ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 544.6.018.42-16

ГИДРАТАЦИЯ И СОСТОЯНИЕ КИСЛОРОДО-ВОДОРОДНЫХ ГРУПП В СЛОЖНОМ ОКСИДЕ BalaIn_{0.9}Nb_{0.1}O_{4.1} СО СТРУКТУРОЙ РАДДЛЕСДЕНА-ПОППЕРА

© 2020 г. Н. А. Тарасова^{а,*}, А. О. Галишева^а, И. Е. Анимица^а, Д. В. Корона^а

^а Уральский федеральный университет им. Первого Президента России Б.Н. Ельцина, 620002, Екатеринбург, Россия

*e-mail: Natalia.Tarasova@urfu.ru

Поступила в редакцию 06.05.2019 г. После доработки 03.06.2019 г. Принята к публикации 18.06.2019 г.

Синтезированы соединения BaLaInO₄ и BaLaIn_{0.9}Nb_{0.1}O_{4.1}, характеризующиеся структурой Раддлесдена—Поппера. Доказана способность исследуемых фаз к гидратации. Показано, что допирование не приводит к изменению типа протонсодержащих частиц, единственная форма кислородно-водородных групп — три типа энергетически неэквивалентных гидроксогрупп. Установлено, что введение ниобия приводит к увеличению степени гидратации относительно недопированного состава за счет увеличения доли изолированных OH[–]-групп, размещающихся в солевом блоке.

Ключевые слова: структура Раддлесдена-Поппера, термогравиметрия, ИК-спектроскопия

DOI: 10.31857/S0044453720030310

На сегодняшний день исследование и разработка новых керамических материалов с протонной проводимостью является актуальной задачей вследствие их возможного применения в качестве электролита протон-проводящих твердооксидных топливных элементов [1–5]. Наиболее известные протонные проводники — сложные оксиды со структурой перовскита или производной от нее [6]. Однако дальнейшее развитие протонпроводящих материалов предполагает исследование соединений с иным типом структуры.

Недавно появились сведения о проявлении ионного транспорта в соединениях со структурой Раддлесдена—Поппера [7—9]. Соединение BaNdInO₄ было описано как смешанный кислородно-ионный проводник [7—9], допирование Nd-и In-подрешеток которого приводило к росту ионной проводимости [10, 11]. Было показано, что рост кислородно-ионной проводимости в случаях акцепторного допирования подрешетки Nd был обусловлен появлением в структуре вакансий кислорода:

$$2\text{MO} \xrightarrow{B_2\text{O}_3} 2\text{M}'_{\text{B}} + 2\text{O}_{\text{O}}^{\times} + V_{\text{O}}^{\bullet\bullet}.$$
 (1)

Донорное допирование подрешетки In приводило к образованию межузельного кислорода в слоях Ba/Nd–O, что также обеспечивало рост кислородной проводимости:

$$2\mathrm{MO}_2 \xrightarrow{\mathrm{B}_2\mathrm{O}_3} 2\mathrm{M}_{\mathrm{B}}^{\bullet} + \mathrm{O}_i^{\prime\prime} + 3\mathrm{O}_{\mathrm{O}}^{\times}$$
(2)

Несмотря на то, что процессы транспорта ионов кислорода в системах на основе BaNdInO₄ широко обсуждаются, возможность гидратации и соответственно протонный транспорт в данных фазах не исследован. Тем не менее, о наличии протонного переноса для фаз со структурой Раддлсдена–Поппера ранее сообщалось для оксифторидов Ba₂InO₃F и Ba₃In₂O₅F₂ [12], составов Pr_{1-x}M_{1+x}InO₄ (M = Ba²⁺, Sr²⁺; x = 0, 0.1), характеризующихся структурой K₂NiF₄ [13], а также слоистых перовскитов Sr_{1+x}Sm_{1-x}AlO_{4-δ} и Sr_{1+x}Pr_{1-x}AlO_{4-δ} [14]. Ранее нами была показана принципиальная возможность протонного переноса в составах на основе BaLaInO₄, в которых часть позиций La была замещена атомами Ca [15].

В настоящей работе изучена возможность проведения донорного допирования фазы $BaLaInO_4$ в подрешетке In на атомы Nb, а также влияние допанта на процессы гидратации и состояние кислородно-водородных групп.

Образец	<i>a,</i> Å	<i>b,</i> Å	<i>c,</i> Å	β, град	Объем, Å ³
BaLaInO ₄	12.932(3)	5.906(1)	5.894(2)	90	450.195(8)
BaLaIn _{0.9} Nb _{0.1} O _{4.1}	12.961(8)	5.938(5)	5.878(5)	90	452.709(5)
BaLaInO ₄ · n H ₂ O	12.683(6)	14.708(1)	7.169(9)	92.81(9)	1335(9)
$BaLaIn_{0.9}Nb_{0.1}O_{4.1} \cdot nH_2O$	12.685(1)	14.722(3)	7.181(6)	92.89(8)	1339(4)

Таблица 1. Параметры элементарных ячеек

ЭКСПЕРИМЕНТАЛЬНЫАЯ ЧАСТЬ

Образцы BaLaInO₄ и BaLaIn_{0.9}Nb_{0.1}O_{4.1} получали методом твердофазного синтеза из предварительно осушенных BaCO₃, La₂O₃, In₂O₃, Nb₂O₅. Синтез проводили на воздухе при ступенчатом повышении температуры ($800-1350^{\circ}$ С) и многократных перетираниях в агатовой ступке в среде этилового спирта. Время отжига на каждой стадии составляло 24 ч.

Рентгенографический анализ выполняли на дифрактометре Bruker Advance D8 в Си K_{α} -излучении при напряжении на трубке 40 кВ и токе 40 мА. Съемку производили в интервале 2 $\theta = 20^{\circ}-80^{\circ}$ с шагом 0.05° и экспозицией 1 с на точку. Расчеты параметров решетки проводили методом полнопрофильного анализа Ритвельда с помощью программы FullProf Suite.

Безводные образцы получали путем выдержки вещества при высоких температурах (1300°С) с последующим постепенным охлаждением в атмосфере сухого воздуха ($p_{\rm H_2O} = 3.5 \times 10^{-5}$ атм) и закалкой при 100–150°С. Гидратированные образцы получали путем медленного охлаждения от 1000 до 200°С со скоростью 1 К/мин в атмосфере влажного воздуха ($p_{\rm H_2O} = 2 \times 10^{-2}$ атм).

Парциальное давление паров воды задавали путем барботирования воздуха при комнатной температуре последовательно через реактив AC-КАРИТ, содержащий твердую щелочь (для улавливания CO₂), гранулированный хлорид кальция CaCl₂ и порошок оксида фосфора P_2O_5 ($p_{H_2O} = 3.5 \times 10^{-5}$ атм); а также через 30%-ный раствор NaOH, дистиллированную воду и насыщенный раствор KBr ($p_{H_2O} = 2 \times 10^{-2}$ атм).

Термический анализ предварительно гидратированных образцов проводили на приборе NETZSCH STA 409 PC в комплекте с квадрупольным масс-спектрометром QMS 403C Aëolos (NETZSCH), позволяющим одновременно выполнять термогравиметрические измерения (TГ) и анализ отходящих газов (масс-спектрометрия MC) в интервале температур 25–1000°C и со скоростью нагрева 10 К/мин. Для идентификации кислородно-водородных групп использовали метод ИК-спектроскопии. Исследования проводили на ИК-фурье-спектрометре Nicolet 6700 в диапазоне частот от 400 до 4000 см⁻¹ методом диффузного отражения с использованием приставки Smart Diffuse Reflectance.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Методом рентгенофазового анализа было ЧТО установлено, образцы BaLaInO₄ И BaLaIn_{0.9}Nb_{0.1}O_{4.1} однофазным и характеризуются орторомбической симметрией (пространственная группа *Pbca*). Значения параметров решетки, полученные для BaLaInO₄, хорошо согласуются с описанными ранее [15]. Введение ниобия в Inподрешетку приводит к изменению объема элементарной ячейки (табл. 1). Объем элементарной ячейки увеличивается, несмотря на уменьшения ионного радиуса металла в катионной подрешетке [16]. Следует отметить, что это увеличение обусловлено увеличением параметров а и b; параметр с уменьшается при введении допанта. Данное увеличение параметров может быть объяснено введением межузельного кислорода в слои La-O, которое сопровождается расширением межслоевого пространства в плоскости (aOb) [17].

Гидратация образцов BaLaInO₄ и BaLaInO₉Nb_{0.1}O_{4.1} приводила к изменению их симметрии с орторомбической на моноклинную (P2/m). Как для безводных, так и для гидратированных образцов введение допанта приводило к увеличению объема элементарной ячейки. Рентгенограммы для безводного BaLaIn_{0.9}Nb_{0.1}O_{4.1} и гидратированного BaLaIn_{0.9}Nb_{0.1}O_{4.1} · nH₂O представлены на рис. 1.

Исследование гидратированных форм исследуемых образцов выполняли с помощью спектроскопических и гравиметрических методов. Анализ форм кислородно-водородных групп проводили методом ИК-спектроскопии (рис. 2). В области деформационных колебаний (ниже 2000 см⁻¹) регистрируется сигнал при 1420 см⁻¹, принадлежащий деформационным колебаниям гид-

Рис. 1. Рентгенограммы безводного $BaLaIn_{0.9}Nb_{0.1}O_{4.1}$ (а) и гидратированного $BaLaIn_{0.9}Nb_{0.1}O_{4.1} \cdot nH_2O$ (б) образцов. Показаны экспериментальные (точки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи).

роксогрупп, связанных с атомами металла М–ОН [18, 19]. Сигналов, относящихся к колебаниям молекулярной воды и катионам гидроксония (~1600 и ~1700 см⁻¹) зарегистрировано не было.

Асимметричный вид широкой полосы в области валентных колебаний $2800-3600 \text{ см}^{-1}$ свидетельствует о наложении нескольких сигналов, т.е. о наличии OH⁻-групп с различным кристаллографическим положением и соответственно с различной степенью их участия в водородных связях. Четко прослеживается наличие трех полос. Полосы при 2800, (3200) и 3520 см⁻¹ соответствуют OH⁻-группам, вовлеченным в сильные и более слабые водородные связи соответственно. Узкая полоса с большей частотой (~3600 см⁻¹) указывает на наличие изолированных OH⁻-групп, т.е. введение ниобия в подрешетку индия приводит к

Рис. 2. ИК-спектры гидратированных образцов $BaLaInO_4 \cdot nH_2O(1)$ и $BaLaInO_9Nb_{0,1}O_{4,1} \cdot nH_2O(2)$.

уменьшению доли OH⁻-групп, вовлеченных в сильные водородные связи и увеличению доли изолированных групп.

Появление в структуре гидратированных образцов ОН⁻-групп с различным кристаллографическим положением может быть описано в рамках квазихимического подхода следующим уравнением:

$$O_0^{\times} + H_2 O \Leftrightarrow (OH)_0^{\bullet} + (OH)_i^{\cdot}.$$
 (3)

Локализация протона на атоме кислорода, стоящем в регулярной позиции, приводит к появлению дефекта (OH), а на кислороде, пришедшем от молекулы воды и занявшем структурную вакансию, – к появлению (OH), Очевидно, образующийся в ходе донорного допирования межузельный кислород (уравнение (2)) также может участвовать в процессах диссоциативного поглощения воды, что будет приводить к перераспределению вкладов от различных ОН⁻-групп и соответственно к смещению полос в ИК-спектрах:

$$O''_{i} + H_{2}O \Leftrightarrow 2(OH)'_{i}. \tag{4}$$

Таким образом, гидратированный Nb-замещенный образец BaLaIn_{0.9}Nb_{0.1}O_{4.1} \cdot *n*H₂O, как и недопированный состав BaLaInO₄ \cdot *n*H₂O, содержит энергетически неравноценные OH⁻-группы, что подтверждается наличием трех сигналов в области валентных колебаний. Введение допанта приводит к перераспределению вкладов от различных OH⁻-групп. Новых форм кислородно-водородных групп при допировании не образуется.

Рис. 3. Данные термогравиметрии (ТГ) для образцов BaLaInO₄ · nH₂O (1) и BaLaInO₉Nb_{0.1}O_{4.1} · nH₂O (2), а также данные и масс-спектрометрии для образца BaLaIn_{0.9}Nb_{0.1}O_{4.1} · nH₂O (3).

Для определения количества поглощаемой воды из газовой фазы для предварительно гидратированных образцов BaLaInO₄ · nH_2O и BaLaIn_{0.9}Nb_{0.1}O_{4.1} · nH_2O были проведены термические и масс-спектрометрические исследования. По убыли массы гидратированных составов была определена степень гидратации. Для удобства сравнения данные приведены в пересчете на число молей воды на формульную единицу сложного оксида (рис. 3). Совместно с ТГ-кривыми представлены результаты ДСК и масс-спектрометрии для BaLaIn_{0.9}Nb_{0.1}O_{4.1} · nH_2O .

Основная потеря массы наблюдается в температурном интервале 200–700°С, что, согласно результатам масс-спектрометрического анализа, обусловлено выходом H_2O . Выделения других возможных летучих веществ (CO₂, O₂) не было обнаружено, т.е. исследуемый в работе Nb-замещенный образец BaLaIn_{0.9}Nb_{0.1}O_{4.1}, как и недопированный BaLaInO₄, способен к поглощению воды из газовой фазы. Очевидно, способность к гидратации данных фаз обусловлена способностью к гидратации блоков La–O. Для блочных структур возможность поглощения паров воды вследствие гидратации солевых блоков, чередующихся с блоками перовскитной матрицы, была описана ранее для состава Ba₂ZrO₄ [20].

Введение допанта приводит к росту степени гидратации (~0.85 моль для $BaLaIn_{0.9}Nb_{0.1}O_{4.1}$ и ~0.62 моль для $BaLaInO_4$), что может быть обусловлено увеличением параметров *а* и *b* при введении допанта и увеличением межслоевого пространства.

Как для базового, так и для допированного образцов, процесс выделения воды происходит ступенчато, что соответствует трем сигналам на спектрометрической кривой. Основной сигнал на ТГ-кривых лежит в температурном интервале 200-350°С и включает две плохо разрешившиеся ступени. Данный сигнал соответствует наименее термически стойким ОН--группам, т.е. группам, вовлеченным в сильные и слабые водородные связи. Как видно, основное различие в ТГ-кривых рассматриваемых в работе соединений проявляется в различии вкладов высокотемпературного эффекта (300-600°С), обусловленного наличием в структуре образцов наиболее термически стойких изолированных ОН--групп. С ростом степени гидратации (т.е. при введении допанта) вклад высокотемпературного эффекта возрастает, в то время как основной эффект потери массы не претерпевает существенных изменений. Данные результаты хорошо коррелируют с результатами спектроскопических исследований, продемонстрировавшими увеличение доли изолированных ОН⁻-групп при допировании.

Таким образом, в работе осуществлен синтез соединений BaLaInO₄ и BaLaIn_{0 9}Nb₀₁O₄₁, характеризующихся структурой Раддлестена-Поппера, рентгенографически подтверждена их однофазность. Установлено, что введение ниобия приводит к увеличению объема элементарной ячейки. Доказана способность исследуемых фаз к диссоциативному поглощению воды из газовой фазы, сопровождающаяся появлением в структуре энергетически неэквивалентных ОН--групп. Показано, что допирование Іп-подрешетки не приводит к изменению формы кислородно-водородных групп и обусловливает увеличение степени гидратации за счет увеличения доли изолированных ОН⁻-групп. Очевидно, такой тип допирования благоприятнен с точки зрения реализации протонного переноса.

Работа выполнена при финансовой поддержке гранта Президента РФ (проект MK-24.2019.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Shim J.H. // Nature Energy. 2018. V. 3. P. 168.
- 2. Fabbri E., Bi L., Pergolesi D., Traversa E. // Advanced Materials. 2012. V. 24. P. 195.
- 3. *Marrony M., Dailly J. //* ECS Transactions. 2017. V. 78. P. 3349.
- 4. Norby T. // ECS Transactions. 2017. V. 80. P. 23.
- Colomban Ph., Zaafrani O., Slodczyk A. // Membranes. 2012. V. 2. P. 493.
- 6. Kochetova N., Animitsa I., Medvedev D., Demin A., Tsiakaras P. // RSC Advances. 2016. V. 6. P. 73222.
- Fujii K., Shiraiwa M., Esaki Y. // J. Mater. Chem. A. 2015. V. 3. P. 11985.
- Yang X., Liu S., Lu F., Xu J., Kuang X. // J. Phys. Chem. C. 2016. V. 120. P. 6416.
- Shiraiwa M., Fujii K., Esaki Y., Kim S.J., Lee S., Yashima M. // J. Electrochem. Soc. 2017. V. 164. P. F1392.

- 10. Ishihara T., Yan Yu., Sakai T., Ida S. // Solid State Ionics. 2016. V. 288. P. 262.
- Yang X., Liu S., Lu F., Xu J., Kuang X. // J. Phys. Chem. C. 2016. V. 120. P. 6416.
- 12. *Tarasova N., Animitsa I. //* Solid State Ionics. 2015. V. 275. P. 53.
- Li X., Shimada H., Ihara M. // ECS Transactions. 2013. V. 50. P. 3.
- 14. *Matsuhira T., Kurahashi Y., Hasegawa K., Ihara M. //* Book of Abs. of 232nd ECS Meeting 2017, 1710.
- 15. Корона Д.В., Обрубова А.В., Козлюк А.О., Анимица И.Е. // Журн. физ. химии. 2018. Т. 92. С. 1439.

- Shannon R.D. //Acta Crystallographica. 1976. V. A32. P. 155.
- Aguadero A., Alonso J.A., Martínez-Lope M.J., Fernández-Díaz M.T., Escudero M.J., Daza L. // J. Mater. Chem. 2006. V. 16. P. 3402.
- Юхневич Г.В. Инфракрасная спектроскопия воды. М.: Наука, 1973. 205 с.
- Карякин А.В., Кривенцова Г.А. Состояние воды в органических и неорганических соединениях. М.: Наука, 1973. 176 с.
- 20. Шпанченко Р.В., Антипов Е.В., Ковба Л.М. // Журн. неорган. химии. 1993. Т. 38. С. 599.