_____ ФИЗИЧЕСКАЯ ХИМИЯ __ РАСТВОРОВ ____

УДК 544.01;546.01

ТОПОЛОГИЯ ЛИКВИДУСОВ СИСТЕМ NaBr-Na $_2$ SO $_4$ -Na $_2$ CO $_3$ И KBr-K $_2$ CO $_3$ -K $_2$ SO $_4$

© 2020 г. В. И. Сырова^{*a*,*}, И. К. Гаркушин^{*a*}, Е. И. Фролов^{*a*}, А. А. Финогенов^{*a*}

^аСамарский государственный технический университет, Самара, Россия *e-mail: vera.iv.syrova@mail.ru Поступила в редакцию 29.07.2019 г. После доработки 06.10.2019 г.

Принята к публикации 12.11.2019 г.

Проведен теоретический анализ топологии ликвидусов систем NaBr–Na₂CO₃–Na₂SO₄, KBr–K₂CO₃–K₂SO₄. По методу Мартыновой–Сусарева рассчитаны координаты точки минимума на моновариантной кривой в системе NaBr–Na₂CO₃–Na₂SO₄. Проведено планирование эксперимента для исследования систем методом дифференциально-термического анализа. Определены температура плавления, состав солевой смеси, отвечающей минимуму на моновариантной кривой системы NaBr–Na₂CO₃–Na₂SO₄. Доказано отсутствие точек нонвариантного равновесия в системе KBr–K₂CO₃–K₂SO₄. Системы NaBr–Na₂CO₃–Na₂SO₄, KBr–K₂CO₃–K₂SO₄ не были ранее изучены и представляют интерес, поскольку их компоненты обладают рядом ценных свойств, таких как, термическая стойкость, возможность использования в качестве традиционных растворителей других солей в широком диапазоне температур.

Ключевые слова: физико-химический анализ, трехкомпонентная система, минимум, непрерывный ряд твердых растворов, анализ топологии ликвидусов, ряд трехкомпонентных систем **DOI:** 10.31857/S0044453720060278

Соли калия и натрия применяются в качестве металлургических флюсов для очистки металлов и их сплавов; предохранения поверхности металлов от окисления; сварки и пайки металлов [1]. Ионные расплавы могут быть использованы для получения ряда неорганических веществ и выращивания монокристаллов [2].

Смеси солей используются в качестве расплавляемых электролитов химических источников тока и теплоаккумулирующих материалов [3–8]. Применение находят смеси отвечающие нонвариантным составам или точкам минимума трехкомпонентных систем. Выявление характера взаимодействия в системах требует наличия данных по фазовым равновесиям в солевых системах. Анализ рядов систем позволяет значительно уменьшить время эксперимента и предположить характер топологии ликвидусов систем [9–12].

В данной работе рассмотрены системы с минимумом и непрерывным рядом твердых растворов [13–15].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Проведен анализ топологии ликвидусов ряда Na(Hal)–Na₂CO₃–Na₂SO₄ Hal – F, Cl, Br изображенного на рис. 1, который показывает, что все

треугольники составов представлены одним симплексом. В системе $NaF-Na_2CO_3-Na_2SO_4$ вследствие образования соединения Na_3FSO_4 образуются две нонвариантные точки – эвтектика Е и точка выклинивания R. В системе $NaCl-Na_2CO_3-Na_2SO_4$ образуется тройной минимум, следовательно, и в системе $NaBr-Na_2CO_3-Na_2SO_4$ также прогнозируется образование тройного минимума на кривой моновариантных равновесий.

Расчет минимума по методу Мартыновой—Сусарева [16] показал температуру плавления 549°С и состав смеси, отвечающий тройному минимуму: NaBr – 54.9 мол. %, Na₂SO₄ – 19.4 мол. %, Na₂CO₃ – 25.7 мол. %.

Анализ ряда K(Hal)– $K_2CO_3-K_2SO_4$ Hal – F, Cl, Вг показывает, что в первой системе KF– K_2CO_3 – K_2SO_4 образуется два симплекса, вследствие образования соединений конгруэнтного типа плавления K₃FSO₄ и K₃FCO₃ в двухкомпонентных системах KF– K_2SO_4 , KF– K_2CO_3 . В системе KCl– $K_2CO_3-K_2SO_4$ отмечено отсутствие тройной точки нонвариантных равновесий. Поверхность кристаллизации представлена двумя полями: поле твердых растворов между сульфатом калия и карбонатом калия, и поле хлорида калия. На кри-

Рис. 1. Ряды Na(Hal)–Na₂CO₃–Na₂SO₄ Hal – (F, Cl, Br) и K(Hal)–K₂CO₃–K₂SO₄ Hal – (F, Cl, Br).

вой моновариантного равновесия отсутствует минимум. В системе KBr–K₂CO₃–K₂SO₄ также прогнозируется наличие двух полей кристаллизации и отсутствие минимума на кривой моновариантных равновесий.

0.25 г. Точность взвешивания составов ± 0.0001 г. на электронных аналитических весах HR 300.

Все двухкомпонентные системы были исследованы ранее [19, 20]. В табл. 1 приведены данные

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дифференциальный термический анализ (ДТА) проводили на установке в стандартном исполнении [17]. Использована комбинированная платино-платинородиевая термопара. Исходные предварительно обезвоженные реактивы были следующих квалификаций: NaBr – "ч.", Na₂SO₄ – "х.ч.", Na₂CO₃ – "х.ч.". Температуры плавления исходных веществ соответствовали справочным данным [18]. Исследования проводили в стандартных платиновых микротиглях. Все составы – мольные доли, выраженные в %, температуры – в °С. Индифферентным веществом служил свежепрокаленный Al₂O₃ марки "ч.д.а.". Масса навесок

Рис. 2. Расположение политермического разреза NK и фазовый комплекс системы NaBr–Na₂CO₃–Na₂SO₄.

Система	Характер точки	Содержание компонентов, мол. %		T °C	Истонник
		1	2	Г _{пл} , С	источник
NaBr–Na ₂ SO ₄	Эвтектика	62.0	38.0	625	[19]
NaBr–Na ₂ CO ₃	Эвтектика	62.5 (55)	37.5 (45)	613 (630)	[20]
Na ₂ SO ₄ -Na ₂ CO ₃	НРТР с минимумом	43.0	57.0	824	[19]
KBr-K ₂ SO ₄	Эвтектика	81.7	18.4	682 (673)	[19]
KBr-K ₂ CO ₃	Эвтектика	47.0	53.0	626 (630)	[19]
$K_2SO_4 - K_2CO_3$	НРТР	_	—	_	[19]

Таблица 1. Характеристики нонвариантных точек в двухкомпонентных системах в системах $NaBr-Na_2CO_3-Na_2SO_4$ и $KBr-K_2CO_3-K_2SO_4$

Обозначения: *Т*_{пл} – температура плавления, цифры **1**, **2** означают порядковый номер соли в системе, HPTP – непрерывный ряд твердых растворов. В скобках указаны расходящиеся со справочными, полученные экспериментально проверочные данные.

по двойным системам. Данные по исследованным ранее системам рассмотренных рядов взяты из [19, 21, 22].

Система NaBr–Na₂CO₃–Na₂SO₄. Треугольник состава представлен на рис. 2. В двухкомпонентной системе Na₂SO₄–Na₂CO₃ наблюдается образование непрерывного ряда твердых растворов с минимумом (min).

Для определения координат минимальной точки был выбран и исследован методом ДТА политермический разрез N [Na₂CO₃ – 30%, NaBr – 70%]–К [Na₂SO₄ – 30%, NaBr – 70%], *T*–*x*-диаграмма которого приведена на рис. 3.

Из T-x-диаграммы определена температура плавления состава минимума 591°С. Исследованием разреза NaBr $-\overline{M}$ -М (рис. 4) с постоянным соотношением Na₂SO₄ : Na₂CO₃ в точке минимума, соединяющего полюс кристаллизации NaBr с проекцией минимума на плоскость разреза NK, определен состав смеси, отвечающей минимуму M (мол. %): NaBr – 55.0, Na₂SO₄ – 8.0, Na₂CO₃ – 37.0.

Система KBr- $K_2CO_3-K_2SO_4$. Треугольник состава представлен на рис. 5. В двухкомпонентной системе $K_2CO_3-K_2SO_4$ образуется непрерывный ряд твердых растворов между компонентами.

Для подтверждения отсутствия нонвариантного равновесия был выбран и исследован методом ДТА политермический разрез Н [$K_2CO_3 - 20\%$, KBr - 80%]-T [$K_2SO_4 - 20\%$, KBr - 80%], *T*-*x*диаграмма которого приведена на рис. 6. Изучение разреза доказало отсутствие нонвариантного равновесия и устойчивость бинарных твердых растворов между K_2CO_3 и K_2SO_4 .

Таким образом, проведен теоретический анализ топологии ликвидусов систем NaBr-Na₂CO₃-

Рис. 3. *Т*-*х*-диаграмма разреза NK в системе NaBr-Na₂CO₃-Na₂SO₄.

Рис. 4. T-x-диаграмма разреза NaBr $-\overline{M}$ -М.

Рис. 5. Расположение политермического разреза HT и фазовый комплекс системы KBr-K₂CO₃-K₂SO₄.

Рис. 6. T-*х*-диаграмма разреза HT системы KBr- $K_2CO_3-K_2SO_4$.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 6 2020

Na₂SO₄ и KBr-K₂CO₃-K₂SO₄ на основе топологии ликвидусов в рядах NaHal-Na₂CO₃-Na₂SO₄ и KHal- $K_2CO_3-K_2SO_4$ Hal – (F, Cl, Br). Впервые исследованы трехкомпонентные системы NaBr-Na₂CO₃-Na₂SO₄ и KBr-K₂CO₃-K₂SO₄. В системе NaBr-Na₂CO₃-Na₂SO₄ отмечено образование тройного минимума с условно нонвариантным равновесием $X \rightleftharpoons NaBr + \alpha$. В системе $KBr - K_2CO_3 -$ K₂SO₄ доказано отсутствие нонвариантного равновесия. Минимальные поля кристаллизации в озвученных системах принадлежат КВг и NaBr. Теоретический анализ топологии ликвидусов систем подтвержден данными ДТА. Проведенный анализ позволяет провести прогноз топологии ликвидусов в системах MI-M₂CO₃-M₂SO₄ (M-Na, K), поверхность кристаллизации которых будет представлена двумя полями с минимумом в системе NaI-Na₂CO₃-Na₂SO₄ и с отсутствием нонвариантного равновесия в системе KI-K₂CO₃-K₂SO₄.

Сравнение расчетных данных по методу Мартыновой—Сусарева с экспериментальными показывает, что среднее отклонение по составу равно 7.6%.

Работа выполнена в рамках базовой части государственного задания Самарского государственного технического университета (проект 2020 года).

СПИСОК ЛИТЕРАТУРЫ

- Делимарский Ю.К., Барчук Л.П. Прикладная химия ионных расплавов. Киев: Наукова думка, 1988. 192 с.
- 2. Делимарский Ю.К. Ионные расплавы в современной технике. М.: Металлургия, 1981. 112 с.
- 3. Энтальпия плавления солевых эвтектик / Чернеева Л.И., Родионова Е.К., Мартынова Н.М. и др. Обзоры по теплофизическим свойствам веществ. М.: Ин-т высоких температур АН СССР, 1980. № 3. 56 с.
- Васина Н.А., Грызлова Е.С., Шапошникова С.Г. Теплофизические свойства многокомпонентных солевых систем. М.: Химия, 1984. 112 с.
- 5. Зарецкий С.А., Сучков В.Н., Животинский П.Б. Электрохимическая технология неорганических веществ и химические источники тока: учебник для учащихся техникумов. М.: Высш. школа, 1980. С. 211–213.
- Коровин Н.В. Новые химические источники тока. М.: Энергия, 1978. 194 с.
- 7. *Коровин Н.В.* Электрохимическая энергетика. М.: Энергоатомиздат, 1991. 264 с.
- Химические источники тока: Справочник / Под ред. Н.В. Коровина, А.М. Скундина. М.: Изд-во МЭИ, 2003. 740 с.
- Гаркушин И.К., Игнатьева Е.О., Бехтерева Е.М., Бамбуров В.Г. Физико-химическое взаимодействие в системах из галогенидов, хроматов, молиб-

датов и вольфраматов лития, натрия и калия. Екатеринбург: РИО УрО РАН, 2013. 169 с.

- 10. Громаков С.Д. О некоторых закономерностях равновесных систем. Казань: Изд-во КГУ, 1961. 602 с.
- Воздвиженский В.М. Общие закономерности в строении диаграмм состояния металлических систем. М.: Наука, 1973. С. 103–109.
- 12. Замалдинова Г.И., Гаркушин И.К., Парфенова С.Н. // Журн. неорган. химии. 2012. Т. 57. Вып. 6. С. 961.
- Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974. С. 328.
- 14. Захаров А.М. Диаграммы состояния двойных и тройных систем. М.: Металлургия, 1990. 240 с.
- 15. *Минделькорн Л.* Нестехиометрические соединения. М.: Химия, 1971. С. 608.
- 16. Мощенская Е.Ю. Программный комплекс для моделирования фазовых диаграмм "состав—температура" и "состав—ток" в физико-химическом анализе солевых и металлических систем. Свидетель-

ство об официальной регистрации программы для ЭВМ № 2006612377 от 05.09.2006.

- 17. Егунов В.П. Введение в термический анализ. Самара: ПО "СамВен", 1996. 270 с.
- Термические константы веществ: Справочник / Под ред. В.П. Глушко // М.: ВИНИТИ, 1981. Вып. Х. Ч. 2. 300 с.
- Диаграммы плавкости солевых систем. Ч. III / Под ред. В.И. Посыпайко, Е.А. Алексеевой. М.: Металлургия, 1977. 204 с.
- Воскресенская Н.К. Справочник по плавкости систем из безводных неорганических солей / Н.К. Воскресенская, Н.Н. Евсеева, С.И. Беруль, И.П. Верещетина. М.-Л.: Изд-во АН СССР, 1961. Т. I. 845 с.
- Диаграммы плавкости солевых систем. Тройные системы / Под. ред. В.И. Посыпайко, Е.А. Алексеевой. М.: Химия, 1977. 328 с.
- 22. ACerS-NIST. Phase Equilibria Diagrams. CD-ROM Database. Version 3.1.0. American Ceramic Society. National Institute of Standards and Technology.