- ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 532.13

ОБЪЕМНЫЕ СВОЙСТВА СИСТЕМЫ МОНОЭТАНОЛАМИН–1,4-ДИОКСАН

© 2020 г. И.А. Солонина^{*a*}, М. Н. Родникова^{*a*,*}, Г. И. Егоров^{*b*}, Д. М. Макаров^{*b*}

^а Российская академия наук, Институт общей и неорганической химии им. Н.С. Курнакова, Москва, Россия ^b Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, Россия

> **e-mail: rodnikova@igic.ras.ru* Поступила в редакцию 28.05.2019 г. После доработки 28.05.2019 г. Принята к публикации 25.06.2019 г.

С целью обнаружения сольвофобных эффектов в растворителях с пространственной сеткой водородных связей измерена плотность растворов 1,4-диоксана (ДО) в моноэтаноламине (МЭА) в интервалах концентраций 0–0.2 м.д. ДО и температур 25–75°С. Из полученных результатов рассчитаны кажущиеся и избыточные кажущиеся мольные объемы ДО в системе МЭА–ДО. Полученные концентрационные и температурные зависимости объемных свойств ДО показывают отсутствие сольвофобных эффектов в исследованной жидкой системе, что объяснено недостаточной лабильностью сетки H-связей в МЭА в исследуемом нами температурном интервале. Полученные результаты работы сравнили с аналогичными литературными данными систем H_2O –ДО и этиленгликоль (ЭГ)–ДО. Отмечено, что ранее в системе H_2O –ДО был обнаружен гидрофобный эффект, а в системе ЭГ–ДО в температурном интервале (25–75°С) сольвофобный эффект отсутствует (показано по данным объемных свойств).

Ключевые слова: сольвофобные эффекты, водородные связи, плотность растворов, объемные свойства 1,4-диоксана

DOI: 10.31857/S0044453720040196

В качестве растворителя был выбран МЭА, который, так же как и вода и ЭГ обладает пространственной сеткой водородных связей, одним из основных свойств которой является лабильность (широкое распределение по углам и расстояниям водородной связи, способность образовывать пустоты) [1, 2]. С этим свойством пространственной сетки Н-связей связан сольвофобный эффект в растворах неэлектролитов. Физико-химические свойства МЭА, а также H₂O и ЭГ (для сравнения) представлены в табл. 1. Следует отметить большую вязкость и большую температурную зависимость вязкости ЭГ и МЭА по сравнению с водой. при почти одинаковых плотностях, во всяком случае, у H₂O и MЭА. Сравнение коэффициентов самодиффузии молекул МЭА и ЭГ с коэффициентом самодиффузии воды показывает значительно меньшую подвижность их молекул.

В качестве неэлектролита был выбран 1,4-диоксан, представитель класса циклических простых эфиров, молекула которого представляет собой шестичленный цикл с двумя атомами кислорода в пара-положении. Наиболее стабильная конформация в газовой и кристаллической фазах — "кресло" [9, 10]. В кристалле две фазы: "фаза I" при 279 К и "фаза II" при 153 К [10]. Дипольный момент молекулы близок к 0 (~0.38D) [7], электронодонорная способность – $DN_{SbCl_5} = 14$ [8]. Физико-химические свойства ДО представлены в табл. 1.

Литературные данные по объемным свойствам систем $H_2O-ДO$ [11] и ЭГ-ДО [12] показывают наличие гидрофобного эффекта в водной системе и отсутствие сольвофобного эффекта в этилен-гликолевой системе в интервале температур 25–75°С.

Представляло интерес исследовать объемные свойства системы МЭА–ДО и сравнить полученные результаты с литературными данными.

ЭКСПЕРИМЕНТАЛЬНАЯ И РАСЧЕТНАЯ ЧАСТЬ

МЭА марки Acros чистоты 99 мас. % и ДО марки SIGMA-ALDRICH чистоты 99.8 мас. % применяли без дополнительной очистки. Все операции проводили в сухой камере в токе сухого азота. Растворы готовили гравиметрическим методом. Погрешность при приготовлении растворов не

	H ₂ O	ЭГ	МЭА	до
М, г/моль	18.0153	62.0678	61.0831	88.1051
<i>Т</i> _{пл} , °С	0	-12.9	10.3	11.8
<i>Т</i> _{кип} , °С	100	197	170	101
$\rho^{(25^{\circ}C)} \times 10^{3}$, кг/м ³	0.99707	1.113	1.012	1.028
$\eta^{(25^{\circ}C)} \times 10^{-3}$, Па с	0.8903	16.16 ^(25°C)	18.95 ^(25°C)	1.2
		1.52 ^(100°C)	1.87 ^(100°C)	
$D^{(25^{\circ}C)} \times 10^5$, cm ² /c	2.299	0.083	0.055	1.09
μ, D	1.83	2.88	2.27	0.38
$DN_{\rm SbCl_5}$	18	18.5	41	2.84

Таблица 1. Физико-химические характеристики растворителей [3-8]

Таблица 2. Плотности моноэтаноламиновых растворов диоксана (ρ, г/см³) в интервале температур 25–75°С (*x*₂ – мольная доля ДО)

<i>x</i> ₂	25°C	35°C	45°C	55°C	65°C	75°C
0	1.0128	1.00488	0.99692	0.98888	0.98078	0.9726
0.0092	1.01307	1.00512	0.99711	0.98904	0.98089	0.97267
0.0297	1.01364	1.0056	0.99751	0.98935	0.98112	0.97281
0.0500	1.01416	1.00605	0.99788	0.98965	0.98133	0.97293
0.0694	1.01463	1.00645	0.9982	0.9899	0.9815	0.97302
0.0923	1.01517	1.00691	0.99856	0.99017	0.98169	0.97312
0.1143	1.01567	1.00732	0.99889	0.99041	0.98183	0.97317
0.1334	1.01608	1.00765	0.99915	0.99059	0.98194	0.97319
0.1506	1.01643	1.00793	0.99937	0.99074	0.98201	0.97319
0.1754	1.01693	1.00833	0.99967	0.99093	0.98211	0.97318
0.2037	1.01747	1.00877	0.99999	0.99115	0.9822	0.97317
1	1.02811	1.01678	1.0054	0.99393	0.98237	0.9707

превышала 2×10^{-5} мол.доли. Содержание воды в обоих растворителях не превышало 0.02 мас. %.

Измерения плотности проводили с помощью вибрационного плотномера Anton Paar DMA-4500. Измерения проводили при атмосферном давлении 0.101 ± 0.003 МПа в интервале температур 25–75°С. Методика эксперимента описана в [12]. Погрешность в измерении температуры не превышала 0.01° С. Общая погрешность в приготовлении растворов не превышала 5×10^{-5} мол.доли. Полученные результаты приведены в табл. 2.

Из полученных результатов по плотности растворов в системе ДО–МЭА в интервале температур 25–75°С рассчитаны кажущиеся мольные объемы ДО и избыточные кажущиеся мольные объемы ДО. Полученные результаты представлены на рис. 1 и 2 в виде концентрационных зависимостей в интервалах концентраций 0–0.2 мол.доли. ДО и температур 25–75°С (через каждые 10°С).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как было показано ранее [11], зависимость из-

быточных кажущихся мольных объемов ДО ($V_{\phi 2}^{E}$) от x_2 в системе H₂O–ДО характеризуется наличием острого минимума при малых концентрациях, глубина которого уменьшается с ростом температуры. Такая экстремальная зависимость типична для водных растворов молекул с большими неполярными группами, что является проявлением гидрофобной гидратации молекул неэлектролита, вследствие взаимодействия молекул неэлектролита с водной сеткой Н-связей, когда неполярные (гидрофобные) группы, внедряясь в сетку, уменьшают мольный объем неэлектролита в смеси. Можно предположить, что в некоторых неводных растворителях с пространственной сеткой водородных связей можно обнаружить аналогичное явление, которое принято называть сольвофобной сольватацией [1, 2].

Рис. 1. Концентрационные зависимости кажущегося мольного объема ДО в моноэтаноламиновых растворах ($V_{\phi2}$, см³/моль) в интервале температур: 1 - 25, 2 - 35, 3 - 45, 4 - 55, 5 - 65, $6 - 75^{\circ}$ С.

На рис. 1 и рис. 2 приведены зависимости кажущихся ($V_{\phi 2}$) и избыточных кажущихся мольных объемов ДО ($V_{\phi 2}^E$) в системе МЭА–ДО, рассчитанных из данных по плотности в интервале концентраций 0–0.2 м.д. ДО при температурах 25–75°С. Расчеты проводились по формулам описанным ранее [13, 14].

Как видно из рис. 1, кажущийся мольный объем ДО монотонно возрастает как с увеличением концентрации ДО в растворе, так и с увеличением температуры. Полученные зависимости похожи на данные по кажущимся объемам ДО в системе ЭГ–ДО [12] и отличаются от аналогичных зависимостей кажущихся объемов ДО в системе Н₂О-ДО [11], в которой обнаружены гидрофобные (сольвофобные) эффекты. Мы объясняем это большей лабильностью пространственной сетки воды, малой вязкостью и большей подвижностью ее молекул; поэтому большей способностью образовывать пустоты в структуре жидкой фазы, необходимые для сольвофобной сольватации молекул ДО. Кроме этого, следует отметить большой объем молекулы ДО и в виде "кресла" и в виде "твист-ванны" [15], требующий большую полость для проявления сольвофобного эффекта.

Избыточный кажущийся мольный объем ДО (рис. 2) при всех концентрациях отрицателен. С ростом концентрации диоксана отрицательность уменьшается, а при увеличении температу-

ры отрицательное значение $V_{\phi 2}^E$ увеличивается. Мы объясняем это изменением пространственной сетки H-связей в МЭА молекулами ДО и увеличением лабильности сетки с повышением тем-

Рис. 2. Концентрационные зависимости избыточного кажущегося объема ДО в моноэтаноламиновых растворах ($V_{\phi 2}^E$, см³/моль) в интервале температур: 1-25, 2-35, 3-45, 4-55, 5-65, $6-75^{\circ}$ C.

пературы вследствие большой температурной зависимости вязкости.

Таким образом, исследование объемных свойств системы МЭА-ДО в области относительно небольших концентраций ДО и малом температурном интервале показало отсутствие сольвофобных эффектов в данной системе. Это связано с большим объемом неполярной молекулы ДО, и относительно малой лабильностью пространственной сетки водородных связей в МЭА по сравнению с водой, а также вследствие несовершенства сетки в МЭА из-за дефектов, создаваемых -СН2-СН2-мостиками, а также значительно меньшей, чем у воды, подвижности молекул МЭА. Исходя из большой вязкости МЭА и ЭГ и большой зависимости ее от температуры сольвофобный эффект в таких неэлектролитных системах, на основе таких растворителей возможно, будет проявляться только при повышенных температурах.

Работа выполнена в рамках государственного задания ИОНХ РАН в сфере фундаментальных научных исследований при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-03-00215).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Родникова М.Н. //* Журн. физ. химии. 1993. Т. 67. № 2. С. 275
- Родникова М.Н. Об упругости пространственной сетки водородных связей в жидкостях и растворах: Структурная самоорганизация в растворах и на границе раздела фаз // М.Н. Родникова. Москва: Изд-во ЛКИ, 2008. 544 с. 1000 экз. ISBN: 978-5-382-00796-0

- 3. Aldrich. Handbook. 1989.
- Maham Y., Liew C.-N., Mather A.E. // Journal of Solution Chemistry. 2002. V. 31. Issue 9. P. 743. https://doi.org/10.1023/A:1021133008053
- Quijada-Maldonado E., Meindersma G.W., de Haan A.B. // J. Chem. Thermodynamics. 2013. V. 57. P. 500. https://doi.org/10.1016/j.jct.2012.08.024
- Родникова М.Н., Самигуллин Ф.М., Солонина И.А., Сироткин Д.А. // Журн. структ. химии. 2014. Т. 55. № 2. С. 276. https://doi.org/10.1134/S0022476614020097
- 7. Осипов О.Я., Минкин В.И., Грановский А.Д. Справочник по дипольным моментам. М.: Высш. школа, 1971.
- Буслаева М.Н., Цветков В.Г., Маркова В.Г. и др. // Коорд.химия 1983. Т. 9. № 6. С. 752.
- Chapman D.M., Hester R.E. // J. Phys. Chem. A. 1997. V. 101. P. 3382. https://doi.org/10.1021/jp9629320

- Buschmann J., Moller E., Luger P. // Acta Cryst. 1986.
 V. 42. P. 873. https://doi.org/10.1107/S0108270186094222
- Torres R.B., Marchiore A.C.M., Volpe P.L.O. // J. Chem. Thermodyn. 2006. V. 38. P. 526. https://doi.org/10.1016/j.jct.2005.07.012
- Rodnikova M.N., Solonina I.A., Egorov G.I. et al. // Russ. J. Phys. Chem. A. 2012. V. 86. P. 330. https://doi.org/10.1134/S0036024412020239
- 13. Егоров Г.И., Макаров Д.М. // Журн. физ. химии. 2008. Т. 82. № 10. С. 1982.
- Егоров Г.И., Макаров Д.М. // Там же. 2009. Т. 83. № 5. С. 805.
- Родникова М.Н., Бреславская Н.Н., Солонина И.А. и др. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 215.