_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 536.75,519.852

МЕТОД РАСЧЕТА СТАНДАРТНЫХ ПОТЕНЦИАЛОВ ГИББСА МИНЕРАЛОВ КЛАССА УРАНОАРСЕНАТОВ

© 2020 г. О. В. Еремин^{а,*}, О. С. Русаль^а, М. А. Солодухина^а, Е. С. Эпова^а

^а Российская академия наук, Сибирское отделение, Институт природных ресурсов, экологии и криологии, 672014 Чита, Россия

*e-mail: yeroleg@yandex.ru

Поступила в редакцию 19.03.2019 г. После доработки 19.03.2019 г. Принята к публикации 17.09.2019 г.

На основе значений изменений стандартных энергий Гиббса образования из элементов ($\Delta_f G^\circ$) ряда синтетических соединений ураноарсенатов различных металлов получены разложения величин потенциалов по оксидным составляющим с использованием методов линейного программирования. Полученная система аддитивных вкладов использована для расчета неизвестных $\Delta_f G^\circ$ минералов класса ураноарсенатов.

Ключевые слова: ураноарсенаты, изменения стандартных энергий Гиббса образования минералов, линейное программирование, оксидные инкременты

DOI: 10.31857/S0044453720040044

Ураноарсенаты представляют один из многочисленных химических классов минералов урана. К настоящему времени зарегистрировано более 30 минералов этого класса [1, 2], для которых полностью отсутствуют какие-либо термодинамические характеристики (табл. 1). Широко используемый метод расчета физико-химических свойств веществ, основанный на многомерной корреляции исходных данных, был использован и для соединений урана [3–5], однако в этих моделях отсутствуют оценки для ураноарсенатов. Получен ряд синтетических ураноарсенатов щелочных [6], щелочноземельных [7], двухвалентных катионов металлов (Си, Zn и др.) [8] и алюминия [9]. Для этих соединений проведен физико-химический анализ поведения в гетерогенных водных системах, рассчитаны изменения стандартных энергий Гиббса образования из элементов ($\Delta_f G^\circ$). На основе этих данных и известных значений $\Delta_{\rm f} G^{\circ}$ некоторых веществ класса арсенатов, в настоящей работе представлен алгоритм оценки термодинамических потенциалов ураноарсенатов.

МЕТОД РАСЧЕТА

Для соединений с известными значениями $\Delta_{\rm f} G^{\circ}$, которые назовем калибровочными, запи-

шем реакции их образования из составляющих оксидов:

$$\sum Ox = M,$$
 (1)

где Ox – составные оксиды минерала (соединения) М. Для реакций (1) сформулируем задачи линейного программирования вида:

$$\min \Delta_{\mathbf{f}} G^{\circ} \mathbf{x}, \quad \mathbf{A} \mathbf{x} = \mathbf{b}, \quad \mathbf{X} \ge 0, \tag{2}$$

где $\Delta_f G^\circ$ — изменения стандартных энергий Гиббса образования из элементов компонентов реакций (1), **x** — их мольные количества, **A** — стехиометрические матрицы; **Ax** = **b**, **x** ≥ 0 — условия баланса масс в закрытой системе. Решения **y*** задач, двойственных к (2):

$$\mathbf{y}^* = \max \mathbf{b}\mathbf{y}, \quad \mathbf{A}'\mathbf{y} \le \Delta_{\mathbf{f}}G^\circ,$$
 (3)

где ' — индекс транспонирования, можно представить в виде линейных разложений свободных энергий продуктов реакций (1) по стехиометрическим вкладам составных оксидов [10]:

$$\Delta_{\rm f} G^{\circ}({\rm M}) = \sum k(i) y^*(i), \qquad (4)$$

где k(i) — стехиометрические коэффициенты соответствующих $y^*(i)$ — потенциалов оксидных инкрементов *i*. Уравнение (4) справедливо в случае протекания реакции (1) в сторону образования продуктов.

МЕТОД РАСЧЕТА СТАНДАРТНЫХ ПОТЕНЦИАЛОВ

	(upeennioupeenniou)	no dannena [1, 2]	
Минерал (формула)	Минерал (формула)	Минерал (формула)	Минерал (формула)
Абернатиит UO ₂ AsO ₄ · 4H ₂ O	Металодевит $Zn(UO_2)_2(AsO_4)_2 \cdot 10H_2O$	Хейнричит Ba(UO ₂ AsO ₄) ₂ · 10H ₂ O	Салеит (Mg,Fe)(UO ₂) ₂ [(P,As)O ₄] ₂ · · 10H ₂ O
Арсенат гидрат стронция уранила Sr(AsUO ₆) ₂ · 8H ₂ O Sr(UO ₂ AsO ₄) ₂ · 11H ₂ O	Метановацекит Mg(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Горакит Bi ₇ O ₇ (OH)[(UO ₂) ₂ (PO ₄) ₂ (AsO ₄) ₂ (OH) ₂] · 3.5H ₂ O	Зеелит $Mg[UO_2(AsO_3)_{0.7}(AsO_4)_{0.3}]_2 \cdot 7H_2O$ $Mg[UO_2AsO_4]_2 \cdot 4H_2O$
Арсенованмеершеит U(UO ₂) ₃ (AsO ₄) ₂ (OH) ₆ \cdot 4H ₂ O	Метанатроотенит NaUO₂AsO₄ · 3H₂O	Хюгелит Pb ₂ (UO ₂) ₃ (AsO ₄) ₂ (OH) ₄ · · 3H ₂ O	Натрий-ураноспинит (Na ₂ , Ca)(UO ₂) ₂ (AsO ₄) ₂ · ·5 H ₂ O
Арсенураноспафит HAl(UO ₂) ₄ (AsO ₄) ₄ · 40H ₂ O Al(UO ₂) ₂ (AsO ₄) ₂ F_{20} · H ₂ O	Метараучит Ni(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Калерит Fe(II)(UO ₂) ₂ (AsO ₄) ₂ · 10H ₂ O	Штепит U(AsO ₃ OH) ₂ · 4H ₂ O
Арсенуранилит Ca $(UO_2)_4(AsO_4)_2(OH)_4 \cdot 6H_2O$	Метаураноспинит Ca $(UO_2)_2(AsO_4)_2 \cdot 8H_2O$	Камитугаит AlPb(UO ₂) ₅ (PO ₄ ,AsO ₄) ₂ (OH) ₉ · 5H ₂ O	Трогерит $H_3OUO_2AsO_4 \cdot 3H_2O$
Асселборнит Рb(UO ₂) ₄ (BiO) ₃ (AsO ₄) ₂ (OH) ₇ · 4H ₂ O	Метацейнерит Cu(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Кирххеймерит Co(UO ₂) ₂ (AsO ₄) ₂ · 12H ₂ O	Урамарсит NH ₄ AsUO ₆ · 3H ₂ O
Чадвикит UO ₂ HAsO ₃	Нильсборит К(UO ₂) ₃ (AsO ₄)(OH) ₄ · H ₂ O	$\label{eq:metaotenut} \begin{array}{l} Metaotenut\\ KUO_2AsO_4 \cdot 3H_2O\\ RbUO_2AsO_4 \cdot 3H_2O\\ AgUO_2AsO_4 \cdot 3H_2O\\ TIUO_2AsO_4 \cdot 3H_2O\\ Cs(H_3O)(UO_2AsO_4)_2 \cdot 5H_2O \end{array}$	Ураноспинит Ca(UO ₂) ₂ (AsO ₄) ₂ · 10H ₂ O
Чистяковит Al(UO ₂) ₂ (AsO ₄) ₂ $F \cdot 6.5H_2O$	Новачекит Mg(UO ₂) ₂ (AsO ₄) ₂ · · (10–12)H ₂ O	Метахинричит Ba(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Высокит U(AsO₂(OH)₂)₄ · 4H₂O
Дымковит (Ni,Mg)(UO ₂) ₂ (As ³⁺ O ₃) ₂ · 7H ₂ O	Ортовальпургит $UO_2Bi_4O_4(AsO_4)_2 \cdot 2H_2O$	Метакалерит Fe(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Вальпургит UO ₂ Bi ₄ O ₄ (AsO ₄) ₂ · 2H ₂ O
Хеллимондит Pb ₂ UO ₂ (AsO ₄) ₂ · 0.3H ₂ O	Раухит (Ni,Mg)(UO ₂) ₂ (AsO ₄) ₂ · 10H ₂ O	Метакирххеймерит Co(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	Цейнерит Cu(UO ₂) ₂ (AsO ₄) ₂ · 12H ₂ O

Таблица 1. Минералы класса ураноарсенатов (арсенитов) по данным [1, 2]

Например, для множества U–As–O–H и реакции (1):

$$3UO_3 + As_2O_5 + 12H_2O =$$

= $(UO_2)_3(AsO_4)_2 \cdot 12H_2O$,

получено разложение (4) в виде:

$$\Delta_{\rm f} G^{\circ}(({\rm UO}_2)_3({\rm AsO}_4)_2 \cdot 12{\rm H}_2{\rm O}) =$$

= -7258.000 (кДж/моль)[11] =
= -1142.411k({\rm UO}_3) - 834.738k({\rm As}_2{\rm O}_5) -
- 249.669k({\rm H}_2{\rm O}). (5)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

Исходные термодинамические данные, использованные в расчетах, приведены в (табл. 2). Для систем Me–U–As–O–H, где Me – катионы металлов и аммония, получены линейные разложения (4), приведенные в табл. 3. С использований значений инкрементов (табл. 3) и разложения (5), были рассчитаны величины $\Delta_f G^\circ$ минералов, химический состав элементов которых полностью соответствует таковым для калибровочных соединений (табл. 4). Для минералов (табл. 1), в формулах которых присутствуют дополнительные катионы, не учтенные в табл. 3,

получены разложения (4) для следующих реакций:

$$3\text{FeO} + \text{As}_2\text{O}_5 + 4\text{H}_2\text{O} =$$

= Fe₃(AsO₄)₂ · 8H₂O (Симплезит),
 $\Delta_f G^{\circ}$ (Симплезит) = -3687.300 (кДж/моль) = (6)
= -290.935k(FeO) - 896.769k(As₂O₅) -
- 239.716k(H₂O);

$$0.5Bi_{2}O_{3} + 1.5Al_{2}O_{3} + As_{2}O_{5} + 3H_{2}O =$$

$$= BiAl_{3}(AsO_{4})_{2}(OH)_{6} (Арсеновейлендит),$$

$$\Delta_{f}G^{\circ}(Арсеновейлендит) =$$

$$= -4273.600 (кДж/моль) =$$

$$= -545.586k(Bi_{2}O_{3}) - 1631.642k(Al_{2}O_{3}) -$$

$$- 824.246k(As_{2}O_{5}) - 243.032k(H_{2}O);$$
(7)

Таблица 2. Значения изменений стандартных энергий Гиббса образования из элементов ($\Delta_f G^\circ$, кДж/моль) соединений, использованные в расчетах по уравнениям (1)–(4)

Оксиды	$-\Delta_{ m f}G^{\circ}$	Источник	Соединение (минерал)	$-\Delta_{ m f}G^{\circ}$	Источник
(NH ₄) ₂ O	234.300	[12]	$\rm NH_4AsUO_6 \cdot 3H_2O$	2537.000	[6]
Li ₂ O	561.200	[13]	LiAsUO ₆ · 4H ₂ O	2965.000	»
Na ₂ O	375.480	»*	$NaAsUO_6 \cdot 3H_2O$	2709.000	»
K ₂ O	320.700	»	KAsUO ₆ · 3H ₂ O	2731.000	»
Rb ₂ O	300.000	»	$RbAsUO_6 \cdot 3H_2O$	2739.000	»
Cs ₂ O	308.160	»	CsAsUO ₆ · 3H ₂ O	2751.000	»
MgO	569.450	»	$Mg(AsUO_6)_2 \cdot 10H_2O$	6292.000	[7]
CaO	604.048	»	$Ca(AsUO_6)_2 \cdot 10H_2O$	6386.000	»
SrO	561.899	»	$Sr(AsUO_6)_2 \cdot 8H_2O$	5927.000	»
BaO	525.100	»	$Ba(AsUO_6)_2 \cdot 7H_2O$	5699.000	»
MnO	362.920	»	$Mn(AsUO_6)_2 \cdot 12H_2O$	6305.000	[8]
Bi ₂ O ₃	493.750	»	BiAl ₃ (AsO ₄) ₂ (OH) ₆ (Арсеновейлендит)	4273.600	[12]
FeO	243.559	»	Fe ₃ (AsO ₄) ₂ · 8H ₂ O (Симплезит)	3687.300	[17]
Al_2O_3	1582.280	»	$Al(AsUO_6)_2(OH) \cdot 13H_2O$	7195.375	[9]
CuO	129.500	»	$Cu(AsUO_6)_2 \cdot 8H_2O$	5356.000	[8]
CoO	214.220	»	$Co(AsUO_6)_2 \cdot 12H_2O$	6307.000	»
NiO	211.700	»	$Ni(AsUO_6)_2 \cdot 12H_2O$	6308.000	»
PbO	188.950	»	$Pb(AsUO_6)_2 \cdot 8H_2O$	5363.000	»
ZnO	318.320	*	$Zn(AsUO_6)_2 \cdot 12H_2O$	6305.000	»
CdO	228.400	*	$Cd(AsUO_6)_2 \cdot 10H_2O$	5833.000	»
UO ₃	1142.270	[14]	$(\mathrm{UO}_2)_3(\mathrm{AsO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$	7258.000	[11]
Ag ₂ O	11.200	»	Ag ₃ AsO ₄	542.600	[14]
As_2O_5	782.400	[15]			
H ₂ O	231.181	[16]			

* – повторение данных

Оксиды	-y*(MeOx)	$-y^*(As_2O_5)$	$-y^*(H_2O)$	- <i>y</i> *(UO ₃)	Калибровочное соединение
(NH ₄) ₂ O	292.201	856.160	251.020	1209.757	$\rm NH_4AsUO_6 \cdot 3H_2O$
Li ₂ O	632.973	863.423	248.432	1223.072	LiAsUO ₆ · 4H ₂ O
Na ₂ O	468.084	888.309	264.145	1238.367	$NaAsUO_6 \cdot 3H_2O$
K ₂ O	427.780	902.831	271.414	1251.449	$KAsUO_6 \cdot 3H_2O$
Rb ₂ O	412.443	907.961	274.237	1256.083	$RbAsUO_6 \cdot 3H_2O$
Cs ₂ O	422.911	910.134	275.508	1257.952	CsAsUO ₆ · 3H ₂ O
MgO	619.724	823.365	255.872	1142.591	$Mg(AsUO_6)_2 \cdot 10H_2O$
CaO	663.493	831.034	260.670	1142.383	$Ca(AsUO_6)_2 \cdot 10H_2O$
SrO	654.776	883.722	238.462	1240.400	$Sr(AsUO_6)_2 \cdot 8H_2O$
BaO	630.702	897.192	238.676	1250.185	$Ba(AsUO_6)_2 \cdot 7H_2O$
MnO	366.132	796.595	237.501	1146.127	$Mn(AsUO_6)_2 \cdot 12H_2O$
CuO	178.408	818.766	259.211	1142.566	$Cu(AsUO_6)_2 \cdot 8H_2O$
CoO	250.761	810.500	246.721	1142.538	$Co(AsUO_6)_2 \cdot 12H_2O$
NiO	248.764	810.970	246.932	1142.539	Ni(AsUO ₆) ₂ \cdot 12H ₂ O
PbO	229.929	813.224	254.350	1142.521	$Pb(AsUO_6)_2 \cdot 8H_2O$
ZnO	327.239	810.354	239.298	1147.913	$Zn(AsUO_6)_2 \cdot 12H_2O$
CdO	260.324	805.228	248.246	1142.492	$Cd(AsUO_6)_2 \cdot 10H_2O$
Al ₂ O ₃	1667.001	813.903	237.201	1172.693	$Al(AsUO_6)_2(OH) \cdot 13H_2O$

Таблица 3. Значения оксидных инкрементов (у*, кДж/моль) для систем Me-U-As-O-H

$$1.5Ag_2O + 0.5As_2O_5 = Ag_3AsO_4,$$

$$\Delta_f G^{\circ}(Ag_3AsO_4) = -542.600 (кДж/моль) = (8)$$

$$= -61.790k(Ag_2O) - 899.828k(As_2O_5).$$

С использованием полученных инкрементов для оксидов металлов (6)—(8) в комбинации с данными табл. 3 и уравнения (5) рассчитаны значения $\Delta_{\rm f} G^{\circ}$ еще нескольких минералов (табл. 5).

ОЦЕНКИ ОШИБОК РАСЧЕТОВ

Анализ погрешностей использованных расчетов осложняется отсутствием экспериментальных или оценочных термодинамических данных для минералов класса ураноарсенатов, кроме синтетических соединений, выбранных в качестве калибровочных веществ, для которых величины $\Delta_f G^\circ$ в расчетной точности равны стехиометрическим суммам составляющих оксидных инкрементов, согласно уравнению (4). Полученное множество инкрементов (табл. 3, уравнения

(5)–(8)) было использовано для расчетов значений $\Delta_{\rm f}G^{\circ}$ минералов и соединений с меньшим количеством химических элементов в своих составах. Для сравнения расчетных величин с опубликованными в литературе были использованы обзоры по минералогии мышьяка [15, 17, 18] и урана [19, 20], справочные данные [14, 21], оценочные модели [12] и периодические публикации [23–27]. Для некоторых веществ из обзоров [15, 17] приведены максимальные и минимальные значения $\Delta_{\rm f}G^{\circ}$. Результаты представлены в табл. 6.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Значения полученных инкрементов (уравнения (5)–(8), табл. 3) ниже величин $\Delta_f G^\circ$ соответствующих оксидов (табл. 2). Это – следствие выполнения условий **A'у** $\leq \Delta_f G^\circ$ – системы ограничений задач линейного программирования (3). Тем не менее, лишь для небольшого количества веществ (табл. 6) величины расчетных $\Delta_f G^\circ$ ниже

Таблица 4. Изменения стандартных энергий Гиббса образования из элементов ($\Delta_f G^\circ$, кДж/моль), рассчитанные на основе значений оксидных инкрементов (табл. 3) и разложения (5)

Минерал (формула)	$-\Delta_{ m f}G^{\circ}$	Калибровочное соединение
Абернатиит UO ₂ AsO ₄ · 4H ₂ O	2558.456	$(\mathrm{UO}_2)_3(\mathrm{AsO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$
Арсенат гидрат стронция уранила		$Sr(AsUO_6)_2 \cdot 8H_2O$
$Sr(AsUO_6)_2 \cdot 8H_2O$	5927.000	
$Sr(AsUO_6)_2 \cdot 11H_2O$	6642.387	
Арсенованмеершеит $U(UO_2)_3(AsO_4)_2(OH)_6 \cdot 4H_2O$	7152.067	$(\mathrm{UO}_2)_3(\mathrm{AsO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$
Арсенуранилит Ca $(UO_2)_4(AsO_4)_2(OH)_4 \cdot 6H_2O$	8149.425	$Ca(AsUO_6)_2 \cdot 10H_2O$
Арсенураноспафит HAl $(UO_2)_4(AsO_4)_4 \cdot 40H_2O$	16758.709	$Al(AsUO_6)_2(OH) \cdot 13H_2O$
Хеллимондит $Pb_2UO_2(AsO_4)_2 \cdot 0.3H_2O$	2491.909	$Pb(AsUO_6)_2 \cdot 8H_2O$
Хейнричит Ba(UO ₂ AsO ₄) ₂ · 10H ₂ O	6415.029	$Ba(AsUO_6)_2 \cdot 7H_2O$
Хюгелит Pb ₂ (UO ₂) ₃ (AsO ₄) ₂ (OH) ₄ · 3H ₂ O	5972.399	$Pb(AsUO_6)_2 \cdot 8H_2O$
Кирххеймерит Со(UO ₂) ₂ (AsO ₄) ₂ · 12H ₂ O Метаотенит	6307.000	$Co(AsUO_6)_2 \cdot 12H_2O$
$KUO_2AsO_4 \cdot 3H_2O$	2731.000	KAsUO ₆ · 3H ₂ O
$RbUO_2AsO_4 \cdot 3H_2O$	2739.000	$RbAsUO_{4} \cdot 3H_{2}O$
$C_{s}(H_{3}O)(UO_{2}A_{s}O_{4})_{2} \cdot 5H_{2}O$	5428.298	$CsAsUO_6 \cdot 3H_2O$
Метахинричит Ва(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	5937.676	$Ba(AsUO_6)_2 \cdot 7H_2O$
Метакирххеймерит Со(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	5320.113	$Co(AsUO_6)_2 \cdot 12H_2O$
Металодевит $Zn(UO_2)_2(AsO_4)_2 \cdot 10H_2O$	5826.403	$Zn(AsUO_6)_2 \cdot 12H_2O$
Метановацекит $Mg(UO_2)_2(AsO_4)_2 \cdot 8H_2O$	5775.254	$Mg(AsUO_6)_2 \cdot 10H_2O$
Mетанатроотенит NaUO ₂ AsO ₄ \cdot 3H ₂ O	2709.000	$NaAsUO_6 \cdot 3H_2O$
Метараучит Ni $(UO_2)_2(AsO_4)_2 \cdot 8H_2O$	5320.270	$Ni(AsUO_6)_2 \cdot 12H_2O$
Mетаураноспинит Ca $(UO_2)_2$ (AsO ₄) $_2 \cdot 8H_2O$	5864.658	$Ca(AsUO_6)_2 \cdot 10H_2O$
Метацейнерит $Cu(UO_2)_2(AsO_4)_2 \cdot 8H_2O$	5356.000	$Cu(AsUO_6)_2 \cdot 8H_2O$
Нильсоорит $K(UO_2)_3(AsO_4)(OH)_4 \cdot H_2O$	5233.898	$M_{2}(A_{2}UO_{2}) = 10UO_{2}$
$M_{\alpha}(UO) (A_{sO}) \cdot 12 UO$	6708 745	$\operatorname{Mig}(\operatorname{ASUU}_6)_2 \cdot \operatorname{IUH}_2 \operatorname{U}$
$M_{\sigma}(UO_2)_2(ASO_4)_2 + 10H_2O$	6287 000	
$M_{g}(UO_{2}/2(ASO_{4})_{2} + IOI_{2}O$ Зеелит $M_{g}(UO_{2}ASO_{4})_{2} + 4H_{2}O$	4751 763	$Mg(AsUO_6)_2 \cdot 10H_2O$
Штепит	3225 404	$(UO_{2})_{2}(\Lambda \circ O_{1}) \rightarrow 12H_{2}O_{2}$
$U(AsO_3OH)_2 \cdot 4H_2O$	2683 200	$(UO_2)_3(ASO_4)_2 \cdot 12\Pi_2O$
$H_3OUO_2AsO_4 \cdot 3H_2O$	6386 000	$C_{2}(\Delta c U \Omega_{2})_{3}(A s U \Omega_{4})_{2} \cdot 12 \Pi_{2} U$
$Ca(UO_2)_2(AsO_4)_2 \cdot 10H_2O$	2537.000	NH (ASUO - · 3H-O
NH ₄ AsUO ₆ · 3H ₂ O Пейнерит	6392.846	$Cu(AsUO_{2}) \cdot 8H_{2}O$
$Cu(UO_2)_2(AsO_4)_2 \cdot 12H_2O$		

Минерал (формула)	$-\Delta_{ m f}G^{\circ}$	Использованные инкременты
Асселборнит Рb(UO ₂) ₄ (BiO) ₃ (AsO ₄) ₂ (OH) ₇ · 4H ₂ O	8339.246	Y *(Pb(AsUO ₆) ₂ · 8H ₂ O) + y *(Bi ₂ O ₃) (7)
Калерит Fe(UO ₂) ₂ (AsO ₄) ₂ · 10H ₂ O	5907.185	$(5) + y^*(FeO)$ (6)
Камитугаит AlPb $(UO_2)_5(AsO_4)_2(OH)_9 \cdot 5H_2O$	9987.910	Ү* (Pb(AsUO ₆) ₂ · 8H ₂ O) + <i>y</i> *(Al ₂ O ₃) (табл. 3)
Метаотенит AgUO ₂ AsO ₄ · 3H ₂ O	2339.682	$(5) + y^*(Ag_2O)$ (8)
Метакалерит Fe(UO ₂) ₂ (AsO ₄) ₂ · 8H ₂ O	5407.848	$(5) + y^*(FeO)$ (6)
Вальпургит (<i>opmo</i> -вальпургит) $UO_2Bi_4O_4(AsO_4)_2 \cdot 2H_2O$	3567.659	$(5) + y^*(Bi_2O_3)$ (7)
Раухит Ni _{0.5} Mg _{0.5} (UO ₂) ₂ (AsO ₄) ₂ · 10H ₂ O	6101.520	$Y*(Mg(AsUO_6)_2 \cdot 10H_2O) + y*(NiO)$ (табл. 3)
Салеит $Mg_{0.5}Fe_{0.5}(UO_2)_2(AsO_4)_2 \cdot 10H_2O$	6122.605	$Y*(Mg(AsUO_6)_2 \cdot 10H_2O) + y*(FeO)$ (6)
Натрий-ураноспинит Na _{0.8} Ca _{0.6} (UO ₂) ₂ (AsO ₄) ₂ · 5H ₂ O	5004.483	Ү *(Ca(AsUO ₆) ₂ · 10H ₂ O) + <i>y</i> *(Na ₂ O) (табл. 3)

Таблица 5. Изменения стандартных энергий Гиббса образования из элементов ($\Delta_f G^\circ$, кДж/моль), рассчитанные на основе сумм значений инкрементов (табл. 3) и уравнений (5)–(8)

экспериментальных или прогнозируемых значений (отрицательные значения δ), это характерно для всех соединений с Си и некоторых с Ni, Co, Mg, Al, Bi, U, K, Li и аммонием. Таким образом, можно считать, что для большинства рассмотренных в табл. 6 веществ, оценки потенциалов Гиббса с использованием полученных инкрементов завышены.

Для систем Me–U–As–O–H (табл. 3) наибольшим удельным (на один атом металла) вкладом в значения $\Delta_f G^\circ$ соединений характеризуется *у**(UO₃). Как следствие, отсутствие урана в химических формулах может приводить к большим погрешностям. Так, для соединений без U в стехиометрических составах максимальными отклонениями характеризуются безводные арсенаты K, Na, Cs, Rb, Cd (δ около 30%), ошибки для гидроарсенатов составляют 10–20%. Для соединений с U ошибки не такие значительные – максимальная 7.59% для Rb₂UO₄, средняя (по модулю) для представленных в табл. 6, – 2.33%.

Очень высокая ошибка для стерлингхиллита (35%). Данные для этого минерала, приведенные в работе [18], не упоминаются в более поздних обзорах [15, 17]. В разных базах минералогических данных стехиометрическая формула этого минерала отличается по количеству кристаллизационной воды — 3 или 4 молекулы. В справочнике фи-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

зико-химических свойств веществ [28] значение $\Delta_f G^\circ$ для арсената марганца соответствует формуле $Mn_3(AsO_4)_2 \cdot 8H_2O$ и составляет – 4055.000 кДж/моль. Расчет потенциала Гиббса для этой стехиометрической формулы с использованием оксидных инкрементов ураноарсената марганца (табл. 3) дает величину –3795.003 кДж/моль, что соответствует ошибке $\delta = 6.38\%$.

Для соединений магния авторы [15] отмечают необходимость пересмотра данных по растворимости в связи с неопределенностями в стехиометрических формулах. Так, величина $\Delta_{\rm f}G^{\circ}$ кристаллизационной воды для пары Mg₃(AsO₄)₂ · 8H₂O– Mg₃(AsO₄)₂ · 10H₂O составляет 156 кДж/моль, что сильно отличается от ее значений для кристаллогидратов [16].

Достаточно высокие ошибки характерны для гидроксоарсенатов с несколькими видами катионов (Бэйлдонит–Церулит). Для этих веществ были применены комбинации различных систем инкрементов в парных соотношениях. Приемлемыми можно считать погрешности расчетов для минералов группы алунита (Филипсборнит–Арсеногоязит).

В целом можно считать, что использование системы полученных инкрементов (табл. 3) для оценок $\Delta_{\rm f}G^{\circ}$ соединений с меньшим количеством составных оксидов в стехиометрических составах

5	0	6

CsUO₂OOH

 $Cu_3(AsO_4)_2$

(Ламмерит)

1669.385 [19]

1309.560 [15]

1300.700

1607.162

1353.991

 $Cu(AsUO_6)_2 \cdot 8H_2O$

 $-\Delta_{\rm f}G^{\circ}$ $-\Delta_{\rm f}G^{\circ}$ δ. % Соединение (Минерал) Калибровочные соединения (литература) (расчет) AlAsO₄ · 2H₂O 1707.110 [21] 1714.854 Al(AsUO₆)₂(OH) · 13H₂O -0.40(Мансфильдит) 1733.400 [25] 1.07 »* AlAsO₄ · 3.5H₂O 2064.375 [22] 1952.054 -0.683100.500 2789.298 $Ba(AsUO_6)_2 \cdot 7H_2O$ $Ba_3(AsO_4)_2$ 10.56-15.65 3263.136 [15] BaHAsO₄ · H₂O 1538.473 1488.216 3.32 - 10.41652.102 » BaUO₄ 1883.300 [14] 1880.886 0.12 684.916 BiAsO₄ 619.000 » BiAl₃(AsO₄)₂(OH)₆ -10.11Ca₅(AsO₄)₃OH 5080 873 4694.350 $Ca(AsUO_6)_2 \cdot 10H_2O$ 7.91 - 8.14(Джонбаумит) 5092.726 [15] CaHAsO₄ · 2H₂O 1807.396 » 1730.686 4.33 (Фармаколит) CaHAsO₄ · H₂O 1530.994 » 1470.015 4.06 (Хейдингерит) CaHAsO₄ 1292.916 » 1209.345 6.68 (Виелит) Ca₅H₂(AsO₄)₄ · 9H₂O 7800.716 » 7586.238 2.79 (Ферраризит) $Ca_5H_2(AsO_4)_4 \cdot 9H_2O$ 7796.157 » 7586.238 2.73 (Гуеринит) $Ca_3(AsO_4)_2 \cdot 2.25H_2O$ 3609.212 » 3408.021 5.73 $Ca_3(AsO_4)_2 \cdot 3H_2O$ 3785.616 » 3603.524 4.93 $Ca_3(AsO_4)_2 \cdot 3.67H_2O$ 3943.730 » 3778.173 4.29 $Ca_3(AsO_4)_2 \cdot 4H_2O$ 4002.750 » 3864.194 3.52 Ca₃(AsO₄)₂ · 4.25H₂O 4081.294 » 3929.362 3.79 Ca₄(AsO₄)₂(OH)₂ · 4H₂O 4936.111 4788.358 2.84-3.04 4926.367 » Ca₂(AsO₄)(OH) · 4H₂O 2457.390 » 2394.179 2.61 $Ca(UO_2)_6O_4(OH)_6 \cdot 8H_2O$ 10301.591 [19] 10385.170 -0.81(Беккерелит) 1805.876 CaUO₄ 1888.710 [20] 4.48 $Ca_2U_2O_7 \cdot 3H_2O$ 3730.270 0.47 3747.756 [27] 1716.100 [14] 1195.715 35.74 $Cd_3(AsO_4)_2$ $Cd(AsUO_6)_2 \cdot 10H_2O$ 1620.800 1562.784 3.64-5.93 $Co_3(AsO_4)_2$ $Co(AsUO_6)_2 \cdot 12H_2O$ 1658.250 [17] $Co_3(AsO_4)_2 \cdot 8H_2O$ 3527.080 » 3536.557 -0.27» (Эритрин) 1089.434 $CsAsUO_6 \cdot 3H_2O$ Cs₃AsO₄ 1524.460 [14] 33.28 CsH₂AsO₄ 1045.190 » 942.031 10.38 Cs₂HAsO₄ 1298.630 » 1015.732 24.44 Cs_2UO_4 1790.070 [20] 1680.864 6.29

Таблица 6. Оценки ошибок расчетов (δ , %) стандартных энергий Гиббса (ΔG , кДж/моль) с использованием оксидных инкрементов

3.80

-(3.33 - 4.01)

Таблица 6. Продолжение

	$-\Delta_{ m f}G^{\circ}$	$-\Delta_{ m f}G^{\circ}$	V 5	5.07
Соединение (минерал)	(литература)	(расчет)	калиоровочные соединения	0, %
$\overline{Cu_3(AsO_4)_2 \cdot 4H_2O}$	2270.430 »	2390.837	»	-5.17
(Ролландит)				
Cu ₂ AsO ₄ OH	846.400 »	895.805	»	-5.67
(Оливенит)	848.700 [23]			-5.40
Cu ₃ AsO ₄ (OH) ₃	1211.200 [15]	1333.425	»	-9.61
(Клиноклаз)				
Cu ₅ (AsO ₄) ₂ (OH) ₄ (Корнубит)	2057.900 »	2229.230	>	-7.99
$Cu_2(AsO_4)OH \cdot 3H_2O$	1552.700 »	1673.440	»	-7.48
(Эухроит)	1555.700 [24]			-7.29
$HAsUO_6 \cdot 4H_2O$	2684.000 [6]	2683.290	$(UO_2)_3(AsO_4)_2 \cdot 12H_2O$	0.02
K ₃ AsO ₄	1498.230 [14]	1093.086	$KAsUO_6 \cdot 3H_2O$	31.26
KH ₂ AsO ₄	1035.900 »	936.720	»	10.05
K ₂ HAsO ₄	1281.140 »	1014.903	»	23.19
$K_2 UO_4$	1798.500 [20]	1679.229	»	6.86
$K_2 U_2 O_7 \cdot 1.5 H_2 O$	3400.699 [26]	3337.801	»	1.86
$K_2(UO_2)_6O_4(OH)_6 \cdot 7H_2O$	10104.683 [19]	10650.625	»	-5.26
(Компригнацит)				
$K_2U_6O_{19} \cdot 11H_2O$	10334.455 [26]	10922.040	»	-5.52
LiUO ₂ AsO ₄	2002.800 [14]	1971.270	LiAsUO ₆ · 4H ₂ O	1.58
Li ₂ UO ₄	1853.190 »	1856.044	»	-0.15
$Mn_3(AsO_4)_2 \cdot 4H_2O$	4045.170 [18]	2844.997	$Mn(AsUO_6)_2 \cdot 12H_2O$	34.84
(Стерлингхиллит)				
MgHAsO ₄ \cdot 4H ₂ O (Brassite)	2459.204 [15]	2182.834	$Mg(AsUO_6)_2 \cdot 10H_2O$	11.91
$M_{\sigma}HAsO_{4} \cdot 7H_{2}O$	3223 935 »	2950 452	»	8 85
(Росслерит)	5225.955 %	2750.452	<i>"</i>	0.05
$Mg_2(AsO_4)_2 \cdot 8H_2O$	5811.699 »	4729.519	»	20.53
$Mg_2(AsO_4)_2 \cdot 10H_2O$	6141.774 »	5241.265	»	15.82
MgUO ₄	1749.800 [14]	1762.315	»	-0.71
Na ₂ AsO ₄	1434.130 »	1146.281	NaAsUO ₆ · 3H ₂ O	22.31
NaH ₂ AsO ₄	1015.070 »	942.342	»	7.43
Na ₂ HAsO ₄	1238.420 »	1044.312	»	17.00
Na ₂ UO ₄	1777.790 »	1706.451	»	4.09
$Na_2U_2O_7$	2996.869 [27]	2944.818	»	1.75
$Na_2U_2O_7 \cdot H_2O$	3238.665 [26]	3208.964	»	0.92
NaUO ₂ OOH	1638.458 [19]	1604.482	»	2.10
(Кларкит)				
Na _{0.34} UO ₂ O _{0.67} OH · 1.2H ₂ O (Na-Компригнацит)	1822.700 [20]	1766.988	»	3.10
NH ₄ H ₂ AsO ₄	832,900 [14]	825.201	NH₄AsUO₄ · 3H₂O	0.93
$(NH_4)_2$ HAsO ₄	837.210 »	845.791	→ → → → → → → → → → → → → → → → → → →	-1.02
$Ni_2(AsO_4)_2$	1579.300 [17]	1557.263	$Ni(AsUO_{6})_{2} \cdot 12H_{2}O$	1.41
(Ксантиозит)			0/22-	
Ni ₃ (AsO ₄) ₂ · 8H ₂ O (Аннабергит)	3479.010 »	3532.721	»	-1.53

Таблица 6. Продолжение

	$-\Delta_{\mathrm{f}}G^{\circ}$	$-\Delta_{\rm f}G^{\circ}$	V	5 01
Соединение (минерал)	(литература)	(расчет)	Калиоровочные соединения	0, %
$Ni_3(AsO_4)_2 \cdot 10H_2O$	3965.750 »	4026.585	»	-1.52
$Pb_3(AsO_4)_2$	1572.120	1503.012	$Pb(AsUO_6)_2 \cdot 8H_2O$	3.70-4.49
$Pb(\Lambda_{cO})$, $2HO$	1559.690 [15]	2011 712		1 97
$PO_{3}(ASO_{4})_{2} \cdot 2\Pi_{2}O$	2049.78 »	2011.715	»	1.87
Ропазо ₄ (Шултенит)	809.200 808.295 »	/03./10	*	3.07-3.78
$Pb_{\epsilon}(AsO_{4})_{2}OH$	2653.493 »	2496.659	»	6.09
(Гидроксомиметит)		,,		,
$Pb_5(AsO_4)_3OH \cdot H_2O$	2922.643 »	2751.009	»	6.05
Rb ₃ AsO ₄	1500.360 [14]	1072.645	$RbAsUO_6 \cdot 3H_2O$	33.25
RbH ₂ AsO ₄	1037.160 »	934.440	»	10.42
Rb ₂ HAsO ₄	1282.570 »	1003.542	»	24.41
Rb ₂ UO ₄	1800.140 [20]	1668.527	»	7.59
$Sr_3(AsO_4)_2$	3080.100 [14]	2848.051	$Sr(AsUO_6)_2 \cdot 8H_2O$	7.83
SrUO ₄	1881.360 [20]	1895.176	»	-0.73
$Zn_3(AsO_4)_2$	1895.000 [15]	1792.073	$Zn(AsUO_6)_2 \cdot 12H_2O$	5.58
$Zn_3(AsO_4)_2 \cdot H_2O$	2146.100 »	2031.372	»	5.49
$Zn_3(AsO_4)_2 \cdot 2.5H_2O$	2615.000 »	2390.319	»	8.97
(Леграндит)				
$Zn_2(AsO_4)OH \cdot H_2O$	1488.600	1418.604	»	4.81
(Леграндит)	1488.471 »			
$Zn_3(AsO4)_2 \cdot 8H_2O$	3795.200	3706.459	»	2.37 - 2.99
(Коттингит)	3819.148 »			
Zn ₂ (AsO ₄)OH	1252.900	1179.305	»	6.05
(Адамит)	1252.771 »			
$UO_3 \cdot H_2O$	1394.800 [14]	1392.080	$(\mathrm{UO}_2)_3(\mathrm{AsO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$	0.20
$UO_3 \cdot 2H_2O$	1630.800 »	1641.749	*	-0.67
$UO_2(OH)_2 \cdot H_2O$	1637.100 [21]	1641.749	*	-0.28
(CKymm) PbCu (AsO) (OH)	1808 480 [15]	2102 343	$C_{11}(\Lambda_{\rm S} \cup \Omega_{\rm s}) \rightarrow 8H(\Omega + u^{*}(\text{Pb}\Omega))$ (ref. 3)	15.02
(Бэйлдонит)	1808.480 [15]	2102.343	$Cu(ASOO_{6/2} - SII_2O + y + (100) + (100).$	-15.02
»	»	1832.728	Рb(AsUO ₆) ₂ · 8H ₂ O + <i>y</i> *(CuO) (табл. 3)	-1.33
CaZnAsO ₄ OH	1687.617 »	1536.584	Ca(AsUO ₆) ₂ · 10H ₂ O + <i>y</i> *(ZnO) (табл. 3)	9.37
(Аустинит)				
»	*	1515.559	Zn(AsUO ₆) ₂ · 12H ₂ O + <i>y</i> *(CaO) (табл. 3)	10.7
CaCuAsO ₄ OH	1470.611 »	1387.753	$Ca(AsUO_6)_2 \cdot 10H_2O + y^*(CuO)$ (табл. 3)	5.80
(Конихальцит)				
*	*	1380.890	$Cu(AsUO_6)_2 \cdot 8H_2O + y^*(CaO)(табл. 3)$	6.29
РbCuAsO ₄ OH (Дуфтит)	960.268 »	947.326	Cu(AsUO ₆) ₂ · 8H ₂ O + <i>y</i> *(PbO) (табл. 3)	1.36
»	»	942.125	Рb(AsUO ₆) ₂ · 8H ₂ O + <i>y</i> *(CuO) (табл. 3)	1.91
$Cu_2Al_7(AsO_4)_4(OH)_{13} \cdot 12H_2O$ (Церулит)	11615.692 »	12624.267	$Cu(AsUO_6)_2 \cdot 8H_2O + y^*(Al_2O_3)$ (табл. 3)	-8.32
»	»	12028.933	Аl(AsUO ₆) ₂ (OH) · 13H ₂ O + <i>y</i> *(CuO) (табл. 3)	-3.50
PbAl ₃ (AsO ₄) ₂ (OH) ₅ \cdot H ₂ O	4390.300 [12]	4433.881	$Pb(AsUO_6)_2 \cdot 8H_2O + y^*(Al_2O_3)$ (табл. 3)	-0.99
(+ 151111000p1111) »	»	4374.536	Al(AsUO ₆) ₂ (OH) · 13H ₂ O + <i>v</i> *(Pb) (табл. 3)	0.36

Таблица 6. Окончание

Соединение (Минерал)	$-\Delta_{\rm f}G^\circ$ (литература)	$-\Delta_{\rm f}G^\circ$ (расчет)	Калибровочные соединения	δ, %
$CaAl_3(AsO_4)_2(OH)_5 \cdot H_2O$	4884.160 »	4907.375	Са(AsUO ₆) ₂ · 10H ₂ O + <i>y</i> *(Al ₂ O ₃) (табл. 3)	-0.47
(Арсенокрандалит)				
*	*	4808.101	Al(AsUO ₆) ₂ (OH) · 13H ₂ O + <i>y</i> *(Ca) (табл. 3)	1.57
$BaAl_3(AsO_4)_2(OH)_5 \cdot H_2O$	4913.790 »	4863.763	Ва $(AsUO_6)_2 \cdot 7H_2O + y^*(Al)$ (табл. 3)	1.02
(Арсеногорциксит)				
»	*	4775.310	Al(AsUO ₆) ₂ (OH) · 13H ₂ O + <i>y</i> *(Ba) (табл. 3)	2.86
$SrAl_3(AsO_4)_2(OH)_5 \cdot H_2O$	4899.450 »	4873.619	Sr(AsUO ₆) ₂ · 8H ₂ O + <i>y</i> *(Al) (табл. 3)	0.53
(Арсеногоязит)				
»	*	4799.383	Al(AsUO ₆) ₂ (OH) \cdot 13H ₂ O + y^* (Sr) (табл. 3)	2.06

повторение данных

менее предпочтительно, чем, например, метода корреляционного анализа. Получаемые в этом методе уравнения множественной регрессии учитывают данные для множества соединений, состоящих как из двух, так и более оксидных или структурных компонентов химических составов.

СПИСОК ЛИТЕРАТУРЫ

- 1. IMA, 2019. The New IMA List of Minerals a Work in Progress. Updated: March 2019. http://nrmima.nrm.se
- Кристаллографическая и кристаллохимическая база данных для минералов и их структурных аналогов. http://mincryst.iem.ac.ru/
- Clark S.B., Ewing R.C., Schaumloffel J.C. // J. Alloys Compounds. 1998. V. 271–273. P. 189.
- Chen F., Ewing R.C., Clark S.B. // Am. Mineral. 1999. V. 84. P. 650.
- 5. La Iglesia A. // Estud. Geol. 2009. V. 65. P. 109.
- Черноруков Н.Г., Сулейманов Е.В., Нипрук О.В. и др. // Радиохимия. 2006. Т. 48. С. 146.
- 7. Черноруков Н.Г., Нипрук О.В., Сулейманов Е.В. и др. // Там же. 2009. Т. 51. С. 388.
- Черноруков Н.Г., Нипрук О.В., Пыхова Ю.П. и др. // Журн. общ. химии. 2012. Т. 82. С. 1263.
- 9. Chernorukov N.G., Karyakin N.V., Suleimanov E.V. et al. // Radiochem. 2002. V. 44. P. 216.
- 10. *Еремин О.В., Эпова Е.С., Русаль О.С. и др. //* Журн. неорган. химии. 2016. Т. 61. С. 1053.
- 11. *Нипрук О.В., Черноруков Н.Г., Пыхова Ю.П. и др. //* Радиохимия. 2011. Т. 53. С. 410.
- 12. *Gaboreau S., Viellard Ph.* // Geochim. et Cosmochim. Acta. 2004. V. 68. P. 3307.
- Yokokawa H. // J. National Chemical Laboratory for Industry. Tsukuba Ibaraki 305, Japan. 1988. V. 83. P. 27.

- 14. *Wagman D.D., Evans W.H., Parker V.B. et al.* // J. Phys. Chem. Ref. Data. 1982. V. 11. Suppl. 2.
- 15. Nordstrom D.K., Majlan J., Konigsberger E. // Rev. Mineral. Geochem. 2014. V. 79. P. 217.
- Mercury L., Vieillard Ph., Tardy Y. // Appl. Geochem. 2001. V. 16. P. 161.
- 17. *Charykova M.V., Krivovichev V.G., Depmeir W. //* Geol. Ore Dep. 2010. V. 52. P. 689.
- Drahota P., Filippi M. // Environ. Intern. 2009. V. 35. P. 1243.
- 19. Gorman-Lewis D., Burns P.C., Fein J.B. // J. Chem. Thermodynamics. 2008. V. 40. P. 335.
- 20. Shvareva T.Y., Fein J.B., Navrotsky A. // Ind. Eng. Chem. Res. 2012. V. 51. P. 605.
- 21. *Булах А.Г., Булах К.Г.* Физико-химические свойства минералов и компонентов гидротермальных растворов. Л.: Недра, 1978. 167 с.
- 22. Pantuzzo F.L., Santos L.R.G., Ciminelli V.S.T. // Hydrometallurgy. 2014. V. 144–145. P. 63.
- 23. *Majzlan J., Zittlau A.H., Grevell K. et al.* //Canad. Mineral. 2015. V. 53. P. 937.
- 24. *Majzlan J., Stevko M., Dach E. et al.* // Eur. J. Mineral. 2017. V. 29. P. 5.
- Majzlan J., Nielsen U.G., Dach E. et al. //Mineral. Mag. 2018. https://doi.org/10.1180/mgm.2018.107

26. Cevirim-Papaioannou N., Yalcintas E., Gaona X. et al. //

- Appl. Geochem. 2018. V. 98. P. 237.
- 27. Muhr-Ebert E.L., Wagner F., Walther C. // Applied Geochemistry. 2019. V. 100. P. 213.
- Константы неорганических веществ: справочник / Р.А. Лидин, Л.Л. Андреева, В.А. Молочко; под ред. Р.А. Лидина. 2-е изд., перераб. и доп. М.: Дрофа, 2006. 685 с.