КРАТКИЕ СООБЩЕНИЯ

УДК 544.35.03

ОЦЕНКА ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РАСТВОРОВ ХЛОРИСТОГО ВОДОРОДА В *н*-СПИРТАХ

© 2020 г. Б. Б. Танганов^{а,*}

^аВосточно-Сибирский государственный университет технологий и управления, 670013, Улан-Удэ, Россия *e-mail: tanganov@rambler.ru

Поступила в редакцию 28.04.2019 г. После доработки 28.04.2019 г. Принята к публикации 08.10.2019 г.

Для оценки отклонения свойств реальных систем от идеальных предложены модельные уравнения, позволяющие с высокой степенью достоверности определить важнейшие характеристики электролита в нормальных спиртах: предельные величины электрических проводимостей — методом параболического приближения функции; степень и концентрационные константы диссоциации, активности сольватированного протона и среднеионные коэффициенты активности хлороводородной кислоты в широком диапазоне концентраций, а также — термодинамические константы. Показано, что искомые характеристики (параметры) кислоты в *н*-спиртах достаточно близки к экспериментальным или литературным значениям, что свидетельствует о правомерности и корректности выведенных модельных уравнений.

Ключевые слова: модельные уравнения, электролиты, коэффициенты активности, сольватированный протон, предельная электропроводность

DOI: 10.31857/S004445372006028X

В растворах электролитов при средних и высоких концентрациях протекают достаточно сложные межионные, междипольные и ион-дипольные взаимодействия, приводящие, в зависимости от свойств растворителей, к образованию сольватированных и ассоциированных ионов или молекул, а также к образованию диполь-дипольных частиц. Электростатические взаимодействия в растворах электролитов при высоких концентрациях приводят к значительным отклонениям в поведении реальной системы от идеального состояния [1, 2]. Учесть отклонения от идеального, т.е. предусмотреть влияние электростатических факторов можно с помощью метода активностей: вместо концентраций реагирующих частиц [А] используют величины, называемые активностями a_A . Таким образом, коэффициенты активности ионов в растворах электролитов служат мерой отклонений свойств реальных растворов от свойств идеальных систем. Для идеальных растворов и растворов неэлектролитов электростатические взаимодействия пренебрежимо малы, активности приравниваются равновесным концентрациям, тогда можно записать $\gamma = 1$.

Известно несколько методов определения и расчета коэффициентов активности. Поскольку электростатические взаимодействия весьма заметны в растворах электролитов, то остановимся на расчетах коэффициентов активности ионов. Они зависят от *ионной силы*, вычисляемой по известному уравнению [1, 2]:

$$I = (1/2)\Sigma \left[\mathbf{A}_i \right] z_i^2,$$

где z_i — заряд иона A_i ; Σ — сумма всех ионов, присутствующих в растворе.

Ионная сила учитывает электростатическое влияние всех ионов в растворе. Она имеет размерность концентрации и для растворов сильных I— I-электролитов численно равна ей.

Один из наиболее применяемых методов определения коэффициентов активности индивидуальных ионов — оценка по приближению Дебая— Хюккеля

$$\lg \gamma_i = -\mathrm{A} z_i^2 (I)^{1/2}$$

в случае, когда $I \le 0.01$ M, и при ионных силах от 0.1 до 0.5 M во многих случаях хорошие результаты дают расчеты по уравнению Дэвиса [3]:

$$\lg \gamma_i = -Az_i^2(I)^{1/2} / [1 + aB(I)^{1/2}] + CI,$$

где C – константа (подбиралась эмпирически для каждого конкретного электролита), A и B – константы, зависящие от температуры и диэлектрической проницаемости растворителя ($A \approx 0.5$ и $B \approx 0.33$ для воды при 298 K); a – эмпирическая константа, учитывающая размеры ионов и харак-

теризующая среднее расстояние сближения сольватированных (гидратированных) ионов в предположении, что они являются жесткими сферами. Значение *а* приближенно считалось постоянным, не зависящим от природы иона: ~ $(3-5) \times 10^{-8}$ см (хотя с этим трудно согласиться, так как сумма, например, радиусов гидратированных ионов лития и хлора составляет >5.65 × × 10⁻⁸ см).

В разбавленных растворах (I < 0.1 M) коэффициенты активности ионов меньше единицы, но при $I \to 0$ величина $\gamma_i \to 1$. При высоких ионных силах коэффициенты активности начинают зависеть от природы ионов, а затем и от общего состава раствора, в том числе от параметров самого растворителя. В этих случаях для нахождения коэффициентов активности следовало пользоваться лишь справочными данными. В концентрированных растворах (ионная сила больше единицы) коэффициенты активности ионов могут быть намного больше единицы (достигая в некоторых растворителях десятков и более единиц). Причиной этого считается связывание значительного количества растворителя в результате в одних случаях - сольватации ионов, в других - их ассоциации, а иногда – образование молекулярных сольватов, следовательно, увеличение кажущейся концентрации ионов [2]. В последнее время вопросам определения коэффициентов активности в различных системах уделяется пристальное внимание [4-7].

Экспериментально определить коэффициенты активности отдельных ионов невозможно, так как нельзя получить раствор, содержащий ионы только одного сорта. Опытным путем можно было измерить лишь средний коэффициент активности γ_{\pm} ионов электролита $A_m B_n$, который связан с коэффициентами активности составляющих его ионов A^{n+} и B^{m-} следующим образом:

$$\gamma_{\pm} = \left(\gamma_{\rm A}^m \gamma_{\rm B}^n\right)^{1/(m+n)}.$$

Все изложенное выше свидетельствует о трудностях исследования коэффициентов активности электролитов: как гидратированных или сольватированных ионов, так и нейтральных молекул (неэлектролитов) в неводных растворителях, для которых до сего времени не было разработано единой теории, позволяющей однозначно рассчитывать γ . Допускается большое число подгоночных параметров при изменениях концентраций одного и того же растворенного вещества и природы растворителя.

В химии растворов электролитов теоретические модели состояния ионов и молекул ограничиваются незначительным интервалом концентраций (0–0.01 М), что обусловлено ограничением П. Дебая. Представляет интерес попытка расширить концентрационный диапазон теоретических моделей. В большем интервале, в особенности в концентрированных растворах, проходят неоднозначные межмолекулярные взаимодействия вследствие близости частиц, ионов и молекул друг к другу, которые трудно учитывать количественно. В частности, это — ион-ионные, ион-дипольные и диполь-дипольные процессы, зависящие от свойств растворенного вещества и, главным образом, от свойств среды, т.е. растворителя.

Изложенное еще раз свидетельствует о трудностях построения единых моделей различных процессов в водных, в особенности, неводных растворах электролитов, протекающих зачастую в противоположных направлениях, являясь сложным и многомерным феноменом.

Для облегчения вычислений физико-химических характеристик электролита, возможно, изза отсутствия соответствующих приемлемых механизмов и моделей, например, коэффициентов активности при достаточно высоких концентрациях растворов (C > 0.5 М) в литературе они практически не учитываются. Это приводит к значительным расхождениям теоретических вычислений от эксперимента.

Значения коэффициентов активности вследствие их отклонений от идеальных параметров в десятки раз сложно приспособить к законам для практического применения в реальных, при высоких концентрациях, растворах, где доминируют процессы ассоциации или других межмолекулярных взаимодействий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Представим модельные уравнения для дальнейших расчетов концентрации ионов водорода, степени диссоциации и коэффициента активности электролита в большом диапазоне изменения концентраций:

$$HA \leftrightarrow H^+ + A^-,$$

$$K = [H^+][A^-]/[HA].$$

Это упрощенное исходное уравнение константы диссоциации, не учитывающее влияния искомых параметров a_{H^+} , α и γ_{\pm} при высоких концентрациях, приводит зачастую лишь к сравнительным, рекогносцировочным константам.

Выведем уравнения и формулы для расчетов при любых концентрациях электролита [8–10] $a_{\rm H^+}$, α и γ_{\pm} : $a_{\rm H^+} = a({\rm ROH}_2^+)$ – активность сольватированного иона, α и *K* – степень и константа дис-

ТАНГАНОВ

Таблица 1. Концентрация, экспериментальная и рассчитанная электропроводность, степень диссоциации, коэффициент активности, активность сольватированного протона $a(C_2H_5OH_2^+) = a(H^+)$ и константа диссоциации хлороводородной кислоты в среде этанола

C _{HCl/EtOH}	$λ_{ m эксп}$	λ (ппф)*	α(3)	$\gamma_{\pm_{{\cal I}} \mu \tau}$	γ _± (4)	$K_{\rm HCl/EtOH}(1)$	$a(C_2H_6^+)$ (2)
1.50	_	22.52	0.2807	0.142	0.1491	0.1643	1.5637
1.00	—	23.94	0.2983	0.157	0.1650	0.1268	1.0722
0.20	—	30.47	0.3797	0.250	0.2467	0.04650	0.2368
0.10	—	33.81	0.4213	0.314	0.2934	0.03068	0.1225
0.096	33.46	34.02	0.4239	—	0.2964	0.02995	0.1178
0.050	—	37.52	0.4675	0.380	0.3489	0.02052	0.06301
0.048	37.10	37.75	0.4704	—	0.3525	0.02005	0.06057
0.024	42.04	41.88	0.5219	—	0.4192	0.01367	0.03084
0.020	—	43.04	0.5364	0.485	0.4387	0.01241	0.02577
0.012	47.64	46.47	0.5791	—	0.4985	0.00956	0.01550
0.010	—	47.76	0.5952	0.563	0.5217	0.00875	0.01290
0.006	53.17	51.57	0.6426	—	0.5928	0.00693	0.00765
0.005	—	53.00	0.6604	0.648	0.6205	0.00642	0.00633
0.003	59.23	57.22	0.7130	—	0.7050	0.00531	0.00367
0.002	—	60.80	0.7577	0.778	0.7802	0.00474	0.00234
0.0015	63.11	63.49	0.7911	_	0.8384	0.00449	0.00168
0.0010	—	67.47	0.8407	0.898	0.9278	0.00444	0.00101
0.00075	67.97	70.44	0.8778	—	0.9970	0.00473	0.000689

* ппф — метод параболического приближения функции $\lambda = f(C)$.

социации хлороводородной кислоты; γ_{\pm} — среднеионный коэффициент активности:

$$K = [H^{+}][A^{-}]\alpha_{H^{+}}\alpha_{A}^{-}\gamma_{H^{+}}\gamma_{A}^{-}/C_{HA}(1-\alpha) =$$

= $[a_{H^{+}}]^{2}\alpha^{2}\gamma_{\pm}^{2}/C(1-\alpha),$ (1)

$$[a_{\rm H^{+}}]^{2} \alpha^{2} \gamma_{\pm}^{2} = KC - KC\alpha,$$

$$[a_{\rm H^{+}}] = \{(KC - KCa)/\alpha^{2} \gamma_{\pm}^{2}\}^{0.5},$$
 (2)

$$K = [a_{H^{+}}]^{2} \alpha^{2} \gamma_{\pm}^{2} / C(1 - \alpha),$$

$$\alpha^{2} [a_{H^{+}}]^{2} \gamma_{\pm}^{2} + \alpha KC - KC = 0,$$

$$\alpha = \{-KC + [K^{2}C^{2} + 4K[a_{H^{+}}]^{2} \gamma_{\pm}^{2}C]^{0.5} / 2[a_{H^{+}}]^{2} \gamma_{\pm}^{2}\},$$
(3)

(при измерениях электропроводности растворов электролитов можно записать: $\alpha = \lambda_{3\kappa cn}/\lambda_0$, где $\lambda_{3\kappa cn}$ и λ_0 – измеренная эквивалентная и предельная эквивалентная электропроводность HCl/ROH, См см²/моль)

$$\gamma_{\pm}^{2}[a_{H^{+}}]^{2}\alpha^{2} = KC - K\alpha C,$$

$$\gamma_{\pm} = \{(KC - K\alpha C)/\alpha^{2}[a_{H^{+}}]^{2}\}^{0.5}.$$
(4)

Выведенные уравнения являются базовыми для оценки и уточнения свойств растворов электролитов без подгоночных параметров в большом диапазоне изменения концентраций.

Применимость модельных уравнений, а также метода параболического приближения функции, подтверждена данными расчетов и оценок важнейших показателей растворенного вещества в органическом растворителе, например, хлороводородной кислоты в среде этилового спирта: предельная электропроводность, степень и константа диссоциации, коэффициент активности, активность сольватированного иона водорода.

В таблицах представлены концентрации, измеренные и оцененные электрические проводимости, степень диссоциации, коэффициент активности, активность и константа диссоциации хлороводородной кислоты в среде этилового (табл. 1) и бутилового (табл. 2) спиртов по приведенным выше уравнениям.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как видно из таблиц, оцененные по модельным уравнениям величины электропроводности, коэффициенты активности и другие параметры хлороводородной кислоты в спиртах, достаточно близко совпадают с экспериментальными или литературными значениями, что свидетельствует

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 6 2020

Таблица 2. Концентрация, экспериментальная и рассчитанная электропроводность, степень диссоциации, коэффициент активности, активность сольватированного протона $a(C_4H_9OH_7^+) = a(H^+)$ и константа диссоциации хлороводородной кислоты в среде бутанола

C _{HCl/BuOH}	$λ_{ m эксп}$	λ (ппф)*	α(3)	$\gamma_{\pm { m лит}}$	γ _± (4)	$K_{\rm HCl/BuOH}(1)$	$a({ m H}^{+})$ (2)
7.009	—	2.428	0.1097	0.060	0.04319	0.09480	24.9349
3.485	_	2.831	0.1279	0.055	0.05364	0.06544	12.0159
1.351	—	3.488	0.1576	0.057	0.07196	0.03984	4.4498
0.186	—	5.395	0.2438	0.077	0.1330	0.01462	0.5469
0.118	—	5.964	0.2695	0.096	0.1532	0.01173	0.3364
0.0881	6.54	6.360	0.2874	—	0.1677	0.01021	0.2458
0.0770	—	6.551	0.2960	0.161	0.1749	0.009586	0.2127
0.0612	—	6.890	0.3113	0.173	0.1878	0.008617	0.1661
0.0440	7.54	7.407	0.3347	—	0.2079	0.007420	0.1163
0.0320	—	7.947	0.3591	0.234	0.2296	0.006440	0.08217
0.0220	8.63	8.628	0.3899	—	0.2578	0.005487	0.05455
0.0113	—	9.992	0.4515	0.342	0.3170	0.004201	0.02601
0.0110	9.95	10.050	0.4541	—	0.3196	0.004160	0.02527
0.0061	—	11.444	0.5171	0.488	0.3838	0.003378	0.01293
0.0055	12.00	11.705	0.5289	—	0.3962	0.003270	0.01149
0.0027	14.50	13.633	0.6160	—	0.4912	0.002721	0.005083
0.0014	17.10	15.880	0.7175	—	0.6090	0.002509	0.002134
0.00069	20.91	18.496	0.8358	—	0.7550	0.002927	0.000797

о правомерности и корректности выведенных уравнений.

Методами математической обработки данных (метод параболического приближения функции) получены следующие величины искомых параметров:

а) предельные значения электрических проводимостей хлороводородной кислоты $\lambda_0 = 80.25$ (в среде этилового спирта) и 22.13 См см²/моль (в среде бутилового спирта);

б) термодинамические константы диссоциации хлороводородной кислоты $K = 3.97 \times 10^{-3}$; рK == 2.401 (в среде этилового спирта) и $K = 2.239 \times$ $\times 10^{-3}$; р*K* = 2.650 (в среде бутилового спирта).

Одним из альтернативных инструментов оценки, уточнения и прогнозирования искомых результатов, например, коэффициентов активности ионов, является метод многоуровневого моделирования (ММУМ), разработанный нами и применяемый в различных целях, в частности, при прогнозировании свойств химических, биологических и медицинских систем [11, 12] с высокой степенью достоверности.

В табл. З представлены данные для оценки среднеионных коэффициентов активности хлороводородной кислоты в среде нормальных спиртов – этанола и бутанола и оцененные ММУМ среднеионные коэффициенты активности:

. ~

$$\gamma_{\pm \text{MMYM}} = AC + B\alpha + C\lambda + DK_{\text{HCl/EtOH}} + E,$$
 (5)

D T

$$\gamma_{\pm \text{HCl/EtOH}} = -0.3329C + 25.5390\alpha - -0.2971\lambda + 4.1607K_{\text{HCl/EtOH}} - 0.5168, \quad (6)$$
$$R_{\text{MMYM}} = 0.9992,$$

$$\gamma_{\pm \text{HCl/BuOH}} = -0.02602C + 145.0581\alpha - - 6.5053\lambda + 3.0012K_{\text{HCl/BuOH}} - 0.1808,$$
(7)
$$R_{\text{MMYM}} = 0.9975.$$

Как видно из табл. 3, оцененные по (5) коэффициенты активности в среде этанола (колонка 6) и бутанола (колонка 12), хорошо согласуются с экспериментальными значениями. В данном методе (ММУМ) коэффициент R_{ММУМ} выражает близость рассчитанных по модельному уравнению (4) коэффициентов активности хлороводородной кислоты в этаноле (бутаноле) с оцененными по уравнениям ММУМ (6) и (7), их величины близки к 1.

Таким образом, разработанные методы оценок параметров (характеристик) растворенного электролита в органическом растворителе: предельная электропроводность, степень и константа диссоциации, активность сольватированного иона водорода и особенно коэффициенты активности,

λ	$C_{\rm HCl}$	α	$\gamma_{\pm \mathfrak{s} \kappa c \pi}$	K _{HCl}	$\gamma_{\pm MMYM}$	λ	$C_{\rm HCl}$	α	$\gamma_{\pm {\rm экс }\pi}$	K _{HCl}	$\gamma_{\pm MMYM}$
1	2	3	4	5	6	7	8	9	10	11	12
Этанол					Бутанол						
22.52	1.5000	0.2807	0.1491	0.1643	0.1444	2.428	7.009	0.1097	0.0431	0.0948	0.03932
23.94	1.0000	0.2983	0.1650	0.1268	0.1720	2.831	3.485	0.1279	0.0536	0.0654	0.06134
30.47	0.2000	0.3797	0.2467	0.0465	0.2530	3.488	1.351	0.1576	0.0719	0.0398	0.07431
33.81	0.1000	0.4213	0.2934	0.0306	0.2904	5.395	0.186	0.2438	0.1330	0.0146	0.1274
34.02	0.09602	0.4239	0.2964	0.0299	0.2927	5.964	0.118	0.2695	0.1532	0.0117	0.1470
37.52	0.05000	0.4675	0.3489	0.0205	0.3423	6.360	0.0881	0.2874	0.1677	0.0102	0.1636
37.75	0.04801	0.4704	0.3525	0.0200	0.3467	6.551	0.0770	0.2960	0.1749	0.00958	0.1670
41.88	0.02400	0.5219	0.4192	0.0136	0.4162	6.890	0.0612	0.3113	0.1878	0.00861	0.1786
43.04	0.02000	0.5364	0.4387	0.0124	0.4379	7.407	0.0440	0.3347	0.2079	0.00742	0.2066
46.47	0.01200	0.5791	0.4985	0.0095	0.5000	7.947	0.0320	0.3591	0.2296	0.00644	0.2305
47.76	0.01000	0.5952	0.5217	0.0087	0.5251	8.628	0.0220	0.3899	0.2578	0.00548	0.2656
51.57	0.00600	0.6426	0.5928	0.0069	0.5973	9.992	0.0113	0.4515	0.3170	0.00420	0.3244
53.00	0.00500	0.6604	0.6205	0.0064	0.6251	10.050	0.0110	0.4541	0.3196	0.00416	0.3241
57.22	0.00300	0.7130	0.7050	0.0053	0.7106	11.444	0.0061	0.5171	0.3838	0.00337	0.3922
60.80	0.00200	0.7577	0.7802	0.0047	0.7863	11.705	0.0055	0.5289	0.3962	0.00327	0.4057
63.49	0.00150	0.7911	0.8384	0.0045	0.8391	13.633	0.0027	0.6160	0.4912	0.00272	0.4965
67.47	0.00100	0.8407	0.9278	0.0044	0.9231	15.880	0.0013	0.7175	0.6090	0.00250	0.6020
70.44	0.00075	0.8778	0.9970	0.0047	0.9894	18.496	0.0007	0.8358	0.7550	0.00292	0.7458

Таблица 3. Данные для ММУМ

оцененные альтернативными методами, подтверждают правомерность, воспроизводимость и корректность предлагаемых подходов и методов оценки важнейших характеристик растворенного вещества в большинстве растворителей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Harned H.S.* // J. Phys. Chem. 1960. V. 64. № 1. P. 112.
- 2. *Robinson R., Stokes R.* Electrolyte Solutions. M.: IL, 1963. 646 p.
- 3. Davies C.W. // J. Chem. Soc. 1938. P. 2093.
- Khoo K.H., Lim T.K., Chan Ch.Y. // J. Sol. Chem. 1978. V. 7. P. 291. https://doi.org/10.1007/bf00644276
- Pierrot D., Millero F.J., Roy L.N. et al. // Ibid. 1997. V. 26. № 1. P. 31.

- Schneider A.C., Pasel Ch., Luckas M. et al. // Ibid. 2004. V. 33. № 3. P. 257. https://doi.org/10.1023/B:JOSL.0000035359.00943.14
- Rockwood A.L. // ChemPhysChem. 2015. V. 6. № 9. P. 1978.
 - https://doi.org/10.1002/cphc.201500044
- Tanganov B.B., Alexeeva I.A. // Russ. J. Phys. Chem. A. 2016. V. 90. № 4. P. 792. Springer Link: https://doi.org/10.7868/ S0044453716040312
- 9. *Tanganov B.B.* // J. Chem. and Chem. Eng. (USA). 2013. V. 7. № 8. P. 711.
- Tanganov B.B., Alekseeva I.A. // Russ. J. Phys. Chem. A. 2017. V. 91. P. 1149. DOI: 7060243 https://doi.org/10.1134/S003602441
- 11. Танганов Б.Б., Бубеева И.А. Применение метода множественной регрессии для оценки значений энергии водородных связей //www.sciteclibrary.ru/rus/catalog/pages/6892. html
- 12. *Танганов Б.Б.* // Междунар. журн. эксперим. образования. 2015. Вып. 11. Ч. 3. С. 433.