_ ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ ____ И НАНОМАТЕРИАЛОВ ____

УДК 544.77.023.55 +544.723.2

ВЛИЯНИЕ МОРФОЛОГИИ НАНОРАЗМЕРНЫХ ЧАСТИЦ γ-Al₂O₃ НА ИХ АДСОРБЦИОННЫЕ СВОЙСТВА

© 2020 г. С. О. Казанцев^{*a*}, Е. А. Глазкова^{*a*}, А. С. Ложкомоев^{*a*}, О. В. Бакина^{*a*,*}, Е. Г. Хоробрая^{*a*}

^а Российская академия наук, Сибирское отделение, Институт физики прочности и материаловедения, Томск, Россия *e-mail: ovbakina@ispms.tsc.ru

Поступила в редакцию 13.05.2019 г. После доработки 13.05.2019 г. Принята к публикации 18.06.2019 г.

Пористые наноструктуры γ -Al₂O₃ различной морфологии получены простым окислением водой электровзрывного нанопорошка алюмонитридной композиции в различных условиях. В зависимости от параметров окисления морфология наноструктур представлена нанолистами, нанопластинами и наностержнями. Синтезированные структуры охарактеризованы методами просвечивающей электронной микроскопии, рентгенофазового анализа и тепловой адсорбции—десорбции азота. Сорбционные свойства наноструктур проанализированы на примере адсорбции модельных катионного и анионного красителей из водных растворов. Показано, что экспериментальной изотерме адсорбции для всех образцов γ -Al₂O₃ независимо от морфологии ближе всего модель Сипса. Установлено, что наибольшей адсорбционной емкостью по отношению к эозину обладают наностержни, тогда как метиленовый голубой наностержни и нанопластины адсорбируют одинаково. Сделан вывод, что благодаря простоте синтеза и высоким адсорбционным характеристикам полученные наноструктуры могут быть использованы в качестве перспективных материалов для очистки воды.

Ключевые слова: наноструктуры, очистка воды, адсорбция **DOI:** 10.31857/S0044453720030139

В настоящее время особое внимание уделяется синтезу наноструктурных адсорбентов с различной морфологией и свойствами поверхности для очистки сточных вод. Применение методов, позволяющих варьировать свойства наночастиц в процессе синтеза, позволяет получать материалы с новыми уникальными характеристиками. Наноструктуры оксида алюминия — важные неорганические материалы, которые широко используются в технологиях очистки воды благодаря высокой эффективности адсорбции [1], термической [2], химической и механической [3] стабильности, низкой токсичности [4]. Среди широкого ряда кристаллических фаз оксида алюминия наиболее предпочтительна фаза у-Al₂O₃ благодаря термодинамической стабильности и особым микроструктурным свойствам [5]. До настоящего времени уже были получены наноструктуры ү-Al₂O₃ с различной морфологией: нанотрубки, эффективно удаляющие красители [6], нановолокна для удаления ионов фтора [7], трехмерные микро- [8] и наносферы для удаления катионов [9], наноцветы [10] и нанохлопья [11]. Однако широкий круг описанных способов получения зачастую имеет свои ограничения, связанные со сложной процедурой синтеза, высокой стоимостью и токсичностью исходных материалов. Применение в качестве прекурсоров нанопорошков алюминия и нитрида алюминия, полученных методом электрического взрыва проводников, позволяет получать наноструктуры γ -Al₂O₃ с большой удельной поверхностью и положительным поверхностным зарядом. Данный метод прост и безопасен для окружающей среды, реакция окисления алюминия протекает при низкой температуре (60°C), и единственными исходными реагентами являются нанопорошок алюминия и вода, что способствует образованию химически чистых продуктов, прокаливание которых позволяет получить γ -Al₂O₃ различной морфологии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения γ -Al₂O₃ с различной морфологией использовали методику, описанную в работе [12], в основе которой лежало окисление водой наночастиц Al/AlN в различных условиях. Нанолисты бемита получали окислением водой наночастиц AlN/Al при 60°С. Нанопластинки бемита получали окислением водой наночастиц AlN/Al в гидротермальных условиях при повышенном давлении и 200°С в течение 6 ч. Гексагональные стержни получали окислением наночастиц AlN/Al во влажном воздухе при 60°С и относи-

Рис. 1. Электронно-микроскопические изображения наноструктур γ-Al₂O₃: а – нанолисты, б – нанопластинки, в – наностержни.

тельной влажности 80%. Наноструктуры γ -Al₂O₃ получали термической обработкой наночастиц бемита при 500°C в течение 2 ч.

Полученные образцы исследовали методами просвечивающей электронной микроскопии (JEM-2100, Япония), дифракции рентгеновских лучей (Shimadzu XRD 7000, Shimadzu Corporation, Япония), ИК-спектроскопии (Nikolet 5700, Therто Electron, США) и тепловой десорбции азота (Сорбтометр М, Россия). Удельные поверхности образцов рассчитывали в рамках модели БЭТ.

Для адсорбционных экспериментов выбрали модельные адсорбаты — анионный краситель эозин и катионный краситель метиленовый голубой. Для исследования кинетики и построения изотермы адсорбции к 0.1 г наноструктур добавляли 5 мл раствора красителей. Через определенные промежутки времени отбирали пробы, центрифугировали при 3500 об/мин и анализировали при помощи СФ-спектрофотометра при длине волны для эозина — 490 нм, для метиленового голубого — 660 нм, при длине оптического пути кюветы — 10 мм.

Для описания кинетики адсорбции использовали следующие модели:

 модель Ленгмюра, которая предполагает, что адсорбция ограничена образованием монослоя сорбата, поверхность сорбента однородная и энергия сорбции постоянна для всех сорбционных центров, взаимодействие между молекулами сорбата отсутствует;

2) модель Фрейндлиха — эмпирическая модель сорбции, которая характеризуется вероятностью многослойной адсорбции;

 модель Сипса, объединяющая модели Ленгмюра и Фрейндлиха, указывает на предельную величину сорбции при увеличении концентрации сорбата и описывает сорбцию на гетерогенной поверхности, без взаимодействия молекул сорбата между собой; 4) модель Дубинина—Радушкевича используется для оценки характеристической пористости и кажущейся энергии активации адсорбции.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 представлены электронно-микроскопические изображения наноструктур у-Al₂O₃. Как видно, наноструктуры γ-Al₂O₃, полученные из продуктов окисления водой наночастиц AlN/Al при 60°С, представляют собой агломераты складчатых нанолистов толщиной около 2-5 нм и планарным размером 100-200 нм (рис. 1а). Образец ү-Al₂O₃, полученный из продуктов гидротермального окисления представляет собой нанопластинки размером 20-100 нм и толщиной 5-30 нм (рис. 1б). Образцы, полученные при прокаливании продуктов окисления нанопорошка AlN/Al во влажном воздухе, представляют собой стержни длиной 50-400 нм и диаметром 50-150 нм, которые имеют в сечении гексагональную форму (рис. 1в).

На рентгенограммах синтезированных образцов присутствуют одинаковый набор рефлексов около 22.6, 37.3, 43.9, 46.2, 53.8, 72.1 и 79.8, характерных для плоскостей (111), (220), (311), (222), (400), (511) и (440). Наблюдаемые дифракционные пики хорошо согласуются с кубической структурой γ -Al₂O₃ (JCPDS 00-010-0425). Таким образом, все синтезированные наноструктуры в результате термической обработки при 500°C имеют одинаковый фазовый состав.

ИК-спектры синтезированных образцов имеют одинаковый набор полос поглощения: полосы высокой интенсивности, обусловленные валентными колебаниями группы Al–O; полоса при 1395 см⁻¹ соответствует характеристичному колебанию структуры решетки γ-Al₂O₃ [13]; полоса слабой интенсивности при 1644 см⁻¹ отражает колебания адсорбированной воды [14]. Уширенные

полосы в области 3800—3000 см⁻¹ соответствуют водородным связям между различными гидроксильными группами в образцах [15].

Изотермы адсорбции–десорбции азота имеют типичную S-образную форму. Для нанолистов и нанопластин изотермы относятся к IV типу (IUPAC), следовательно, образцы обладают преимущественно мезопористой структурой. Адсорбция азота сопровождается капиллярно-конденсационным гистерезисом в области значений p/p_0 от 0.5 до 0.9, причем для нанопластин характерна более узкая петля. Максимум распределения пор по размерам соответствует 10 нм, для нанопластин величина удельной поверхности составляет 267 м²/г, для нанолистов – 106 м²/г.

Изотерма адсорбции–десорбции, полученная для гексагональных стержней, относится к V типу, характерному для слабого взаимодействия газ–твердое тело на мезопористых и микропористых адсорбентах. Гексагональные стержни имеют величину удельной поверхности 249 м²/г и характеризуются только микропористостью с максимумом распределения пор в диапазоне менее 2 нм.

На рис. 2 представлены изотермы адсорбции эозина и метиленового голубого, полученные для наноструктур γ-Al₂O₃ различной морфологии.

Эозин — анионный краситель, который адсорбируется на поверхности γ -Al₂O₃ в основном благодаря электростатическому взаимодействию. С увеличением удельной поверхности образцов возрастает величина адсорбции красителя, причем максимальная адсорбция достигается на стержнях γ -Al₂O₃ (рис. 2а, кривая *3*). Метиленовый голубой — катионный краситель, который слабо сорбируется на поверхности γ -Al₂O₃ независимо от морфологии и размера пор образцов (рис. 2б).

В табл. 1 и 2 приведены величины параметров моделей изотерм адсорбции и коэффициентов достоверности *R*².

В случае нанопластинок γ -Al₂O₃, в соответствии со значениями коэффициента R^2 , наиболее адекватно адсорбция красителей описывается уравнением Сипса (табл. 1 и 2). Сравнивая величины $q_{\rm max}$, можно заключить, что на поверхности нанопластинок γ -Al₂O₃ превалируют основные центры. Поверхность сорбента энергетически однородна, наблюдается многослойная адсорбция эозина. При этом адсорбция метиленового голубого выражена довольно слабо.

Адсорбция основного и кислотного красителей на гексагональных стержнях γ -Al₂O₃ описывается моделями Сипса и Фрейндлиха (табл. 1 и 2). Многослойная адсорбция эозина предпочтительна, поверхность энергетически довольно однородна. В случае сорбции метиленового голубо-

Рис. 2. Изотермы адсорбции эозина (а) и метиленового голубого (б) на поверхности аголмератов нанолистов (1), нанопластинок (2) и гексагональных стержней (3).

го проявляется энергетически сильно неоднородная поверхность, поэтому адсорбция довольно слаба. В соответствии с величинами коэффициента R^2 , наиболее адекватно адсорбция красителей нанолистами γ -Al₂O₃ описывается уравнением Сипса (табл. 1 и 2). Сравнивая величины $q_{\rm max}$, можно заключить, что у агломератов нанолистов превалируют основные центры. При адсорбции эозина модели Сипса и Ленгмюра близки, и можно заключить, что в этом случае поверхность сорбента энергетически однородна, и наблюдается монослойная адсорбция. Сорбция метиленового голубого слабая, поверхность сорбента энергетически неоднородна.

Указанные модели имеют обычно эмпирический характер, либо идеализированы, поэтому применение нескольких моделей позволяет более полно описать характеристики сорбента. Высокие значения коэффициентов R^2 использованных моделей указывают на адекватность их примене-

	÷					
Модель	q_{\max} , мг/г	K	Показатель степени	R^2		
	Агле	омераты нанолистов				
Ленгмюра	5.059	0.3009	—	0.9433		
Фрейндлиха	—	0.6906	0.331	0.8750		
Сипса	4.985	0.0284	1.0377	0.9432		
Дубинина-Радушкевича	4.146	3.857×10^{-5}	—	0.896		
Нанопластинки						
Ленгмюра	2.222	0.0165	-	0.799		
Фрейндлиха	—	0.1778	0.408	0.831		
Сипса	4.429	0.0283	0.568	0.837		
Дубинина-Радушкевича	1.572	_	—	0.737		
Гексагональные стержни						
Ленгмюра	7.920	0.0062	-	0.942		
Фрейндлиха	—	0.242	0.874	0.943		
Сипса	11.92	0.0107	0.740	0.95		
Дубинина-Радушкевича	6.05	0.0015	-	0.766		

Таблица 1. Параметры моделей сорбции эозина образцами γ-Al₂O₃ различной морфологии

Таблица 2. Параметры моделей сорбции метиленового голубого образцами γ-Al₂O₃ различной морфологии

Модель	$q_{ m max}$, мг/г	K	Показатель степени	R^2			
Агломераты нанолистов							
Ленгмюра	0.869	0.1621	-	0.9889			
Фрейндлиха	—	0.1703	0.478	0.9839			
Сипса	5.576	0.0306	0.519	0.9852			
Дубинина-Радушкевича	0.848	4.924×10^{-6}	_	0.969			
Нанопластинки							
Ленгмюра	0.739	0.1370	—	0.9959			
Фрейндлиха	—	0.1176	0.539	0.9795			
Сипса	0.623	0.1313	1.246	0.9976			
Дубинина-Радушкевича	0.892	7.23×10^{-6}	_	0.952			
Гексагональные стержни							
Ленгмюра	1.061	0.0898	—	0.9737			
Фрейндлиха	—	0.1195	0.599	0.9608			
Сипса	0.710	0.0516	1.785	0.9796			
Дубинина-Радушкевича	0.715	4.88×10^{-6}	—	0.959			

ния и достоверность рассмотренных характеристик.

Таким образом, при анализе сорбционных свойств наноструктур γ-Al₂O₃ на примере адсорбции модельных красителей эозина и метиленового голубого из их водных растворов установлено, что экспериментальной изотерме адсорбции ближе всего модель Сипса. Это свидетельствует об энергетической неоднородности поверхности адсорбентов и многослойной адсорбции. Максимальной адсорбцией обладают наноструктуры в виде стержней.

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013—2020 годы, направление III.23.

СПИСОК ЛИТЕРАТУРЫ

1. *Tomar V., Kumar D.* // Chemistry Central Journal. 2013. V. 7. https://doi.org/10.1186/1752-153X-7-5

- Song L.H., Park S.B. // J. Nanoscience and Nanotechnology. 2010. V. 10. P. 122.
- Ozawa M., Nishio Y. // Applied Surface Science. 2016. V. 380. P. 288.
- Krewski D., Yokel R.A., Nieboer E., Borchelt D. et al. // J. Toxicology and Environmental Health. 2007. V. 10. P. 1–269.
- Zhou S., Antonietti M., Niederberger M. // Small. 2007. V. 3. № 5. P. 763.
- Shu Z., Chen Y., Zhou J., Li T. et al. // Applied Clay Sci. 2015. V. 112. P. 17.
- Mahapatra A., Mishra B.G., Hota G. // Industrial & Engineering Chemistry Research. 2013. V. 52. № 4. P. 1554.
- Song X., Yang P., Jia C. et al. // RSC Advances. 2015. V. 5. № 42. P. 33155.

- 9. *Chu T.P.M.*, *Nguyen N.T.*, *Vu T.L. et al.* // Materials. 2019. V. 12. № 3. P. 450.
- Zhang Y., Ye Y., Liu Z. et al. // J. Alloys and Compounds. 2016. V. 662. P. 421.
- 11. *Yu E., Lee H.J., Ko T. et al.* //Nanoscale.2013. V. 5. Nº 20. P. 10014.
- Kazantsev S.O., Lozhkomoev A.S., Glazkova E.A. et al. // Materials Research Bulletin. 2018. V. 104. P. 97.
- 13. *Zhang C., Liu Z., Chen L., Dong Y.* // J. Radioanalytical and Nuclear Chem. 2012. V. 292. № 1. P. 411.
- 14. Gangwar J., Gupta B K., Tripathi S.K., Srivastava A. // Nanoscale. 2015. V. 7. № 32. P. 13313.
- 15. Hosseini S.A., Niaei A., Salari D. // Open Journal of Physical Chemistry. 2015. V. 1. № 02. P. 23.