____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УЛК 544.03.032.76

КОМПЛЕКСООБРАЗОВАНИЕ СЕРЕБРА (I) С 2-МЕРКАПТОБЕНЗИМИДАЗОЛОМ В ВОДНО-ЭТАНОЛЬНЫХ РАСТВОРАХ

© 2020 г. С. М. Сафармамадов^{a,*}, З. И. Каримова^{a,*}, Ю. Ф. Баходуров^{a,*}, К. С. Мабаткадамзода^{a,*}

аТаджикский национальный университет, Душанбе, Таджикистан

*e-mail: sash65@mail.ru

Поступила в редакцию 04.07.2019 г. После доработки 18.11.2019 г. Принята к публикации 25.11.2019 г.

Методом потенциометрического титрования исследован процесс комплексообразования серебра(I) с 2-меркаптобензимидазолом (MБ) в растворе, содержащем различное количество этилового спирта. В этих же условиях изучены кислотно-основные свойства 2-меркаптобензимидазола. Показано, что молекула 2-меркаптобензимидазола в области рН 0.5-2.5 протонирована, при рН 7-8 молекула МБ преимущественно (99.72%) находится в форме нейтральной молекулы, а выше рН 11 существует в виде отрицательно заряженного иона L^- . Установлено, что при взаимодействии Ag(I) с МБ образуются две комплексные формы. Рассчитаны общие константы устойчивости моно- и бислигандного комплексов серебра при различном содержании этанола в растворе. Установлено, что возрастание процентного содержания этанола в растворе приводит к увеличению устойчивости комплексов серебра (I) с МБ.

Ключевые слова: серебро(I), 2-меркаптобензимидазол, комплексообразование, энергия Гиббса, общая константа устойчивости, водно-органический растворитель

DOI: 10.31857/S0044453720060199

Производные имидазола обладают специфической биологической активностью и широко применяются в медицинской практике. Координационные соединения имидазола и его производных играют важную роль в биохимических процессах, происходящих в живых организмах [1]. В этой связи, изучение комплексообразования лигандов из класса имидазолов с металлами, обладающими антимикробной активностью, представляет определенный интерес. В работе [2] изучено комплексообразование рения(V) с бензимидазолом в средах с высокой концентрацией галогеноводородных кислот. Установлено, что в изученных средах образуются устойчивые ониевые координационные соединения с протонированной молекулой бензимидазола (HL)₂[ReO- Hal_5], где $Hal = CI^-$, Br^- . При уменьшении конгалогеноводородных центрации кислот проведении синтеза в неводной среде образуются молекулярные комплексы общего состава [Re- OL_2Hal_3] · nH_2O . Результаты УФ- и ИК-спектроскопических исследований соединений мия(IV, VIII) и рутения(IV) с 2-меркаптобензими-2-меркаптобензоксазолом 2меркаптобензотиазолом приведены в работе [3]. В работах [4-6] приводятся сведения о комплексообразовании переходных металлов с алкил производными имидазола. Установлен способ координации имидазолов к рению(V) и кадмию(II), определены константы устойчивости и термодинамические функции комплексов.

В [7] калориметрическим методом определены тепловые эффекты и рассчитано изменение энтропии и энергии Гиббса реакций образования комплексов серебра(I) с этилендиамином в широком интервале составов метанол-диметилформамидных растворителей. Установлено влияние состава смешанных растворителей на термодинамические характеристики реакций комплексообразования и сольватации реагентов. Показано, что с увеличением концентрации диметилформамида экзотермичность реакции комплексообразования серебра(I) с этилендиамином уменьшается. Рост устойчивости комплексов по обеим ступеням взаимодействия серебра с этилендиамином при увеличении концентрации диметилформамида объясняется изменением энтропии при неблагоприятном действии энтальпийной составляющей реакции. Автором работы [8] изучено влияние смешанного растворителя на устойчивость комплексов серебра(I) с N,N-этилентиомочевиной (имидазолин-5-тион) в водно-

спиртовых растворах. Установлено, что значения общих констант устойчивости комплексов серебра(I) с N,N-этилентиомочевиной при увеличении в растворе содержания неводного растворителя возрастают. Авторами [9] при изучении комплексообразования серебра установлено изменение потенциала системы Ag/Ag⁺ в отсутствие аминов. Показано, что с увеличением концентрации спирта потенциал Ag/Ag⁺ в отсутствие амина смещается в положительную сторону, что связано с пересольватацией иона серебра, т.е. последовательной заменой в окружающей оболочке иона Ag⁺ молекул воды на молекулы спирта. Смещение потенциала металла с увеличением концентрации спирта в положительную сторону авторами работы объясняется тем, что энергия связи металла со спиртом несколько меньше, чем энергия связи с водой.

Влияние органического растворителя проявляется в повышении константы устойчивости и в образовании комплексов серебра с более высокой координацией лиганда у комплексов с одной и двумя координированными молекулами моноэтаноламина. Константы устойчивости в метаноле и этаноле одинаковы [10], но они на порядок выше, чем в водном растворе. Авторами работы [11] изучено комплексообразование нитрата серебра с гетероциклическими аминами. Показана взаимосвязь между содержанием этанола и устойчивостью комплексов серебра(I) с имидазолом, 3-аминопиридином, никотинамидом, 5бром-2-аминопиридином и хинолином в водноэтанольных растворах. Установлено, что устойчивость комплексов серебра(I) с имидазолом и 3аминопиридином растет с увеличением концентрации этанола в растворе, а устойчивость комплексов серебра(I) с остальными аминами проходит через минимум. В работе [12] приведены сведения о комплексообразовании серебра и нитрата кадмия с моноэтаноламинами и гексаметилтетрамином в водных, водно-этанольных, воднопропанольных и водно-ацетоновых растворах.

В работах [13, 14] нами был изучен процесс комплексообразования серебра(I) с 2-меркапто-бензимидазолом в водно-этанольном растворе, содержащем 10% этанола. Были найдены количества частиц, образующихся между Ag(I) и 2-меркаптобензимидазолом, и их устойчивость.

Целью настоящей работы явилось исследование комплексообразования серебра(I) с 2-меркаптобензимидазолом в водно-этанольных растворах содержащих 25, 35, 45 и 55 об. % этанола, установление влияния состава раствора на устойчивость комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных соединений использовали 2-меркаптобензимидазол и AgNO₃ марки "ч. д. а.". Константу кислотной ионизации (р K_2) 2-меркаптобензимидазола в растворе, содержащем различное количество этанола определяли при 25 ± $\pm\,0.5^{\circ}{
m C}$ по методике [15]. Для расчета использовали данные титрования 1×10^{-3} моль/л раствора 2-меркаптобензимидазола 0.1 N растворами гидроксида калия и НСІ. При титровании использовали бюретку с ценой деления 0.1 мл рН раствора измеряли с помощью прибора рН-150МИ. Для расчета константы кислотной ионизации, МБ использовали усредненные из трех опытов, численные значения, рН и объемы титранта. Константу кислотной ионизации (р K_a) рассчитывали по уравнению:

$$pK_a = [L][H^+]/[LH^+].$$

При исследовании комплексообразования Ag(I) с МБ начальная концентрация AgNO₃ составляла 1×10^{-5} моль/л, концентрация МБ была равна 1×10^{-3} моль/л. Ионную силу (I = 0.1) создавали с использованием NaClO₄. Измерение потенциала системы Ag⁺/Ag при потенциометрическом титровании проводили с помощью прибора марки PHS-3CB с применением гальванического элемента с переносом (солевой мостик заполняли раствором NaClO₄), где в качестве индикаторного электрода использовали пластинку из металлического серебра, а в качестве электрода сравнения – хлорсеребряный. Титрование раствора AgNO₃ раствором 2-меркаптобензимидазола проводили в водно-этанольных растворах, содержащих 25, 35, 45, 55 об. % спирта. Равновесное значение потенциала на серебряном электроде устанавливалось в течение 10-15 мин. Температуру поддерживали постоянной с использованием водяного термостата ($\pm 0.5^{\circ}$ C). Равновесную концентрацию ионов серебра в растворе по данным потенциометрического титрования определяли по уравнению:

$$\lg[Ag^{+}] = \lg C_{Ag}^{+} - \frac{\Delta E}{1.985 \times 10^{-4} T/n},$$
 (1)

где $[Ag^+]$ — равновесная концентрация серебра в каждой точке титрования; $\Delta E = E_1 - E_2$, E_1 — начальный потенциал системы; E_2 — потенциал системы в каждой точке титрования; C_{Ag^+} — концентрация серебра в каждой точке титрования с учетом разбавления, T — температура, n — заряд Ag(I).

Равновесную концентрацию МБ рассчитывали по уравнению Ледена:

$$[MB] = C_L - v(C_{Ag^+} - [Ag^+]),$$
 (2)

Таблица 1. Результаты pH-метрического титрования 2-меркаптобензимидазола и определение константы кислотной ионизации (p K_a) 2-меркаптобензимидазола в растворе, содержащем 25 об. % этанола; $C_{2\text{-MM}} = 0.001$ моль/л

<i>V</i> , мл	рН	$C_{ m HL}$, моль/л	$[L^{-}]$, моль/л	pK _a
0.0	6.71	0.001	_	_
0.1	9.27	0.000960159	0.0000398406	10.65
0.2	9.59	0.000920635	0.0000793651	10.65
0.3	9.74	0.000881423	0.000118577	10.61
0.4	9.84	0.00084252	0.000157480	10.57
0.5	9.94	0.000803922	0.000196078	10.55
0.6	10.05	0.000765625	0.000234375	10.56
0.7	10.11	0.000727626	0.000272374	10.54
0.8	10.16	0.000689922	0.000310078	10.51
0.9	10.21	0.000652510	0.000347490	10.48
1	10.29	0.000615385	0.000384615	10.49
1.1	10.32	0.000578544	0.000421456	10.46
1.2	10.34	0.000541985	0.000458015	10.41
1.3	10.39	0.000505703	0.000494297	10.40
1.4	10.41	0.000469697	0.000530303	10.36
1.5	10.45	0.000433962	0.000566038	10.33
1.6	10.48	0.000398496	0.000601504	10.30
1.7	10.51	0.000363296	0.000636704	10.27
1.8	10.55	0.000328358	0.000671642	10.24
1.9	10.57	0.000293680	0.00070632	10.19
2.0	10.58	0.000259259	0.000740741	10.12
				$pK_a = 10.38 \pm 0.04$

Обозначения: V — объем титранта (0.01 н. раствор KOH).

где $C_{2\text{-MB}}$ — начальная концентрация MБ в каждой точке титрования с учетом разбавления; ν — среднее число MБ, присоединенных ионом Ag $^+$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Имидазол проявляет основные свойства за счет пиридинового атома азота и слабые кислотные свойства за счет пиррольного азота (р $K_a = 6.9$). Следовательно, имидазол как амфотерное соединение способен принимать или отщеплять протон. Подвижность атома водорода NH-группы создает возможность его переноса к пиридиновому атому азота, являющемуся центром основности. Такой перенос протона обусловливает таутомерию имидазола, т.е. его существование в виде таутомерных форм, у которых положения 4 и 5 кольца равноценны. В научной литературе сведений о кислотно-основных свойствах меркаптопроизводных имидазола как в водных, так и в

водно-органических растворах немногочисленны. Введение в молекулу бензимидазола меркаптогруппы может существенно повлиять на его кислотно-основные свойства.

В табл. 1 в качестве примера приведены результаты определения константы кислотной ионизации (р K_a) 2-меркаптобензимидазола в растворе, содержащем 25 об. % этанола.

В табл. 2 представлены значения pK_a 2-меркаптобензимидазола в воде и водно-этанольных растворах, содержащих различное количество органического растворителя. Из данных таблицы видно, что константы кислотной ионизации 2-меркаптобензимидазола при переходе от воды к водно-этанольным растворам уменьшаются.

В [17] обсуждаются кислотно-основные свойства и спектральные эффекты протонирования диаминов бис-бензимидазольного ряда. Показано, что аннелирование имидазола приводит к сильному снижению его основности. Так, р $K_{\rm a}$

Таблица 2. Значения р K_a 2-меркаптобензимидазола в воде и водно-этанольных растворах при 298 К ($C_{\text{C}_2\text{H}_3\text{OH}}$ — концентрация этанола)

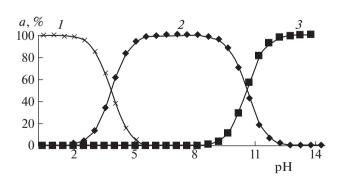
С, об. %	0	10	25	35	45	55
pK _a	9.60 [16]	10.24 ± 0.05	10.38 ± 0.04	10.57 ± 0.05	10.61 ± 0.01	10.80 ± 0.02

бензимидазола составляет только 5.53, в то время как значение р $K_{\rm a}$ имидазола равно 6.95. Проведенные нами исследования показали, что молекула 2-меркаптобензимидазола способна к присоединению протона, и константа ее кислотной ионизации как основания при 25°C составляет р $K_{\rm a}=4.45\pm0.05$. Другими словами, присоединение меркаптогруппы к молекуле бензимидазола приводит к снижению его основных свойств.

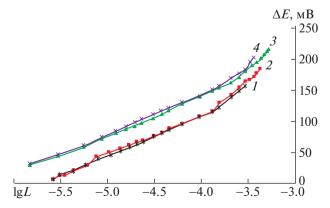
С целью сопоставления кислотно-основных свойств 2-меркаптобензимидазола экспериментально найденные значения р $K_{\rm a}$ были использованы для построения диаграмм долевого распределения различных его форм в широком интервале рH.

Как видно из рис. 1, молекула 2-меркаптобензимидазола в области рН 0.5-2.5 полностью протонирована. При рН 7-8 молекула 2-меркаптобензимидазола преимущественно (99.72%) находится в форме нейтральной молекулы, а выше рН 11существует в виде отрицательно заряженного иона L^- .

Так, как комплексообразование серебра(I) с 2-меркаптобензимидазолом нами исследовано в нейтральной области рH, то можно предположить, что в реакции комплексообразования с серебром(I) участвуют нейтральные молекулы 2-меркаптобензимидазола. Проведенные исследования показали, что при титровании водноэтанолного раствора $AgNO_3$ подобным раствором 2-меркаптобензимидазола потенциал серебряного электрода уменьшается. При этом изменение потенциала зависит и от состава водно-этаноль-


ного раствора. Чем больше содержание этанола в растворе, тем сильнее изменяется потенциал серебряного электрода. В табл. 3 в качестве примера представлены экспериментальные результаты потенциометрического титрования системы Ag⁺/Ag 2-меркаптобензимидазолом в растворе, содержащем 55 об. % этанола при 298 K.

На основании данных табл. 3 и экспериментальных результатов, полученных при титровании растворов, содержащих 25, 35 и 45 об. % этилового спирта, строили график зависимости ΔE от $-\lg C_{\rm ME}$, из которых находили среднее число молекул МБ, присоединенных серебром(I). Эти экспериментальные данные были использованы для расчета равновесной концентрации МБ по уравнению:


$$[MB] = C_{MB} - v(C_{Ag^{+}} - [Ag^{+}]).$$

На рис. 2 приведена графическая зависимость ΔE от $-\lg[\text{M}\text{B}]$ для комплексов серебра(I) с MB в растворах, содержащих различное количество этанола. Видно, что при избытке MB тангенс угла наклона прямой сохраняет постоянное значение, равное двум. При малых концентрациях MB тангенс угла значительно меньше, что свидетельствует о ступенчатом характере комплексообразования между ионами серебра(I) и MB. При этом изменение содержания этанола в растворе не влияет на количество комплексных частиц, образующихся между серебром(I) и MB.

В связи с тем, что в системе серебро(I) — MБ протекает ступенчатое комплексообразование, общие константы устойчивости рассчитывали

Рис. 1. Диаграмма распределения 2-меркаптобензимидазола в зависимости от рН при 298 К: $I-{\rm H_2L}^+, 2-{\rm HL}$ и $3-{\rm L}^-.$

Рис. 2. Зависимости ΔE от $-\lg[MB]$ для комплексов серебра(I) с 2-MB в растворах с разным содержанием этанола: 25 (*I*), 35 (2), 45 (*3*), 55% (*4*) при 298 K.

нелинейным методом наименьших квадратов [18] и методом, предложенным в [19]. В табл. 4 приведены величины общих констант устойчивости комплексов серебра (I) с МБ, рассчитанные нелинейным методом наименьших квадратов.

Для определения констант устойчивости в программу рекомендованную авторами [19] вводились следующие параметры: общие аналитические концентрации исходных соединений, изменение потенциала индикаторного электрода, предположительно протекающие процессы (реакции комплексообразования, реакции протонирования 2-меркаптобензимидазола):

$$H^{+} + L \leftrightarrow HL^{+},$$

 $Ag^{+} + L \leftrightarrow [AgL]^{+},$
 $Ag^{+} + 2L \leftrightarrow [AgL_{2}]^{+}.$

В табл. 5 приведены величины общих констант устойчивости комплексов серебра(I) с 2-MБ, рассчитанные по методике, предложенной в [19].

Сравнение данных табл. 4 и 5 показывает, что рассчитанные двумя независимыми методами величины констант устойчивости несколько отличаются друг от друга.

При сравнении полученных нами данных по комплексообразованию серебра(І) с 2-БИ и данными, полученными автором работы [8], которые изучали процесс комплексообразования Ag(I) с имидазолин-5-тионом в водно-этанольных растворах при 298 К, показано, что устойчивость имидазолин-5-тионных комплексов Ag(I) пре-2-меркаптобензимивосходит **устойчивость** дазольных комплексов серебра во всем изученном интервале содержания неводного компонента. Если константа устойчивость монозамещенного комплекса Ag(I) с имидазолин-5-тионом в растворе содержащем 25 об. % этанола равна 6.33 ± ± 0.03 лог. ед., то для 2-МБ комплекса серебра(I) это значение составляет 5.66 ± 0.06. При этом установлено, что устойчивость как имидазолин-5-тионных, так и 2-меркаптобензимидазольных комплексов Ag(I) с увеличением содержания этанола в растворе увеличивается.

Известно, что при увеличении концентрации неводного компонента в водно-органических растворителях сила катионных кислот сначала возрастает, а затем уменьшается [20]. Положение и глубина минимума на зависимости р $K_{\rm BH^+}$ от состава растворителя зависит от природы как амина, так и растворителя. Авторы работы [21] установили, что если устойчивость протонированных форм лигандов значительно понижается в водноорганических растворах, то для комплексных соединений этих лигандов с металлами значения констант устойчивости проходят через минимум. При меньшем понижении устойчивости прото-

Таблица 3. Данные по определению равновесной концентрации ионов [Ag⁺] в растворе, содержащем 55 об. % этилового спирта, по данным потенциометрического титрования при 298 K, $C_{\rm MB}=1\times10^{-3}$ моль/л; $C_{\rm Ag^+}=1\times10^{-5}$ моль/л: I=0.1 моль/л NaClO₄

= 1×10^{-3} моль/л; $I = 0.1$ моль/л NaClO ₄					
Е, мВ	ΔE , мВ	$C_{ m MB} imes 10^6,$ моль/л	$[{ m Ag}^+] imes 10^6,$ моль/л		
302.1	_	_	_		
297.0	5.1	3.98	8.2		
290.1	12.0	7.94	6.22		
281.2	21.0	11.9	4.36		
269.2	33.1	15.7	2.72		
254.3	48.1	19.6	1.51		
240.4	62.3	23.4	0.87		
226.4	76.2	27.2	0.50		
217.3	85.1	31.0	0.35		
209.3	93.3	34.7	0.25		
203.5	99.4	38.5	0.20		
197.5	105.3	42.1	0.16		
190.0	112.2	49.4	0.121		
184.0	118.1	56.6	0.095		
179.1	123.1	63.7	0.078		
171.1	131.0	80.9	0.056		
160.2	142.0	113	0.035		
150.3	152.0	150	0.022		
145.2	157.2	172	0.018		
132.2	170.2	224	0.010		
124.4	178.3	269	0.007		
119.3	183.0	309	0.005		
106.3	196.1	346	0.003		
99.1	203.0	378	0.002		

Таблица 4. Величины общих констант устойчивости комплексов серебра(I) с МБ при различном содержании этанола в растворе, рассчитанные нелинейным методом наименьших квадратов; T = 298 K

C 25.0%	Общие константы устойчивости		
$C_{\mathrm{C_2H_5OH}}$, об. %	$lg\beta_1 [AgL]^+$	$\lg \beta_2 \left[AgL_2 \right]^+$	
10 [14]	5.58 ± 0.05	9.25 ± 0.11	
25	5.66 ± 0.06	9.84 ± 0.09	
35	5.73 ± 0.05	10.05 ± 0.07	
45	6.19 ± 0.04	10.09 ± 0.08	
55	6.28 ± 0.05	10.38 ± 0.09	

Таблица 5. Величины общих констант устойчивости комплексов серебра(I) с МБ при различных содержаниях этанола в растворе; T = 298 K

$C_{\mathrm{C_2H_5OH}}$, об. %	$\lg \beta_1 \left[AgL \right]^+$	$\lg \beta_1 \left[AgL_2 \right]^+$
25	5.63 ± 0.04	9.63 ± 0.08
35	5.64 ± 0.02	9.67 ± 0.03
45	5.84 ± 0.05	9.75 ± 0.06
55	5.93 ± 0.1	9.76 ± 0.1

нированных форм лигандов в водно-органических растворах наблюдается только рост устойчивости металл-лиганд комплексов при добавлении к воде органического растворителя.

Проведенные нами исследования показывают, что кислотные свойства 2-меркаптобензимидазола при переходе от воды к водно-этанольным растворам уменьшаются незначительно (табл. 2), т.е. происходит упрочнение молекулярной формы 2-меркаптобензимидазола в спиртовых растворах. Устойчивость комплексных соединений серебра(I) с этим органическим лигандом растет при переходе от водных к водно-этанольным растворам (табл. 4, 5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Новикова Г.А., Молодкин А.К., Кукаленко С.С. // Журн. неорган. химии. 1988. Т. 33. Вып. 12. С. 3111.
- 2. Гагиева С.Ч., Цалоев А.Т., Гутнова Н.А. и др. // Там же. 2003. Т. 48. № 8. С. 1303.
- 3. *Бусев А.И.*, *Ломакина Л.Н.*, *Игнатьева Т.И.* // Там же. 1976. Т. XXI. Вып. 2. С. 500.
- 4. *Аминджанов А.А.*, *Сафармамадов С.М.*, *Машали М.М.*, *Баходуров Ю.Ф.* // Изв. вузов. Химия и хим. технология. 2011. Т. 54. № 3. С. 23.
- 5. Аминджанов А.А., Сафармамадов С.М., Мабаткадамова К.С. // ДАН РТ. 2010. Т. 53. № 1. С. 40.
- 6. Сафармамадов С.М. Комплексные соединения рения(V) с производными тиомочевины, азольсо-

- держащими лигандами и аспекты их применения. Автореф. дис. ... докт. хим. наук. Воронеж, 2008. 42 с.
- 7. *Мошорин Г.В., Репкин Г.И., Шарнин В.А.* // Изв. вузов. Химия и хим. технология. 2007. Т. 50. Вып. 10. С. 29.
- 8. Содатдинова А.С. Комплексообразование серебра(I) с N,N-этилентиомочевиной, 1-формил- и 1-ацетил-3-тиосемкарбазидом. Автореф. дис... канд. хим. наук. Душанбе, 2016. 23 с.
- 9. *Мигаль Ц.К., Плоае К.И.* // Журн. неорган. химии. 1965. Т. X. Вып. 11. С. 2519.
- 10. *Удовенко В.В., Померанц Г.Б.* // Там же. 1973. Т. XVIII. Вып. 7. С. 1773.
- 11. *Буду Г.В., Тхоряк А.П.* // Там же. 1980. Т. 25. № 4. С. 1006.
- 12. *Буду Г.В., Назарова Л.В., Тхоряк А.П.* // Там же. 1975. Т. 20. № 11. С. 2094.
- 13. *Каримова З.И., Баходуров Ю.Ф., Мабаткадамзода К.С.* // Матер. международной конф. "Комплексные соединения и аспекты их применения". Душанбе, 2018. С. 95.
- 14. *Каримова З.И., Баходуров Ю.Ф., Мабаткадамзода К.С.* // ДАН РТ. 2018. № 7—8. С. 315.
- Альберт А., Сержент Е. Константы ионизации кислот и оснований. М.: Химия, 1964. Т. 61. № 9–10. 175 с.
- http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/12_obshchie_svedeniya/6177
- 17. *Некрасова Л.П.* // Международный журнал прикладных и фундаментальных исследований. 2017. № 8–2. С. 231.
- 18. *Kapustin E.I.* The solution of certain classes of mathematical problems in the program Excel. Internet resources. (exponenta.ru/educat/systemat/Kapustin/014.asp).
- 19. *Meshkov A.N.*, *Gamov G.A*. KEV: a free software for calculating the equilibrium composition and determining the equilibrium constants using UV-Vis and potentiometric data. Talanta. 2019. V. 198. P. 200.
- 20. Комплексообразование в неводных растворах / Г.А. Крестов и др. М.: Наука, 1989. 256 с.
- 21. *Буду Г.В., Назарова Л.В.* // Журн. неорган. химии. 1973. Т. XVIII. Вып. 6. С. 1531.