_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 621.3.011

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ЖИДКОЙ ФАЗЫ ВЫСШИХ АЛКАНОЛОВ НА ЛИНИИ РАВНОВЕСИЯ ПАР–ЖИДКОСТЬ

© 2020 г. В. И. Журавлев^{а,*}, Т. М. Усачева^а

^а Московский государственный университет имени М.В. Ломоносова. Химический факультет, Москва, Россия

*e-mail: zhura-061@yandex.ru Поступила в редакцию 10.04.2019 г. После доработки 14.06.2019 г. Принята к публикации 17.09.2019 г.

Измерены статические диэлектрические проницаемости высших 1-алканолов выше температур кипения. Подробно рассмотрена конструкция ячейки и самой установки. Проведен анализ результатов полученных другими авторами. Проведено сравнение температурных зависимостей статической диэлектрической проницаемости $\varepsilon_s(T)$ на линии равновесия пар–жидкость в окрестности критической температуры жидкостей с водородными (Н) и без водородных связей. Проанализированы требования к выбору геометрии угла ассоциации O–H…O–H в молекулярно-динамических (МД)моделях для точного описания экспериментальных статических диэлектрических проницаемостей 1-алканолов.

Ключевые слова: 1-алканолы, диэлектрическая проницаемость, молекулярно-динамические модели **DOI:** 10.31857/S0044453720040299

Работа посвящена исследованию температурных зависимостей статических диэлектрических проницаемостей $\varepsilon_{seliq}(T)$ растворителей: таких как метанол, этанол, 1-бутанол при давлениях 91.3 кПа на частоте 1 МГц с точностью $\delta \varepsilon_{seliq} = 0.05\%$ [1], что позволило учесть их влияние на константы равновесия и константы скоростей реакций при физических и биологических исследованиях [2]. Особую роль в этих измерениях играет конструкция ячейки, выдерживающая большой перепад давлений.

Развитие молекулярной теории жидких систем опирается на фундаментальные исследования их структуры, природы межмолекулярных взаимодействий, динамических процессов, протекающих в жидкостях при тепловом движении молекул. Анализ диэлектрических данных позволяет определить ряд параметров, характеризующих структуру вещества [3].

Исследование температурных зависимостей статических диэлектрических проницаемостей $\varepsilon_{seliq}(T)$ растворителей таких как метанол, этанол, 1-бутанол при давлениях 91.3 кПа на частоте 1 МГц с точностью $\delta\varepsilon_{seliq} = 0.05\%$ [2] позволило учесть их влияние на константы равновесия и константы скоростей реакций при физических и биологических исследованиях.

Для определения критических температур *T*_{ст} при сверхточных измерениях давления паров чи-

стых жидкостей [4] и давления паров $P_{\rm cr}$ растворов на линии равновесия пар-жидкость [5] исследованные вещества достигали степени чистоты 99.95; 99.92; 99.94 мас. %. Измерения температурных зависимостей давления паров $P_v(T)$ высших алканолов 1-гексанола, 1-гептанола, 1-октанола [6] позволили уточнить их температуры кипения $T_{\rm b}$ (табл. 1).

Необходимо отметить, что при исследовании температурной зависимости диэлектрической проницаемости $\varepsilon_{se}(T)$ на линии равновесия пар—жидкость, включая критическую область, необходимо одновременно измерять $\varepsilon_{sv}(T)$ пара и $\varepsilon_{seliq}(T)$ жидкой фазы.

В работе [9] для низших алканов на линии равновесия пар—жидкость были изучены зависимости $\varepsilon_{se}(T)$ только жидкой фазы в интервале температур от 298 до 553 К, которые на 10–15 К были ниже критических температур T_{cr} (табл. 1). При измерениях использовалась герметичная трехэлектродная ячейка с толстыми стенками. Изменение давления внутри ячейки при нагревании не измерялось [9]. Использование подвижной коаксиальной ячейки небольшой высоты [10] позволило исключить влияние градиента плотностей в критической области и измерить зависимости $\varepsilon_{se}(T)$ пара и $\varepsilon_{seliq}(T)$ жидкой фазы 1-пропанола и 1-бутанола в широком интервале температур, включая критическую область. Значения $\varepsilon_{seliq}(T)$

Параметр	Метанол	Этанол	1-Пропанол	<i>вт-</i> Пропанол	1-Бутанол	<i>вт-</i> Бутанол	<i>изо-</i> Бутанол	<i>трет-</i> Бутанол
<i>T</i> _b , K	337.8	351.44	370.4	355.5	390.88	372.66	381.04	355.6
$t_{\rm b},^{\circ}{\rm C}$			97.15	82.5	117.73	99.5	108.11	
$T_{\rm cr}$, K	512.5	514.0	536.8	508.3	563.0	536.2	547.8	506.2
$p_{\rm cr}$, МПа	8.084	.084 613.7		4.754	4.414	4.202	4.295	3.972
	1-пентанол	<i>изо-</i> пентанол	1-гексанол	1-гептанол	1-окганол	<i>вт</i> -окганол	1-декаанол	ДЭЭ [8]
<i>T</i> _b , K	411.13	400.7	432.323 ^a	452.97 ^a	465.288 ^a	452.5	504.3	248.4
$T_{\rm cr}$, K	588.1	577.2	610.3	632.6	652.5	629.6	687.3	467 ± 1.0
$p_{\rm cr}$, МПа	3.779	3.930	3.455	3.121	2.928	2.81136	2.533	1.360

Таблица 1. Критические константы алканолов и диэтилового эфира (ДЭЭ) [7]

[10] согласовывались с $\varepsilon_{se}(T)$ [9]. В работах [11, 12] представлен анализ экспериментальных данных разных авторов $\varepsilon_{se}(T)$ метанола во всем интервале температур существования жидкой фазы от плавления до критической области.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для высших алканолов современные исследования равновесия пар—жидкость до критической области ограничиваются температурными зависимостями давления в паре и жидкой фазе [6], реже плотности и отсутствуют измерения диэлектрических проницаемостей пара $\varepsilon_{sv}(T)$ и жидкой фазы $\varepsilon_{seliq}(T)$. В связи с этим была создана установка (рис. 1), которая позволила измерить диэлектрическую проницаемость $\varepsilon_{seliq}(T)$ жидкой фазы высших алканолов на линии равновесия пар—жидкость. В отличие от работы [9] нам удалось компенсировать давление насыщенных паров с помощью разделительной камеры с сильфоном [13] (см. рис. 1).

Ячейка (1) представляла собой двухэлектродный герметичный цилиндрический конденсатор из нержавеющей стали. Внешний цилиндр диаметром 28 мм был заземлен. Внутренний электрод с внешним диаметром 24 мм и высотой 47 мм выполнял роль электровывода к высокочастотному измерителю индуктивностей и емкостей E12-1 и центрировался тефлоновым уплотнителем. Измерение емкости ячейки $C_{\varepsilon}(T)$ с исследуемой жидкостью проводилось на частоте 700 кГц. Погрешность измерения статических диэлектрических проницаемостей $\delta \varepsilon_{seliq}(T)$ высших алканолов жидкой фазы высших алканолов не превышала ±3.5%.

Используемая система регулировки давления до 150 бар, сконструированная для изучения дисперсии диэлектрической проницаемости методом цилиндрического стержня [13], позволяла

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

проводить измерения ε_{se} жидкой фазы алканолов на линии равновесия жидкость—пар выше их температур кипения T_b (табл. 1). Плавное изменение давления P_e обеспечивалось прессом (4) и контролировалось образцовым манометром (6) МО 160 × 160 ат. (159 бар). Жидкость, передающая давление, герметично отделялась от исследуемой жидкости гибким соединением (7) и разделительной камерой с сильфоном (8).

Температура внутри ячейки поддерживалась постоянной в точностью $\pm 0.2-0.3$ К термостатом Гепплера типа HB с термостатирующей жидкостью ПФМС-4. К сожалению, из-за недостатков системы нагрева измерения ε_{se} можно было проводить только в интервале температур от 293 до 513 К. Модифицированная Gnomix аррараtus (200 МПа) [14] позволила провести аналогичные РVT-измерения на линии равновесия пар-жидкость 2-этил-1-гексанола.

Результаты измерений диэлектрических проницаемостей жидкой фазы высших спиртов $\varepsilon_{seliq}(T)$ в интервале температур приведены в табл. 2 и на рис. 2.

Диэлектрические проницаемости пара $\varepsilon_{sv}(T)$ и жидкой фазы $\varepsilon_{sliq}(T)$ диэтилового эфира (ДЭЭ) в отсутствие H-связей были изучены на частоте 100 кГц [8] при термостатировании с точностью $\Delta T = \pm 0.03$ К как ниже T_{cr} , так и в сверхкритической области (вставка рис. 2б). Возможное влияние градиента плотности в критической области устранялось ультразвуковым перемешиванием.

При сравнении температурных зависимостей статической диэлектрической проницаемости $\varepsilon_{sliq}(T)$ на линии равновесия пар-жидкость в окрестности критической температуры жидкостей с водородными (Н) и без водородных связей наблюдались следующие различия. При $T < T_{cr}$ экспериментальные данные $\varepsilon_{sliq}(T)$ ДЭЭ [8] были описаны степенными функциями температурной

Рис. 1. Установка для измерения статической диэлектрической проницаемости жидкой фазы на линии равновесия жидкость—пар: *1* – двухэлектродная ячейка, *2* – измеритель индуктивностей и емкостей E12-1, *3* – термостат, *4* – пресс, *5* – вентиль, *6* – образцовый манометр, *7* – гибкое соединение, *8* – разделительная камера.

зависимости диаметра d(T) линии равновесия пар-жидкость (бинодали)

$$d(T) = \frac{\varepsilon_{\rm sliq} + \varepsilon_{\rm sv}}{2} = \varepsilon_{\rm cr}^{\rm d} + B_{\rm d}(T_{\rm cr} - T)^{2\beta} + A_{\rm d}(T_{\rm cr} - T)^{1-\alpha} + C_{\rm d}(T_{\rm cr} - T)$$
(1)

и эволюцию разности M(T)

$$M(T) = \varepsilon_{\rm sliq}(T) - \varepsilon_{\rm sv}(T) = B_{\varepsilon}(T_{\rm cr} - T)^{\beta} + \dots \qquad (2)$$

Линейная зависимость диэлектрических свойств ДЭЭ наблюдалась в координатах $\lg(\varepsilon_{sliq}(T) - \varepsilon_{sv}(T)$ от $\lg(T - T_{cr})$ [13]. Во всем интервале существования жидкой фазы величина $\varepsilon_{sliq}(T)$ уменьшалась от $\varepsilon_{sliq}(330 \text{ K}) \sim 4.5 \text{ до } \varepsilon_{sliq}(T_{cr} = 467 \text{ K}) \sim 1.5$. Аналогичные зависимости наблюдались для неполярных жидкостей и неассоциированных галогенводородов CFCl₃, C₆H₅Cl, C₆H₅F [10] во всем интервале температур существования жидкой фазы. Но на той же установке [10] $\varepsilon_{sliq}(T)$ 1-бутанола менялось от 3.2 до 1.8 только в узком интервале 523–563.0 К критической области.

Авторы [10] отметили, что такие отличия обусловлены различием молекулярных структур жидкой фазы, которые характеризуются фактором корреляции *g*, равным отношению среднестатистического квадрата дипольного момента молекулы μ_m^2 в жидкой фазе к квадрату дипольного момента молекулы в вакууме μ_v^2 . Используя ряд допущений, они рассчитали по уравнению Онзагера—Кирквуда—Фрелиха [10] только фактор корреляции *g*(*T*) галогенводородов:

$$g = \frac{\mu_m^2}{\mu_v^2} = \frac{9k_B T V_m}{4\pi N_A \mu_v^2} \frac{(\varepsilon_{\rm sliq} - \varepsilon_{\infty})(2\varepsilon_{\rm sliq} + \varepsilon_{\infty})}{\varepsilon_{\rm sliq}(\varepsilon_{\infty} + 2)^2}$$
(3)

в котором $k_{\rm B}$ — постоянная Больцмана, $N_{\rm A}$ — число Авогадро, T — температура, $V_{\rm m}$ — мольный объем.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Экспериментальные данные $\varepsilon_{sliq}(T)$ высших алканолов были описаны нами моделью цепочеч-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ЖИДКОЙ ФАЗЫ

<i>Т</i> , К	1-Пентанол	1-Гексанол	1-Гептанол	1-Окганол	1-Декаанол	<i>вт-</i> Бутанол	<i>изо-</i> Пентанол	<i>вт-</i> Окганол
	ε _{se}	ε _{se}	ε _{se}					
293	15.14	13.03	11.75	10.30	7.94	17.06	15.63	8.13
313	13.03	11.04	9.82	8.57	6.66	13.93	13.18	6.46
333	10.96	9.20	8.13	7.10	5.65	11.15	10.72	5.30
353	9.28	7.73	6.78	6.00	4.92	8.95	8.95	4.67
373	7.85	6.61	5.70	5.13	4.30	7.40	7.45	4.17
393	6.68	5.78	5.00	4.50	3.87	6.25	6.31	3.87
413	5.70	5.07	4.47	4.07	3.58	5.39	5.37	3.59
433	5.01	4.50	4.07	3.74	3.35	4.71	4.68	3.35
453	4.41	4.06	3.75	3.46	3.16	4.18	4.17	3.16
473	3.98	3.70	3.45	3.20	2.98	3.66	3.76	2.98
493	3.60	3.39	3.19	3.00	2.82	3.19	3.38	2.82
513	3.27	3.09	2.98	2.82	2.69	2.77	3.09	2.69

Таблица 2. Температурные зависимости $\varepsilon_{selig}(T)$ высших алканолов

ной ассоциации алканолов [15–17] с заторможенным вращением (рис. 3).

стоте определялась по уравнению Клаузиуса-Мосотти:

$$\varepsilon_{\infty} = \frac{V_{\rm m} + 2P_{\infty}}{V_{\rm m} - P_{\infty}}.$$
(4)

Деформационная поляризация алканолов рассчитывалась через поляризации связей $P_{\infty 2} =$ $= n_{\rm CH} P_{\infty}({\rm C-H}) + n_{\rm CC} P_{\infty}({\rm C-C}) + 2P_{\infty}({\rm C-OH})$, где $P_{\infty}({\rm C-H}) = 1.70 \text{ см}^3 \text{ моль}^{-1}$, $P_{\infty}({\rm C-C}) = 1.22 \text{ см}^3$ моль⁻¹, $P_{\infty}({\rm C-OH}) = 4.76 \text{ см}^3 \text{ моль}^{-1}$ [15].

Согласно модели 1 рассчитанный параметр заторможенного вращения молекул 1-алканолов внутри цепочек вокруг H-связей $\eta = \cos \varphi_1 =$ 0.250–0.378 [16] возрастал с увеличением длины углеводородного радикала (табл. 3).

Обзор МД-моделей метанола [18] показал, что рассчитанные значения $\varepsilon_{seliq}(T)$ (298 K) = 17.7–32 \pm 4 могли отличаться от экспериментального ε_{se} = 32.7 до 1.8 раза. В рамках предлагаемой МД-модели [18] была показана необходимость учитывать дипольную корреляцию кластер-кластер, которая вносит дополнительный 20%-й вклад в величину ε_{smd} .

При анализе возможностей МД-модели [19], учитывающей полярность гидроксильной группы рассчитанные $\varepsilon_{smd}(298 \text{ K})$ 1-алканолов ($n_{\rm C} = 1-8$) сравнивались с величинами ε_{se} [20]. С увеличением длины углеводородного радикала от метанола до 1-деканола погрешность заниженных значений ε_{smd} возрастала от -15.15 до -71.8% (табл. 3).

Наиболее точные результаты были получены в термодинамической МД-модели 2 (рис. 4), учитывающей геометрическую конфигурацию структуры водородой связи [11].

проницаемость ε_∞ при бесконечно большой ча-

Рис 2. Температурные зависимости статической диэлектрической проницаемости $\varepsilon_{seliq}(T)$ алканолов от: а – $\varepsilon_{seliq}(T_{cr} - T)$ [7]: *1* – метанол ($T_{cr} = 512.5$ K), *2* – этанол ($T_{cr} = 514.0$ K), *3* – 1-пропанол ($T_{cr} = 536.8$ K), *4* – вт-пропанол ($T_{cr} = 508.3$ K), *5* – 1-бутанол ($T_{cr} = 563.0$ K), *6* – изо-бутанол ($T_{cr} = 547.8$ K), *7* – вт-бутанол ($T_{cr} = 536.2$ K), *8* – вт-бутанол на данной установке, *9* – трет-бутанол ($T_{cr} = 506.2$ K): вставка $\varepsilon_{sel-iq}(T)$ 1-бутанол [10]; *6* – $\varepsilon_{seliq}(T)$: *1* – 1-пентанол, *2* – изо-пентанол, *3* – 1-гептанол, *4* – 1-октанол, *5* – 1-деканол, *6* – изо-пентанол, *7* – вт-бутанол, *8* – вт-октанол: вставка – $\varepsilon_{sv}(T)$ пара и $\varepsilon_{seliq}(T)$ ДЭЭ [8].

Рис. 3. Модель 1 заторможенного вращения молекул при цепочечной ассоциации 1-алканолов [15].

Рис. 4. Структура димера и цепочек при ассоциации за счет образования *z*_{*ij*} межмолекулярных водородных (H) связей в термодинамической модели 2 цепочечной ассоциации 1-алканолов [11].

На основании предварительных МД-расчетов фактора корреляции g_{max} метанола [11] был выбран внутримолекулярный тетраэдрический угол

 $\phi_2 = 109.47^\circ$, при котором образовывались максимум три H-связи (две от кислорода и одна с водородом).

Параметр	Метанол	Этанол	1-Пропанол	1-Бутанол	1-Пентанол	1-Гексанол	1-Гептанол	1-Октанол	Ссилка
<i>Т</i> , К	298	298	298	298	298	298	295	293	Ссылка
ε _{sexp}	32.6	24.3	20.1	17.51*	13.9	13.3	12.1	10.3	[20]
ϵ_{smd}	27.7	18.9	14.5	11.4	8.9	8.6	8.9	2.9	[19]
$\delta\epsilon_{s}, \%$	-15.1	-22.2	-27.9	34.9	-36.0	-35.3	-26.4	-71.8	
Т, К	293								
ε _{sexp}	33.0	25.3	20.8	17.8	15.1	13.0		10.3	[20]
ϵ_{smd}	34.3	24.8	20.7	18.4	14.9	12.9		10.0	[11]
$\theta_{md}, ^{\circ}$	118.6	122.1	126.8	128.6	130.4	128.0		132.4	
φ ₁ , °	104.48	107.34	109.27	110.85	111.22	111.72	112.03	112.21	[15]
$(\theta_{md} - \phi_1), \circ$	14.1	14.8	17.5	17.7	19.2	16.3		20.2	
$\epsilon_{s exp}$			20.8	18.13	15.14	13.03	11.75	10.30	[16]
ϵ_{sth}			21.2	17.52	15.20	12.87	11.81	10.36	[10]
$\delta\epsilon_{s}, \%$			1.9	3.36	0.4	1.23	0.5	0.6	[14]

Таблица 3. Сравнение $\varepsilon_{selig}(T)$ [9] и $\varepsilon_{smd}(T)$ 1-алканолов

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 4 2020

Фиксируя данную величину ϕ_2 для анализируемых алканолов, авторы подбирали два основных параметра геометрии ассоциации: угол O–H..O– H= θ_{md} при образовании водородных связей и соs(ϕ_2) и рассчитали фактор корреляции g_{max} [11].

$$g_{\max}(T) = 1 + \frac{z_{ij} \cos \gamma_{ij}}{\cos \theta_{ij} + 1}.$$
 (5)

Подставив значения $g_{max}(T)$ были определены с высокой точностью $\varepsilon_{smd2}(293 \text{ K})$ 1-алканолов (табл. 3). Термодинамическая модель 2 [11], используя при выборе параметров цепочечной ассоциации базы данных для алканолов DIPPR [21] и The Landolt-Börnstein Database [22], описала зависимость ε_{smd2} метанола от температуры плавления до критической области.

Данные расчеты коррелируют с моделью 1 цепочечной ассоциации алканолов [15–17]. В МДмодели 1 величины ϕ_1 , определяющие угловое положение звена цепочки внутри ее валентного конуса ($\phi_1 = 0$ для транс-положения) приведены в табл. 3. Они меньше МД-параметра θ_{md} . С ростом длины углеводородного радикала различие ($\theta_{ij} - \phi_{ij}$)° увеличивалось от 14.1 до 20.2° (табл. 3).

Таким образом, приведенные исследования показали, что статические диэлектрические проницаемости 1-алканолов выше температур кипения отражают различие их молекулярных структур за счет разрыва межмолекулярных H-связей. Полученные требования к выбору геометрии угла ассоциации О–Н...О–Н в молекулярно-динамических моделях позволили получить более точное описание экспериментальных статических диэлектрических проницаемостей 1-алканолов.

СПИСОК ЛИТЕРАТУРЫ

- Mohsen-Nia M., Amiri H., Jazi B. // J. Sol. Chem. 2010. V. 39. P. 701.
- Vishwam T., Parvateesam K., Shaik Babu, Sreehari Sastry S., Murthy V.R.K. // Indian. J. Pure Appl. Phys. 2016. V. 54. P. 597.

- Журавлев В.И. // Журн. физ. химии. 1992. Т. 66. № 1. С. 225.
- Feng X., Hu X.X., Lin H., Duan Y. // Fluid Phase Equil. 2010. V. 290. P. 127.
- Hou S.-X., Duan Y.-Y. // Fluid Phase Equil. 2010.
 V. 290. P. 121.
- Čencsky M., Rohač V., Růžička K., Fulem M., Aim K. // Fluid Phase Equil. 2010. V. 298. P. 192.
- 7. CRC Handbook of Chemistry and Physics. 84th Ed. D.R. Lide 2003–2004. CRC Press.
- Drozd-Rzoska A., Rzoska S.J. // J. Chem. Phys. 2016. V. 144. P. 224506.
- Dannhauser W., Bahe L.W. // J. Chem. Phys. 1964. V. 40. P. 3058.
- Gerschel A., Brot C. // Mol. Phys. 1971. V. 20. № 2. P. 279.
- Maribo-Mogensen B., Kontogeorgis G.M., Thomsen K. // J. Phys. Chem. B. 2013. V. 117. № 12. P. 3389.
- Durov V.A., Shilov I.Y. // J. Mol. Liquid. 2007. V. 137. P. 300.
- 13. *Левин В.В., Усачева Т.М., Петросян В.Г.* // Приборы и техника эксперимента. 1971. № 2. С. 167.
- Fragiadakis D., Roland C.M., Casalini R. // J. Chem. Phys. 2010. V. 132. P. 144505 DRS 2-ethyl-11-hexsanol.
- 15. *Левин В.В.* // Физика и физико-химия жидкостей. Вып. 1. М.: Изд-во МГУ, 1972. С. 176.
- 16. *Левин В.В., Усачева Т.М.* // Вестн. Моск. универ. 1976. № 2. С. 238.
- Усачева Т.М., Шахпаронов М.И. // Сб. Современные проблемы физической химии. Изд-во МГУ, 1981. Т. 12. С. 259.
- Shilov I.U. // Molecular Physics. 2015. V. 113. № 6. P. 570.
- Kulschewski T., Pleiss J. // Molecular Simul. 2013.
 V. 39. № 9. P. 754.
- 20. *Maryott A.A., Smith E.R.* Table of dielectric constants of pureliquids. G.P.O. Washington. 1951
- Design Institute for Physical Properties (DIPPR) Project 801 Database, 2012 ed. http://www.aiche.org/dip-pr.
- 22. The Landolt-Börnstein Database, http://www.springermaterials. com (accessed Aug 1, 2012).