_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 541.8

ОБЪЕМНЫЕ СВОЙСТВА ВОДНЫХ РАСТВОРОВ АЦЕТАМИДА В ИНТЕРВАЛЕ ТЕМПЕРАТУР 274.15–333.15 К

© 2020 г. Д. М. Макаров^{а,*}, Г. И. Егоров^а, А. М. Колкер^а

^а Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия *e-mail: dmm@isc-ras.ru

Поступила в редакцию 15.02.2019 г. После доработки 15.02.2019 г. Принята к публикации 17.09.2019 г.

Измерены плотности водных растворов ацетамида до мольной доли $x_2 = 0.3875$ в широком интервале температур 274.15—333.15 К при атмосферном давлении. Рассчитаны парциальные мольные объемы воды и ацетамида, парциальные мольные изобарные расширяемости компонентов, а также предельные парциальные свойства ацетамида в воде. В области низких температур рассчитан сдвиг температуры максимальной плотности воды. Полученные результаты обсуждены с учетом взаимодействий растворенное вещество – растворитель и растворенное вещество – растворенное вещество.

Ключевые слова: плотность, ацетамид, водный раствор, объемные свойства **DOI:** 10.31857/S0044453720040111

Межмолекулярное связывание воды с функциональными фрагментами белков определяет трехмерную структуру и их биологическую активность [1]. Из-за большого количества и разнообразия таких взаимодействий возникают трудности выделения конкретных вкладов, ответственных за стабилизацию белка в условиях стресса. Поэтому до сих пор нет общепринятого механизма, который охарактеризовал бы термодинамическую устойчивость нативной структуры белка. В настояшее время один из действенных подходов – изучение модельных соединений, имеющих изолированный тип функциональной группы, которые встречаются в биологических системах, таких как аминокислоты, небольшие пептиды и их производные [2, 3]. Составление схемы аддитивности из таких функциональных групп дает возможность оценить термодинамические свойства полностью развернутой полипептидной цепи белка [4].

Амиды уксусной кислоты: ацетамид и N-метилацетамид представляют собой упрощенный пример пептидной связи и имеют несколько функциональных групп в белках и нуклеиновых кислотах. Например, они служат модельной системой для пептидной группы, боковых цепей аспарагина и глутамина. Понимание того, как эти группы могут взаимодействовать друг с другом и с окружающими их молекулами воды, может дать ценную информацию, объясняющую формирование нативной структуры белков. Ацетамид и его водные растворы были широко изучены экспериментально с помощью ИКспектроскопии [5], рамановской спектроскопии [6], диэлектрической релаксации [7] и осмометрии [8], а также расчетными методами молекулярной динамики [9] и квантовой химии [10, 11]. В литературе экспериментальных данных по объемным характеристикам водных растворов ацетамида представлено мало. Плотности этого раствора ранее были изучены в широком концентрационном интервале лишь при двух температурах: 293.15 [12, 13] и 298.15 К [13, 14]. В работах [15–20] изучали только сильно разбавленные растворы ацетамида в воде при 298.15 К.

В настоящей работе эксперимент выполнен в широких концентрационных и температурных интервалах и продолжает наши ранние исследования объемных свойств водных растворов биологически активных веществ с различным характером межмолекулярного взаимодействия в зависимости от состава, температуры и давления [21–23].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ацетамид (Асгоs, массовая доля 0.995) использовали без дальнейшей очистки. Содержание воды в амиде проверяли титрованием по методу Фишера, оно не превышало 5×10^{-5} мол. доли. Бидистиллированную и дегазированную воду с электропроводностью $< 2 \times 10^{-6}$ См см⁻¹ использовали для приготовления растворов гравиметрическим методом с точностью $\pm 5 \times 10^{-5}$ г. По оцен-

				· · ·				1 71	
<i>x</i> ₂	274.15 K	27	74.65 K	275.	15 K	275.65	K	276.15 K	
0.0000	0.99990	0	.99992	0.99	994	0.9999	95	0.99996	
0.0045	1.00115	1	.00115	1.00)116	1.0011	7	1.00117	
0.0070	1.00183	1	.00183	1.00)183	1.0018	4	1.00183	
0.0125	1.00336	1	.00335	1.00	334	1.0033	3	1.00331	
0.0221	1.00599	1	.00596	1.00	595	1.0059	0	1.00586	
0.0370	1.01000	1.	.00994	1.00	988	1.0098	2	1.00976	
0.0499	1.01330	1	.01323	1.01	316	1.0130	8	1.01299	
<i>x</i> ₂	276.65 K	27	77.15 K	277.0	65 K	278.15	K	288.15 K	
0.0000	0.99997	0	.99997	0.99	997	0.9999	6	0.99910	
0.0045	1.00117	1	.00116	1.00)115	1.0011	3	1.00013	
0.0070	1.00182	1	.00181	1.00)179	1.0017	7	1.00068	
0.0125	1.00329	1	.00327	1.00	324	1.0032	21	1.00193	
0.0221	1.00582	1	.00578	1.00	573	1.0056	8	1.00408	
0.0370	1.00968	1	.00961	1.00	955	1.0094	7	1.00737	
0.0499	1.01290	1	.01281	1.01	272	1.0126	1	1.01012	
0.0607						1.0151	1	1.01230	
0.0796						1.0192	4	1.01592	
0.0946						1.0223	2	1.01865	
0.1128						1.0258	2	1.02171	
0.1325						1.0293	4	1.02481	
0.1590						1.0335	4	1.02850	
0.1991						1.0385	57	1.03299	
0.2503						1.0437	5	1.03761	
0.3039								1.04106	
0.3455					•			1.04319	
<i>x</i> ₂	298.15 k	C	308.1	8.15 K 323.15 K		333.15 K			
0.0000	0.99704	ŀ	0.994	-03	0.9	98803		0.98319	
0.0045	0.99795	0.99795 0.994		.98872		8872	0.98381		
0.0070	0.99845).99845 0.99		528 0.9		8909		0.98415	
0.0125	0.99955	5 0.99		527 0.9		8994		0.98493	
0.0221	1.00145		0.997	797 0.9		99140		0.98629	
0.0370	1.00439)	1.000	60	0.99365		0.98830		
0.0499	1.00682		1.002	279	0.9	9548		0.98993	
0.0607	1.00875		1.004	54	0.9	9695		0.99124	
0.0796	1.01195		1.007	'37	0.9	9936		0.99338	
0.0946	1.01435		1.009	49	1.0	0116		0.99500	
0.1128	1.01706		1.011	189 1.0		00322		0.99686	
0.1325	1.01979		1.014	32	1.00531			0.99872	
0.1590	1.02307	1.017		25 1.0		0778		1.00101	
0.1991	1.02709)	1.020	83	1.01087		1.00380		
0.2503	1.03118		1.024	52	1.0)1396		1.00663	
0.3039	1.03429)	1.027	28	1.0	01634		1.00873	
0.3455	1.03618		1.028	97	1.0)1776		1.01004	
0.3875	1.03752		1.03020		1.0)1881		1.01098	

Таблица 1. Плотность (ρ , г см⁻³) водных растворов ацетамида при разных концентрациях и температурах

кам, ошибка в определении мольной доли ацетамида (x_2) составляла $\pm 1 \times 10^{-4}$. Плотности измеряли с помощью плотномера Anton Paar DMA-4500. Перел кажлым измерением плотномер калибровали сухим воздухом и бидистиллированной водой. Все измерения проводили при атмосферном давлении, ($p = 101.3 \pm 1.0 \text{ кПа}$), в интервале температур 274.15-333.15 К. При температурах 278.15, 288.15, 298.15, 308.15, 323.15 и 333.15 К измерения проводили для области составов до x₂ = 0.3875. В интервале 274.15-277.15 К с шагом в 0.5 К плотности измеряли для разбавленных растворов до мольной доли ацетамида в воде $x_2 = 0.0499$. Температуру поддерживали в пределах 0.01 К. Воспроизводимость значений плотности составляла 1×10^{-5} г см⁻³. Общая неопрелеленность при измерении плотности не превышала 1×10^{-4} г см⁻³.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Плотности водного раствора ацетамида при различных температурах представлены в табл. 1. Величины плотности увеличиваются с ростом концентрации ацетамида и уменьшаются при увеличении температуры.

На основе экспериментальных значений плотности рассчитаны парциальные мольные объемы воды (V_1) и ацетамида (V_2), которые были определены из уравнений:

$$V_1 = V_m - x_2 \left(\frac{\partial V_m}{\partial x_2}\right),\tag{1}$$

$$V_2 = V_m + (1 - x_2) \left(\frac{\partial V_m}{\partial x_2}\right),\tag{2}$$

где V_m — мольный объем смеси, x_2 — мольная доля ацетамида в растворе. Концентрационные зависимости парциальных мольных объемов V_1 и V_2 в интервале температура от 278.15 до 333.15 К показаны на рис. 1 и 2. Как можно видеть, рассчитанные парциальные мольные объемы ацетамида в разбавленной области незначительно уменьшаются с ростом концентрации амида, зависимости проходят через минимум около 0.05 мол. доли, а затем равномерно возрастают. С ростом температуры положение экстремума смещается в область большего разбавления водой. При высоком разбавлении наклон $\left(\frac{\partial V_2}{\partial x_2}\right)_{x_2 \to 0}$ отрицателен при всех изотермах, что, согласно выводам авторов ряда работ [24-26], демонстрирует проявление гидрофобности растворенной молекулы. В [12, 14] зависимость парциального мольного объема ацетамида не имеет минимума. В работе [14] при дифференцировании была использована аппроксимация полиномом третьей степени, что, по-видимому, послужило причиной сглаживания ми-

Рис. 1. Концентрационные зависимости парциального мольного объема воды в водном растворе при различных температурах: 1 - 278.15, 2 - 288.15, 3 - 298.15, 4 - 308.15, 5 - 323.15 и 6 - 333.15 К.

нимума на зависимости парциального мольного объема от состава. В работе [12] зависимость $V_2 = f(x_2)$ проходит через максимум, что ставит под сомнение полученные в этой работе экспериментальные данные по плотности.

В соответствии с соотношением Гиббса–Дюгема, концентрационная зависимость парциального мольного объема воды V_1 в области минимума V_2 проходит через слабовыраженный максимум при всех изученных температурах (рис. 1).

Парциальные мольные изобарные расширяемости компонентов раствора были вычислены по уравнению:

$$E_{p,i} = \left(\frac{\partial V_i}{\partial T}\right). \tag{3}$$

Зависимости парциальных мольных изобарных расширяемостей воды $(E_{p,1})$ и ацетамида $(E_{p,2})$ от состава раствора представлены на рис. 3 и 4 соответственно. На рис. 3 в разбавленной области растворенного вещества отсутствует область "отрицательной расширяемости", т.е. нет уменьшения парциального объема воды вследствие приращения температуры. Парциальная "отрицательная расширяемость", как аномалия, характерна для гидрофобных молекул, таких как трет-бутанол [27], а также наблюдалась для растворенных в воде амфифильных молекул – 1,2-пропандиола [28] и этилендиамина [29]. Отсутствие на представленной зависимости такой области ставит этот амид в один ряд с растворенными в воде гидрофильными молекулами, такими как этиленгликоль [30] и глицерин [31], у которых парциальная мольная расширяемость воды положительна.

Зависимость $E_{p,2} = f(x_2)$ характеризуется наличием максимума при $x_2 \approx 0.07$ и инверсией температурного коэффициента при $x_2 \approx 0.2$, что ука-

Рис. 2. Концентрационные зависимости парциального мольного объема ацетамида в водном растворе при различных температурах; *1*–*6* – см. рис. 1.

зывает на особенности взаимодействия ацетамид—ацетамид в растворе при данных составах.

Предельный парциальный мольный объем ацетамида в воде, V_2^{∞} , соответствует кажущемуся мольному объему при бесконечном разбавлении,

 $V_{\phi,2}^{\infty}$. Эти величины были описаны уравнением первого порядка кажущегося мольного объема от моляльности (*m*) с последующей экстраполяцией его на бесконечное разбавление:

$$V_{\varphi,2} = V_2^{\infty} + b_V m, \tag{4}$$

где b_V — коэффициент предельного наклона. Полученные величины предельных парциальных

Рис. 3. Концентрационные зависимости изобарной мольной расширяемости воды в водном растворе при различных температурах; *1*–*6* – см. рис. 1.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

Рис. 4. Концентрационные зависимости изобарной мольной расширяемости ацетамида в водном растворе при различных температурах; 1-6 – см. рис. 1.

мольных объемов ацетамида, V_2^{∞} представлены в табл. 2. Из табл. 2 видно, что полученные величины V_2^{∞} монотонно возрастают с ростом температуры, а также они хорошо согласуются с литературными данными при 298.15 К [15–18, 20]. Относительное отклонение между литературными и данными этой работы не превышает 1%. Измене-

Таблица 2. Предельный парциальный мольный объем ацетамида (V_2^{∞} , см³ моль⁻¹) и предельная изобарная расширяемость ацетамида ($E_{P,2}^{\infty}$, см³ моль⁻¹ K⁻¹) в воде при различных температурах

<i>Т</i> , К	V_2^{∞}	$E_{P,2}^{\infty}$
274.15	54.04	0.0652
274.65	54.1	0.0651
275.15	54.14	0.0650
275.65	54.17	0.0648
276.15	54.22	0.0647
276.65	54.25	0.0646
277.15	54.29	0.0644
277.65	54.33	0.0643
278.15	54.37	0.0642
288.15	54.99	0.0616
	55.57, 55.4 [15]	
	55.61 [16], 55.824 [17]	
298.15	55 [18], 55.6 [20]	0.0589
308.15	56.13	0.0563
323.15	56.95	0.0524
333.15	57.49	0.0498

ния молярной изобарной расширяемости при бесконечном разбавлении, $E_{P,2}^{\infty} = (\partial V_2^{\infty} / \partial T)_p$, ацетамида в воде при различных температурах показаны в табл. 2. Значения $E_{P,2}^{\infty}$ положительны и уменьшаются с повышением температуры.

Дополнительную информацию о гидратации ацетамида можно получить с помощь уравнения Хеплера [32], основанного на выражении:

$$(\partial C_{P,2}^{\infty}/\partial p)_T = -T(\partial^2 V_2^{\infty}/\partial T^2)_p, \tag{5}$$

где $C_{P,2}^{\infty}$ – предельная парциальная мольная изобарная теплоемкость ацетамида в воде. Положительное значение $(\partial^2 V_2^{\infty} / \partial T^2)_p$ связано с упрочнением структуры воды, а отрицательная величина – с разрушением ее структуры молекулами растворенного вещества. В исследуемом растворе мы получили при 298.15 К отрицательные значения $(\partial E_{P,2}^{\infty} / \partial T)_p = -2.6 \times 10^{-4}$ см³ моль⁻¹ K⁻², что, согласно данной теории, указывает на эффект разрушения структуры воды молекулами ацетамида.

Сдвиг температуры максимальной плотности (ТМП) водных растворов способен продемонстрировать характер действия этого вещества на структуру воды [33, 34]. Сдвиг ТМП ($\Delta \theta$) представляет собой разность значений для водного раствора и чистой воды. Ее зависимость от концентрации растворенного вещества, как правило, линейна и может быть описана линейным уравнением [35]:

$$\Delta \theta = K_D x_2, \tag{6}$$

где K_D — константа. Отрицательный сдвиг или отрицательная величина K_D связаны с разрушающими действиями растворенного вещества на структуру воды. Положительная величина константы относится к веществам, стабилизирующим структуру воды [36].

Добавки ацетамида к воде приводят к понижению ТМП, увеличивающемуся с возрастанием концентрации растворенного вещества. Уравнение (6) принимает вид: $\Delta \theta = -216x_2$. Отрицательные значения константы показывают, что ацетамид оказывает разрушающее воздействие на структуру воды.

Измерения плотности были выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований" ИХР РАН(http://www.isc-ras.ru/ru/struktura/ckp).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (№ 17-03-00309а и № 18-43-370010р_центр_а).

СПИСОК ЛИТЕРАТУРЫ

- Levy Y., Onuchic J.N. // Annu. Rev. Biophys. Biomol. Struct. 2006. V. 35. P. 389.
- Hedwig G.R., Hinz H.J. // Biophys. Chem. 2002. V. 100. P. 239.
- 3. Межевой И.Н., Баделин В.Г., Тюнина Е.Ю., Камкина С.В. // Журн. физ. химии. 2018. Т. 92. № 3. С. 399.
- 4. *Lee S., Shek Y.L., Chalikian T.V.* // Biopolymers. 2010. V. 93. № 10. P. 86.
- Panuszko A., Gojło E., Zielkiewicz J., Smiechowski M., Krakowiak J., Stangret J. // J. Phys. Chem. B. 2008. V. 112. P. 2483.
- 6. *D'Amico F., Rossi B., Camisasca G. et al.* // Phys. Chem. Chem. Phys. 2015. V. 17. № 16. P. 10987.
- Lyashchenko A.K., Lileev A.S., Kharkin V.S., Goncharov V.S., BorinaA. F. // Mendeleev Commun. 1997. V. 7. № 5. P. 169.
- Romero C.M., Gonzalez M.E. // J. Therm. Anal. Calorim. 2008. V. 92. № 3. P. 705.
- 9. Das S., Biswas R., Mukherjee B. // J. Phys. Chem. B. 2015.V. 119. № 1. P. 274.
- Copeland C., Menon O., Majumdar D., Roszak S., Leszczynski J. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 24866.
- 11. Krestyaninov M.A., Odintsova E.G., Kolker A.M., Kiselev M.G. // J. Mol. Liq. 2018. V. 264. P. 343.
- 12. Jelinska-Kazimierczuk M., Szydlowski J. // J. Solution Chem. 2001. V. 30. № 7. P. 623.
- Christoffers H.J., Kegeles G. // J. Am. Chem. Soc. 1963.
 V. 85. № 17. P. 2562.
- 14. *Егоров Г.И., Сырбу А.А., Колкер А.М. //* Журн. физ. химии. 1999. Т. 73. № 12. С. 2160.
- 15. *Herskovits T.T., Kelly T.M.* // J. Phys. Chem. 1973. V. 77. № 3. P. 381.
- Kiyohara O., Perron G., Desnoyers J.E. // Can. J. Chem. 1975. V. 53. № 21. P. 3263.
- 17. Giaquinto A.R., Lindstrom R.E., Swarbrick J., Lo Surdo A. // J. Solution Chem. 1977. V. 6. № 10. P. 687.

- Shahldi F., Farreil P.G., Edward J.T. // J. Chem. Soc., Faraday Trans. 1. 1977. V. 73. P. 715.
- 19. Lo Surdo A., Shin C., Millero F.J. // J. Chem. Eng. Data. 1978. V. 23. № 3. P. 197.
- 20. Tasker I.R., Spitser J.J., Surl S.K., Wood R.H. // J. Chem. Eng. Data. 1983. V. 28. № 2. P. 266.
- 21. *Egorov G.I., Makarov D.M.* // J. Mol. Liq. 2018. V. 254. P. 154.
- Makarov D.M., Egorov G.I. // J. Chem. Thermodyn. 2018. V. 120. P. 164.
- 23. Egorov G.I., Makarov D.M. // J. Mol. Liq. 2019. V. 278. P. 279.
- 24. *Franks F.Ed.* Water: A Comprehensive Treatise. New York: Plenum, 1972. V. 1 to 1980 V. 7.
- Tan M.L., Cendagorta J.R., Ichiye T. // J. Am. Chem. Soc. 2013. V. 135. P. 4918.
- Ashbaugh H.S., Barnett J.W., Saltzman A., Langrehr M., Houser H. // J. Phys. Chem. B. 2018. V. 122. № 13. P. 3242.
- 27. Egorov G.I., Makarov D.M. // J. Chem. Thermodyn. 2011. V. 43. P. 430.
- Makarov D.M., Egorov G.I., Kolker A.M. // J. Mol. Liq. 2016. V. 222. P. 656.
- 29. Egorov G.I., Makarov D.M., Kolker A.M. // Thermochim. Acta. 2016. V. 639. P. 148.
- 30. Егоров Г.И., Макаров Д.М., Колкер А.М. // Журн. общ. химии. 2010. Т. 80. С. 1267.
- 31. Egorov G.I., Makarov D.M., Kolker A.M. // Thermochim. Acta. 2013. V. 570. P. 16.
- 32. *Hepler L.G.* // Can. J. Chem. 1969. V. 47. № 24. P. 4613.
- Wada G., Umeda S. // Bull. Chem. Soc. Jpn. 1962.
 V. 35. P. 646.
- Franks F., Watson B. // Trans. Faraday Soc. 1967. V. 63. P. 329.
- 35. *Torres A.F., Romero C.M.* // J. Chem. Thermodyn. 2017. V. 105. P. 173
- Белоусов В.П., Панов М.Ю. Термодинамика водных растворов неэлектролитов. Л.: Химия, 1983. 264 с.