м линейно убывает с уменьшением параметра Халаша (параметр Халаша стремится к 0, когда относительное давление Р возрастает). В то же время, из рис. 2 следует, что зависимость фазового отношения колонки β от давления характеризуется значительным разбросом точек, который сильнее для полярной колонки и, вероятно, связан с ручным вводом пробы в колонку. Это не позволяет сделать какой-либо вывод о зависимости фазового отношения в от давления на колонке и, чтобы обойти эту проблему, экспериментальные точки на зависимости времени удерживания $t_{\rm R}$ от давления (рис. 3) были аппроксимированы линейной функцией а + b^*x (коррекция 1), параметры которой для исследованных колонок, газов носителей и сорбатов приведены в табл. 2. Обращает на себя внимание тот факт, что все линейные зависимости, кроме той, что описывает удерживание сорбатов на колонке с неполярной стационарной фазой и газом-носителем гелием, содержат свободный параметр а, имеющий отрицательное значение. Наличие свободного параметра а не соответствует закону Пуазейля-Дарси, согласно которому $t_{\rm R}$ должно стремится к 0, когда Р неограниченно возрастает. Возможно, что появление свободного параметра а связано с неидеальностью газов-носителей, тем более что наименьшие его значения и даже его отсутствие (табл. 2) наблюдаются для газа-носителя гелия, проявляющего свойства, наиболее близкие к свойствам идеального газа. В любом случае аппроксимация экспериментальных точек линейной функцией (коррекция 1) позволила устранить разброс экспериментальных данных и обнаружила зависимость фазового отношения β от давления (рис. 4). Как видно из рисунка, фазовое отношение уменьшается с ростом давления и выходит на плато при его уменьшении. Появление такой зависимости является довольно неожиданной, поскольку фазовое соотношение в обычно рассматривается как константа, не зависящая ни от давления, ни от температуры. Равным образом, газ-носитель обычно также рассматривается как инертное транспортное средство, не участвующее в процессе разделения и не оказывающее какого-либо воздействия на свойства системы, за исключением характеристик размывания зоны сорбата. В то же время, растворимость газов-носителей в полимерах, используемых в качестве стационарных фаз, хорошо известна в химии мембран. Так, например, по данным работы [12] растворимости гелия, азота и углекислого газа в полидиметилсилоксане соотносятся как 1:700:13000. Растворимость гелия в полимерных фазах незначительна, но она увеличивается на три порядка у азота, и еще больше у углекислого газа. Естественно, что при увеличении давления газа-носителя растворимость газа в

не зависит от величины фактора Халаша, тогда

Рис. 2. Зависимость мертвого времени $t_{\rm M}$ (1), фазового отношения β (2) и энергии сорбции метиленового звена $\Delta G_{\rm CH_2}$ (3) от величины фактора Халаша. Колонка и условия разделения те же, что на рис. 1.

полимерной фазе возрастает, а обратной стороной процесса растворения является набухание полимера. Увеличение объема стационарной фазы означает уменьшение фазового соотношения β, что мы и наблюдаем в эксперименте (рис. 4).

Интересно отметить, что для системы полидиметилсилоксан/гелий, когда свободный параметр линейной функции равен 0 (табл. 2), фазовое отношение в от давления не зависит (рис. 5). Равным образом, если коррекцию экспериментальных данных проводить линейной функцией из табл. 1, положив свободный параметр *а* равным 0 (коррекция 2), то находимая величина фазового соотношения В также оказывается независимой от давления газа-носителя, как это показано на рис. 5 в качестве примера. Взаимосвязь этих параметров позволяет предположить, что появление отрицательного свободного параметра а в линейной аппроксимации и зависимость фазового отношения от давления вызваны неидеальностью газа-носителя. Коррекция экспериментальных данных линейной функцией без свободного параметра (коррекция 2) позволяет устранить это влияние, но мы не уверены, что подобная коррекция допустима, и поэтому величины фазового отношения в были найдены для двух серий данных (табл. 3), "корректированных" как это описано выше. Как видно из табл. 3, выполненные "коррекции" мало сказываются на величине энтальпии сорбции метиленового звена ΔG_{CH_2} , которая сохраняется на уровне 1.9 ± 0.1 кДж/(моль К) для полярной ПЭГ фазы и на уровне 2.1 ± 0.1 кДж/(моль K) для неполярной ПДМС фазы, независимо от природы газа-носителя (за исключением углекислого газа, который после коррекции показывает уменьшение $\Delta G_{CH_2}/(RT)$). Величины фазового отношения β оказываются более чувствительными к проводимой коррекции, так что среднее значение для полярной фазы составляет 1190 ± 100, а для неполярной фазы 380 ± 50, независимо от природы газа-носителя. Исключение опять представляет углекислый газ, для которого проведение коррекции на полярной фазе вызывает

Рис. 3. Коррекция экспериментальных данных линейной аппроксимацией для колонок приведенных в табл. 1.

ВЛИЯНИЕ ПРИРОДЫ ГАЗА-НОСИТЕЛЯ

	Сорбат	Газ-носитель									
Стационарная фаза		гелий		азот		углекислый газ		закись азота			
		а	b	а	b	а	b	а	b		
SE-30 (полиди-	метан	0	106.0	-4.5	132.9	-12.3	91.2	-13.5	91.5		
метил-силоксан)	н-гексан	0	130.2	-5.1	163.7	-16.2	113.2	-16.6	112.2		
	н-гептан	0	159.9	-6.9	200.1	-20.1	138.6	-20.6	137.3		
	<i>н</i> -октан	0	223.6	-10.3	279.2	-29.0	193.3	-24.1	191.0		
	<i>н</i> -нонан	0	359.8	-14.7	443.7	-48.3	310.2	-48.3	306.0		
	н-декан	0	650.4	-48.6	815.1	-89.1	535.8	-88.9	550.4		
DB-WAX (поли-	метан	-3.1	112.4	-7.9	105.5	-8.2	92.7	-5.4	89.6		
этилен-гликоль)	н-гексан	-3.5	117.9	-5.0	109.7	-7.5	96.3	-5.7	93.7		
	н-гептан	-3.5	123.3	-8.3	115.7	-8.0	100.7	-6.0	97.9		
	<i>н</i> -октан	-4.0	134.2	-7.7	124.3	-8.7	109.4	-4.0	105.1		
	н-нонан	-4.7	155.5	-10.8	144.6	-10.6	126.5	-8.1	123.0		
	н-декан	-5.6	197.7	-18.9	182.6	-14.1	159.9	-11.2	155.6		

Таблица 2. Параметры линейной аппроксимации $a + b^*x$ (коррекция 1) экспериментальной зависимости времени удерживания сорбатов $t_{\rm R}$ от относительного давления газа-носителя $P(R^2 > 0.999)$

Таблица 3. Влияние коррекции экспериментальных данных на величины фазового соотношения β и энергии сорбции метиленового звена ΔG_{CH_2} (*rsd* ~7%)

		Гелий		Азот		Закись азота		Углекислый газ	
Стационарная фаза	Коррекция данных	β	$\Delta G_{ m CH_2}$	β	$\Delta G_{ m CH_2}$	β	$\Delta G_{ m CH_2}$	β	$\Delta G_{ m CH_2}$
		_	кДж/(моль К)		кДж/(моль К)		кДж/(моль К)		кДж/(моль К)
DB-WAX	б/корр.	1236	-1.95	1143	-1.91	1165	-1.85	1153	-1.92
(полиэтилен- гликоль)	корр. 1 (линейная аппроксимация)	1165	-1.97	1141	-1.92	1190	-1.91	662	-1.74
	корр. 2 (линейная аппроксимация без свободного члена)	1138	-1.94	1247	-1.95	1447	-1.99	816	-1.80
SE-30 (полидиметил- силоксан)	б/корр.	390	-2.17	384	-2.16	390	-2.16	376	-2.16
	корр. 1 (линейная аппроксимация)	_	-	334	-2.12	342	-2.16	420	-2.17
	корр. 2 (линейная аппроксимация без свободного члена)	393	2.17	420	-2.16	389	-2.16	261	-2.15

особенно сильное уменьшение находимого значения фазового отношения β (табл. 3).

Однако наиболее существенным является то обстоятельство, что две колонки одинакового внутреннего диаметра $d_c = 0.25$ мм и одинаковой толщины пленки $d_f = 0.25$ мкм (согласно данным производителей, см. табл. 1) показали различаю-

щиеся более чем в 3 раза значения фазового отношения и, тем не менее, ни одно из этих значений не совпало со значением фазового соотношения $\beta = 250$, рассчитанного на основании данных о параметрах колонок, сообщаемых производителями ($\beta = d_c/(4d_f)$). Различие между найденными и рассчитанными значениями фазового соотно-

Рис. 4. Зависимость мертвого времени t_M , фазового отношения β и энергии сорбции метиленового звена ΔG_{CH_2} от величины фактора Халаша для той же колонки 2 (рис. 2), после коррекции экспериментальных данных.

Рис. 5. Зависимость мертвого времени $t_{\rm M}$, фазового отношения β и энергии сорбции метиленового звена $\Delta G_{\rm CH_2}$ от величины фактора Халаша для колонки с неполярной стационарной фазой (номер 1 в табл. 1), после коррекции данных линейной аппроксимацией.

шения β , особенно сильное в случае полярной стационарной фазы, может быть вызвано неправильной оценкой энергии сорбции нулевого члена гомологического ряда ΔG_0 , которая была фиксирована на значении 0, как это отмечено в предыдущем разделе. Чтобы оценить возможную величину этой энергии, мы провели аппроксимацию экспериментальных данных уравнением 8, фиксировав теперь величину фазового отношения β , равным 250. Оказалось, что подобная замена не оказывает влияния на величину мертвого времени $t_{\rm M}$ и величину энтальпии сорбции метиленового звена $\Delta G_{\rm CH_2}$, но приводит к положительным значениям $\Delta G_{\rm o}$, что не имеет физического смысла.

Чтобы проверить корреляцию величин фазового отношения β, находимых экстраполяцией, и величин, рассчитываемых из толщины пленки стационарной фазы, сообщаемой производителем, измерения были выполнены для неполяр-

Таблица 4. Сравнение рассчитанных (β_1) и экспериментально найденных (β_2) величин фазового соотношения β и энергии сорбции метиленового звена ΔG_{CH_2} для колонок с различной толщиной пленки стационарной фазы

Колонка	<i>l</i> , мкм	β_1	β_2	—Δ <i>G</i> _{CH2} , кДж/(моль К)
1	0.25	250	390 ± 45	2.17 ± 0.05
3	0.5	125	205 ± 23	2.16 ± 0.05
5	1.0	62.5	102 ± 12	2.19 ± 0.05
6	2.0	31.25	36 ± 6	2.23 ± 0.05

ных колонок с толщиной пленки варьировавшейся от 0.25 до 2.0 мкм. Данные были скорректированы линейной экстраполяцией, как это описано выше (коррекция 1), и экспериментальные зависимости времени удерживания гомологов $t_{\rm R}$ от числа атомов углерода *n*, в предположении $\Delta G_{\rm o} =$ = 0, были аппроксимированы уравнением (8). Найденные величины фазового соотношения β и величины свободной энергии сорбции метиленового звена $\Delta G_{\rm CH_2}$ приведены в табл. 4. Свободная энергия сорбции метиленового звена $\Delta G_{\rm CH_2}$ практически индифферентна к толщине пленки стационарной фазы, тогда как величина фазового отношения β уменьшается с ростом толщины пленки $d_{\rm f}$, причем экспериментальная величина

Рис. 6. Корреляция найденных и рассчитанных из толщины пленки стационарной фазы величин фазового отношения β для неполярных колонок (номера 1, 4–6 табл. 1).

превосходит величину фазового отношения, рассчитываемую из толщины пленки стационарной фазы (табл. 4). Соотношение между экспериментально находимой и рассчитываемой величинами β линейно (рис. 6), но наклон линейной зависимости равен 1.6, что указывает на 60% превышение экспериментальных величин над рассчитанными. К сожалению, в нашем распоряжении не было колонок с разной толщиной пленки полярной стационарной фазы, и мы не могли проверить сохраняется ли такая же линейная корреляция и для полярных стационарных фаз.

В любом случае, проведенные эксперименты показали, что хроматографическое определение фазового отношения в колонки требует знания энергии сорбции нулевого члена гомологического ряда ΔG_{0} , поскольку эти две величины взаимозависимы и не могут быть разделены аппроксимацией экспериментальных данных уравнением (8). Априорная фиксация $\Delta G_{o} = 0$, хотя и кажется логичной, приводит к значениям В превышающим величины, находимые по толщине пленки стационарной фазы. Выяснение причин такого несоответствия будет продолжено в дальнейших исследованиях. В то же время мертвое время системы *t*_м и значение энергии сорбции метиленового звена гомологического ряда $\Delta G_{\mathrm{CH}_{\gamma}}$ надежно определяются экстраполяционным методом даже без знания "первичного" мертвого времени.

Работа выполнена в рамках Государственного задания ИНХС РАН

СПИСОК ЛИТЕРАТУРЫ

- Wainwright M.S., Haken J.K. // J. Chromatogr. 1985. V. 334. P. 95.
- Smith R.J., Haken J.K., Wainwright M.S. // Ibid. 1980.
 V. 184. P. 1.
- Nahir T.M., Morales K.M. // Anal. Chem. 2000. V. 72. P. 4667.
- Castello G., Moretti P., Vezzani S. // J. Chromatogr. A. 2009. V. 1216. P. 1607.
- 5. Набивач В.М., Дмитриков В.П. // Успехи химии. 1993. Т. 62. С. 7–38.
- Vigh Gy., Varga-Puchony Z. // J. Chromatogr. 1980. V. 196. P. 1.
- Krisnangkura K., Tancharoon A., Konkao C., Jeyashoke N. // J. Chromatogr. Sci. 1997. V. 35. P. 329.
- 8. Watanachaiyong T., Jeyashoke N., Krisnangkura K. // Ibid. 2000. V. 38. P. 67.
- 9. Ширяева В.Е., Попова Т.П., Канатьева А.Ю. и др. // Журн. физ. химии. 2019. Т. 93. № 11. С. 1731.
- González F.R. // J. Chromatogr. A. 2004. V. 1037. P. 233.
- 11. Березкин В.Г. // Рос. хим. журн. 2003. Т. 47. С. 35.
- Tremblay P., Savard M.M., Vermette J., Paquin R. // J. Membrane Sci. 2006. V. 282. P. 245.