= ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ =

УДК (547.484.34+661.747.14):544.127:543.544.3

ОСОБЕННОСТИ ГАЗОХРОМАТОГРАФИЧЕСКОГО РАЗДЕЛЕНИЯ ТАУТОМЕРОВ ЭТИЛАЦЕТОАЦЕТАТА

© 2020 г. И. Г. Зенкевич^{а,*}, В. М. Лукина^а

^аСанкт-Петербургский государственный университет, Институт химии, Санкт-Петербург, Россия *e-mail: izenkevich@vandex.ru

> Поступила в редакцию 09.10.2019 г. После доработки 09.10.2019 г. Принята к публикации 15.10.2019 г.

Рассмотрены особенности газохроматографического разделения кето- и енольной таутомерных форм этилацетоацетата на капиллярной колонке со станлартной неполярной полилиметилсилоксановой неподвижной фазой ВРХ-1. Подтверждено, что хроматограммы смеси таутомеров имеют специфический профиль, а именно – "плато" между пиками таутомеров, что соответствует обратимому превращению "кето денол в процессе разделения. Показано, что енольная и кето-формы этилацетоацетата имеют разные коэффициенты температурной зависимости индексов удерживания $(0.19 \pm 0.03 \text{ и} 0.02 \pm 0.02$ соответственно). Установлено отсутствие зависимости относительных площадей пиков таутомеров от природы растворителя (полярный этиловый спирт и неполярный гексан) при разных температурах, т.е. такие отношения преимущественно отражают положение равновесия "кето д енол" в паровой фазе испарителя хроматографа. Сделан вывод, что следствием этого оказываются близкие значения термодинамических параметров (стандартные энтальпия и энтропия) таутомерного равновесия, определяемые при дозировании проб в различных растворителях. Обсуждены возможные искажения результатов определений за счет эффектов дискриминации состава проб, дозируемых в капиллярные колонки с делением потока газа-носителя. Примесь в длительно хранившемся образце этилацетоацетата идентифицирована как этил-2-гидрокси-3-оксобутаноат – продукт окисления растворенным кислородом атмосферного воздуха.

Ключевые слова: этилацетоацетат, газовая хроматография, разделение кето- и енольного таутомеров, влияние температуры, термодинамические параметры, идентификация примеси **DOI:** 10.31857/S0044453720060357

Прототропная таутомерия (1,3-сдвиг атома водорода) вызывает особый интерес в химии, так как усложняет характеристику физико-химических и спектральных свойств органических соединений вследствие их зависимости от условий определения (температура, растворитель, pH растворов и т.д.). Типичным примером структур, для которых типична прототропная таутомерия, являются β-дикарбонильные соединения:

Существование подобного таутомерного равновесия определяет сложности и неоднозначности результатов хроматографического разделения способных к таутомерии аналитов [1]. Чаще всего в химической практике встречаются такие представители β -дикетонов как 2,4-пентандион (ацетилацетон, I) и этил-3-оксобутаноат (этилацетоацетат, ацетоуксусный эфир, II):

$CH_3COCH_2COCH_3$ (I) $CH_3COCH_2COOC_2H_5$ (II)

По литературным данным содержание енольной формы в (I) при нормальных условиях (н.у.) составляет 80–96% [2], а в (II) – от 6.8–8.0 [3] до 9.4–10.5% [4]. Основной метод определения соотношения кето- и енольных форм в растворах при н.у. – спектроскопия ЯМР ¹Н, причем оценки их количеств по разным сигналам спектров могут несколько различаться между собой [4]. Содержание в растворах менее полярных енольных форм β -дикарбонильных соединений увеличивается при переходе от полярных к неполярным растворителям [5], а также в паровой фазе.

Все отмеченные выше закономерности установлены для жидких индивидуальных веществ или их растворов. Газохроматографическое же

разделение подразумевает перевод компонентов проб в паровую фазу в испарителе хроматографа и перемещение их зон по колонке при повышенных температурах, что изменяет соотношение таутомеров. Однако во всех оригинальных работах [6-13], использованных в качестве источников информации в базе данных NIST [14], указаны газохроматографические индексы удерживания (RI) этилацетоацетата (II) на стандартных неполярных и полярных фазах без уточнения их отнесения к какому-либо из таутомеров. То же относится к масс-спектру ионизации электронами (ИЭ) эфира (II) [14]. Подобная ситуация наблюдается и для ацетилацетона (I). В то же время для изомерного (II) метилового эфира 2-оксопентановой кислоты в базе [14] приведены два разных масс-спектра кето- и енольной форм, но значение RI приписано только первой из них. Между тем, еще в конце 1980-х гг. появились сообщения о газохроматографическом разделении кето- и енольных форм 1,3-дикетонов [15], а несколько позже и β-кетоэфиров [16]; подтверждены различия их масс-спектров ИЭ. Данные работ [15, 16] позволяют обобщить закономерности последовательностей газохроматографического элюирования таутомеров β-дикарбонильных соединений, по крайней мере, на стандартных неполярных фазах. Если при атоме углерода, расположенном между карбонильными группами, нет заместителей, то енольная форма имеет меньшие параметры удерживания по сравнению с кето-таутомером. При наличии заместителей порядок элюирования заменяется обратным.

Измерение соотношения интенсивностей сигналов таутомеров эфира (II) в спектрах ЯМР ¹Н при разных температурах эквивалентно определению констант равновесия "кето \rightleftharpoons енол", на основании которых можно вычислять термодинамические параметры активации ($\Delta H^{\#}$ и $\Delta S^{\#}$) этого процесса [3–5, 17, 18]. Газохроматографические данные для этих целей не использовали, так как оставалось неясным, к какой фазе (системе) относить полученные данные. Есть сообщения об использования таких данных для оценки энтальпий испарения таутомеров [3].

Задачи настоящей работы:

— выявление особенностей газохроматографического разделения двух таутомерных форм этилацетоацетата (II), в том числе температурной зависимости соотношений площадей пиков S(енол) - S(кето) в растворителях разной полярности;

 уточнение значений газохроматографических индексов удерживания обоих таутомеров этилацетоацетата и характеристик их температурной зависимости;

 сопоставление термодинамических параметров активации процесса установления тауто- идентификация примеси ранее не охарактеризованного соединения, обнаруженной в хранившемся в течение длительного времени образце этилацетоацетата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Используемые реактивы и приготовление образцов. Использовали этилацетоацетат ("х.ч.", "Реахим", Москва), *н*-алканы C_6-C_{12} с четным числом атомов углерода ("х.ч." или "х.ч. для хроматографии", "Реахим", Москва); растворители *н*-гексан ("х.ч.", Вектон, Санкт-Петербург) и этиловый спирт (ООО "Гатчинский спиртовый завод", Ленинградская обл.). Образцы готовили растворением 150 мкл этилацетоацетата в 1.35 мл этилового спирта или *н*-гексана с добавкой по 50 мкл *н*-октана и *н*-декана (реперные углеводороды).

Условия газохроматографического и хроматомасс-спектрометрического анализа. Газохроматографический анализ растворов этилацетоацетата в этиловом спирте и гексане проводили на газовом хроматографе Хроматэк-Кристалл 5000.2 с пламенно-ионизационным детектором и WCOT колонкой из плавленого кварца со стандартной неполярной полидиметилсилоксановой фазой BPX-1 длиной 10 м, внутренним диаметром 0.53 мм и толщиной пленки неподвижной фазы 2.65 мкм. Температура колонки 70°С при варьировании температуры испарителя от 100 до 220°С с шагом 20 К, или изотермические режимы от 60 до 100°С с шагом 10 К при постоянной температуре испарителя 160°С. Температура детектора 200°С, газ-носитель азот, объемная скорость 5.2 мл/мин (линейная скорость 43.9 см/с), деление потока 1:3, объем дозируемых проб 0.5 мкл (микрошприц "МШ-1"). Число параллельных определений для одних и тех же образцов в одинаковых условиях 2-4. Для определения изотермических индексов удерживания (Ковача) в образцы добавляли по 50 мкл *н*-алканов С₈ и С₁₀.

Хромато-масс-спектрометрический анализ проводили на хромато-масс-спектрометре Shimadzu QP-2010 SE с ИЭ (энергия ионизации 70 эВ) с колонкой Optima 1 длиной 25 м, внутренним диаметром 0.32 мм и толщиной пленки неподвижной фазы 0.35 мкм. Режим анализа: программирование температуры от 50 до 250°С со скоростью 5 К/мин, температура испарителя 180°С, температура детектора 200°С, газ-носитель гелий, расход 1.82 мл/мин (линейная скорость 53.6 см/с), деление потока 1:10, объем дозируемых проб 0.5 мкл. Температуры интерфейса и ис-

Рис. 1. Фрагмент хроматограммы раствора этилацетоацетата в этиловом спирте в условиях программирования температуры; компонент "X" – примесь в образце, С₁₀ – реперный *н*-алкан С₁₀Н₂₂, *t* – время удерживания.

точника ионов 200°С. Время перекрывания потока газа-носителя из хроматографической колонки в источник ионов ("отсечка растворителя") 1.6 мин. Для определения линейно-логарифмических индексов удерживания в образцы добавляли смесь реперных *н*-алканов C_6-C_{12} с четным числом атомов углерода.

Обработка результатов. Компоненты реакционных смесей характеризовали стандартными масс-спектрами и индексами удерживания с их последующим усреднением. В качестве оценки "мертвого" времени для растворов в н-гексане принимали время выхода пика первой из примесей в растворителе, для растворов в этаноле время выхода растворителя. Таутомеры характеризовали отношениями площадей пиков кето- и енольной форм. В случае автоматической регистрации площадей в области "плато" между пиками таутомеров эти значения прибавляли к площади первого пика при условии $t_{\rm R} < [t_{\rm R}(1) +$ $+ t_{\rm R}(2)]/2$ и второго при невыполнении этого условия. Вычисление индексов удерживания и статистическую обработку данных проводили с использованием ПО Excel (Microsoft Office, 2010), Origin (версия 4.2) и программы QBasic.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Особенности хроматографических профилей таутомеров этилацетоацетата. Фрагмент хроматограммы раствора этилацетоацетата (II) в этиловом спирте в режиме программирования температуры приведен на рис. 1. По соотношению интенсивностей пиков и в соответствии с литературными данными о порядке элюирования таутомеров [15] менее интенсивный пик с меньшим временем удерживания должен быть отнесен к енольной форме эфира. Интенсивность сигналов молекулярных ионов енольной формы закономерно выше благодаря наличию системы сопряжения. Масс-спектры ИЭ таутомеров в целом сходны, но в них наблюдаются некоторые заметные отличия, например, в интенсивностях пиков с m/z = 85 и 69:

№ 1 (енольная форма), $m/z \ge 39$ ($I_{\text{отн}}$, %): 130(17)**М**, 115(5), 102(12), 88(16) [М – CH₂CO], 87(16), 86(3), 85(31) [М – C₂H₅O], 84(15), 70(3), 69(24), 61(4), 60(8), 58(4), 56(2), 55(2), 45(5), 44(3), 43(100) [CH₃CO], 42(12), 41(3), 39(3).

№ 2 (кето-таутомер), $m/z \ge 39$ ($I_{\text{отн}}$, %): 130(6)**M**, 115(2), 102(6), 88(20) [M - CH₂CO], 87(4), 85(13) [M - C₂H₅O], 84(2), 70(3), 69(4), 61(5), 60(11), 58(2), 45(4), 44(3), 43(100) [CH₃CO], 42(12), 41(2).

Единственный приведенный в базе [14] массспектр этилацетоацетата приблизительно соответствует суперпозиции двух приведенных спектров. В частности, интенсивность сигнала с m/z = = 69 в нем составляет 10%.

Обращает на себя внимание специфический контур хроматографического сигнала в области между пиками таутомеров, уровень которого не достигает базовой линии и образует некоторое "плато" (рис. 1). Регистрация масс-спектров в разных точках подобных "плато" на примерах других соединений, обратимо или необратимо превращающихся друг в друга в процессе разделения в хроматографической колонке [19, 20], показывает, что они также представляют собой суперпозиции масс-спектров индивидуальных таутомеров в разных соотношениях. Такой вид хроматограмм однозначно свидетельствует о взаимопревращении "кето \rightleftharpoons енол" в процессе перемещения зон аналитов по колонке. Аналогичные профили хроматографических сигналов на-

Рис. 2. Фрагменты хроматограмм раствора этилацетоацетата в этиловом спирте в изотермических условиях; температура колонки 60 (а) и 100° C (б); C₈ – реперный *н*-алкан C₈H₁₈.

блюдались для четырех кетоэфиров [15] и для диацетила на дополнительно окисленной полярной неподвижной фазе RTx-1701 [21].

Газохроматографический анализ растворов (II) в изотермических условиях при разных температурах колонки (от 60 до 100°С) и постоянной температуре испарителя позволяет охарактеризовать температурную зависимость индексов удерживания каждого из таутомеров и обнаруженной в образце (II) примеси, а также установить характер зависимости констант равновесия (K), равных отношениям площадей пиков таутомеров $K = S_{\text{отн}} = S(\text{енол})/S(\text{кето})$ от температуры колонки.

На рис. 2 сопоставлены фрагменты хроматограмм таутомеров (II) в изотермических условиях при температурах колонки 60° C (а) и 100° C (б), иллюстрирующие заметную зависимость степени их разделения от температуры. При 60° C "плато" между пиками имеет минимальную величину, но при повышении температуры его высота увели-

Таблица 1. Значения $RI(T_0)$ и β для енольной и кетоформ этилацетоацетата

Компонент	RI _{прогр}	$\operatorname{RI}(T_0)$	β
Енольная форма (II)	889 ± 2	875 ± 2	0.19 ± 0.03
Кето-форма (II)	920 ± 1	919 ± 1	0.02 ± 0.02
Примесь	957 ± 2	964 ± 1	-0.10 ± 0.01

чивается. В результате при 100°С уже можно сделать вывод о неполном разделении таутомеров, что объясняется двумя причинами. Прежде всего, енольная и кето-формы этилацетоацетата характеризуются разными коэффициентами (β) температурной зависимости индексов удерживания RI(T):

$$RI(T) = RI(T_0) + b(T - T_0),$$
 (1)

где RI(T) — значение индекса удерживания при температуре T, RI(T_0) — значение при температуре $T_0 = 0$ °C (условно), $\beta = d$ RI/dT — коэффициент температурной зависимости индексов удерживания. Значения RI(T_0) и β вычисляют методом наименьших квадратов. В результате обработки данных в интервале температур 60—100°C получаем результаты (в сравнении со значениями RI_{прогр} в условиях программирования температуры), приведенные в табл. 1.

Из значения $\beta = 0.02 \pm 0.02$ ед. индекса/К следует, что значение RI кето-формы этилацетоацетата практически не зависит от температуры. В то же время положительное значение $\beta = 0.19 \pm 0.03$ для енольной формы означает, что при повышении температуры хроматографической колонки "расстояние" между пиками таутомеров в шкале индексов удерживания уменьшается. Причина бо́льшего значения коэффициента β енольной формы (II) — наличие в ее молекуле сопряженной системы >C=C-C=O. В связи с этим следует от-

Таблица 2.	Зависии	мос	ть средних зна	чений отношений пло	эщадей пи	ков т	аутомеров эт	илацетоацетат	га (раствор в
этиловом	спирте)	от	температуры	хроматографической	колонки	при	постоянной	температуре	испарителя
(160°C)									

<i>T</i> , °C	<i>S</i> (енол)/ <i>S</i> (кето)	<i>S</i> (кето)/ <i>S</i> (енол)	<i>S</i> (енол)/ <i>S</i> (C ₈)	<i>S</i> (кето)/ <i>S</i> (С ₈)
60	_	4.1	0.27	1.08
70	0.25	4.1	0.27	1.11
80	0.26	3.9	0.28	1.10
90	0.24	4.1	0.26	1.10
100	0.23	4.4	0.26	1.08

Примечание: Жирным шрифтом выделены значения, иллюстрирующие отсутствие эффектов дискриминации состава образцов в зависимости от температуры колонки.

метить аномальное отрицательное значение коэффициента β для примеси (-0.10 ± 0.01). Столь необычная для большинства органических соединений величина, во-первых, исключает присутствие в молекуле систем сопряжения и, во-вторых, типична для соединений с функциональными группами, содержащими активные атомы водорода⁻ Скорость установления равновесия "кето \rightleftharpoons енол" при повышении температуры возрастает, что увеличивает высоту "плато" между пиками таутомеров. Дальнейшее ее повышение теоретически должно приводить к слиянию пиков таутомеров (аналогично температуре коалесценции в спектроскопии ЯМР [18]).

Анализ растворов (II) при разных температурах газохроматографической колонки подтверждает существование температурной зависимости относительных площадей пиков. Например, значения $S_{\text{отн}} = S(\text{енол})/S(\text{кето}) < 1$ уменьшаются при повышении температуры, что иллюстрируют данные табл. 2. Однако линеаризовать зависимость $S_{\text{отн}}$ от температуры хроматографической колонки уравнением Антуана:

$$\ln[S(\text{енол})/S(\text{кето})] = a/T + b, \qquad (2)$$

где коэффициенты *а* и *b* вычисляют методом наименьших квадратов, не удается.

Причина этого — неодинаковые времена нахождения аналитов в нагретой хроматографической колонке, зависимость которых от температуры характеризуется уравнением [22]:

$$\ln t_R = a/T + b. \tag{3}$$

В результате линеаризация зависимости $S_{\text{отн}} = f(T)$ возможна только при объединении соотношений (2) и (3) в одно, содержащее такую "экзотическую" функцию как двойной логарифм lnln $S_{\text{отн}}$ [21, 23], что не входило в задачи настоящей работы. Вместо этого предпочтительнее рассмотреть проще интерпретируемую зависимость $S_{\text{отн}}$ от температуры испарителя при постоянной температуре хроматографической колонки.

Зависимость относительных площадей пиков таутомеров этилацетоацетата от температуры испарителя. В табл. 3 приведены средние значения относительных площадей $S_{\text{отн}} = S(\text{енол})/S(\text{кето})$ и обратные им величины при различных температурах испарителя (от 100 до 220°С) для растворов этилацетоацетата в этиловом спирте, а в табл. 4 – аналогичные данные для растворов в гексане. Температуру колонки при этом сохраняли постоянной (70°С). Таблицы 3 и 4 дополнительно содержат отношения площадей пиков енольной и кето-форм этилацетоацетата к площади пика инертного компонента смеси – *н*-алкана C₈H₁₈ (см. обсуждение далее). Согласно литературным данным, содержание енольной формы в неполярном растворителе (гексан) выше, чем в полярном (этанол) (39 и 7.2% соответственно [5]). Однако величины S_{отн} таутомеров для обоих растворителей при всех температурах испарителя отличаются незначительно. Например, значения $S_{\text{отн}} =$ = S(кето)/S(енол) при увеличении температуры от 100 до 200°С для растворов (II) в этаноле увеличиваются в 1.9. а для растворов в гексане – в 2.2 раза Этот результат позволяет утверждать, что температурные вариации положения таутомер-мые по газохроматографическим данным, относятся не к конденсированной, а преимущественно к паровой фазе, в которой влияние природы растворителя на соотношение таутомеров минимально. Кроме того, наблюдаемые различия могут быть обусловлены не влиянием природы растворителей на положение таутомерного равновесия, а проявлениями эффектов дискриминации состава анализируемых проб (см. далее).

Вычисление параметров линейной регрессии $\ln S_{\text{отн}}$ от обратной температуры (в виде 1000/T с последующим пересчетом) методом наименьших квадратов по уравнению:

ln[S(ehon)/S(κeto)] = $-\Delta H^{\#}/RT + \Delta S^{\#}/R$ (4)

позволяет оценить значения $\Delta H^{\#}$ и $\Delta S^{\#}$ для таутомерного равновесия.

<i>T</i> , °C	<i>S</i> (енол)/ <i>S</i> (кето)	<i>S</i> (кето)/ <i>S</i> (енол)	<i>S</i> (енол)/ <i>S</i> (C ₈)	$S(\text{Keto})/S(\text{C}_8)$	$[S(енол) + S(кето)]/S(C_8)$
100	0.42	2.36	0.20	0.46	0.66
120	0.36	2.83	0.19	0.54	0.73
140	0.30	3.36	0.17	0.58	0.75
160	0.27	3.76	0.17	0.64	0.81
180	0.25	4.05	0.15	0.65	0.80
200	0.22	4.54	0.14	0.67	0.81
220	0.20	5.09	0.14	0.70	0.84

Таблица 3. Зависимость средних значений отношений площадей пиков таутомеров этилацетоацетата (раствор в этиловом спирте) от температуры испарителя при постоянной температуре хроматографической колонки (70°С)

Примечание: Жирным шрифтом выделены значения, иллюстрирующие проявление эффектов дискриминации состава образцов в зависимости от температуры испарителя.

На рис. 3 и 4 приведены зависимости (4) для растворов этилацетоацетата в этиловом спирте и гексане. Параметры уравнений линейной регрессии указаны в подписях к этим рисункам. Вычисленные по этим данным значения $\Delta H^{\#}$ и $\Delta S^{\#}$ в случае этанола составляют -9.3 ± 0.3 кДж/моль и -32.3 ± 0.7 Дж/(К моль), а в случае гексана $-10.9 \pm \pm 0.3$ кДж/моль и -35.8 ± 0.8 Дж/(К моль). Отрицательные знаки величин $\Delta H^{\#}$ и $\Delta S^{\#}$ и порядок их абсолютных величин, в целом, согласуются с определенными в работе [21], в которой, правда, они были приписаны не равновесию в паровой фазе, а взаимодействию таутомеров с полярной неподвижной фазой хроматографической колонки.

Незначительная величина $|\Delta H^{\#}| \sim 10 \pm 1$ кДж/моль объясняет легкость взаимных превращений таутомеров при относительно невысоких температурах газохроматографического разделения, проявляющихся в специфических профилях хроматограмм.

Влияние эффектов дискриминации состава проб. Любые газохроматографические определения, предполагающие дозирование проб в капиллярные колонки с делением потока при разных температурах испарителя или в разных раствори-

Таблица 4. Зависимость средних значений отношений площадей пиков таутомеров этилацетоацетата (раствор в гексане) от температуры испарителя при постоянной температуре хроматографической колонки (70°С)

<i>T</i> , °C	<i>S</i> (енол)/ <i>S</i> (кето)	<i>S</i> (кето)/ <i>S</i> (енол)		
100	0.45	2.21		
120	0.36	2.72		
140	0.32	3.14		
160	0.28	3.57		
180	0.24	4.21		
200	0.21	4.77		

телях, должны учитывать возможное искажение результатов за счет так называемых эффектов дискриминации состава проб [23–26]. Одно из наиболее типичных их проявлений — вариации абсолютных и относительных площадей пиков в зависимости от температуры испарителя хроматографа и природы растворителя. В рассматриваемом в настоящей работе случае характеристика зависимости $S_{\text{отн}} = f(T)$ для таутомеров как раз и предполагает вариации температуры испарителя, а сравнение параметров этой зависимости для полярного этанола и неполярного гексана — влияние второго фактора.

Для обсуждения эффектов дискриминации состава проб при их дозировании в капиллярные колонки с делением потока целесообразно вернуться к рассмотрению данных табл. 2. Помимо относительных площадей пиков таутомеров (II) (раствор в этиловом спирте) при разных температурах хроматографической колонки в ней дополнительно представлены отношения плошадей пиков каждого из таутомеров к площадям пиков инертного компонента – углеводорода н-С₈Н₁₈: $S(\text{енол})/S(C_8)$ и $S(\text{кето})/S(C_8)$, равные 0.27 ± 0.01 и 1.10 ± 0.01 соответственно. Это полтверждает отсутствие какой-либо зависимости указанных отношений от температуры колонки (нет эффектов дискриминации), так что вариации S(ehon)/S(keto) и S(keto)/S(ehon) обусловлены исключительно зависимостью $S_{\text{отн}} = f(T)$ для таутомеров.

В табл. 3 помимо значений $S(\text{енол})/S(C_8)$ и $S(\text{кето})/S(C_8)$ приведены аналогичные отношения $S(\text{енол})/S(C_8)$ и $S(\text{кето})/S(C_8)$, демонстрирующие выраженные температурные зависимости (убывающая для первого отношения и возрастающая для второго). Графическая иллюстрация этих зависимостей представлена на рис. 5. Особый интерес представляют не температурные зависимости каждого из этих отношений по отдельности, а температурная зависимость их суммы.

Рис. 3. Зависимость $\ln S_{\text{отн}}$ от температуры испарителя (1/*T*) для раствора этилацетоацетата в этиловом спирте. Параметры линейной регрессии: $a = 1.12 \pm 0.03$, $b = -3.89 \pm 0.08$, R = 0.998, $S_0 = 0.02$.

В табл. З дополнительно приведены значения $[S(енол) + S(кето)]/S(C_s)$, а на графике для наглядности отображена кривая, соответствующая полиномиальной аппроксимации температурной зависимости полусуммы $[S(енол)/S(C_8) + S(ке$ то)/ $S(C_8)$]/2). Кето- и енольные формы этилацетоацетата изомерны, что предопределяет близкую чувствительность к ним пламенно-ионизационного детектора, но данные табл. 3 и рис. 5 иллюстрируют заметное увеличение отношений $[S(енол) + S(кето)]/S(C_8)$ при увеличении температуры от 100 до 220°С (в 1.27 раза). Это и может быть объяснено проявлением эффектов дискриминации [23-26], так как при увеличении температуры испарителя увеличиваются относительные площади пиков более высококипящих компонентов (для этилацетоацетата $T_{\rm KMI}$ =180.8°C, для *н*-октана – 125.7°С).

Дополнительно на рис. 5 приведен набор точек, соответствующих относительным площадям пиков соединений одной химической природы — реперным углеводородам h- $C_{10}H_{22}$ и h- C_8H_{18} , из чего можно сделать вывод об отсутствии явно выраженной температурной зависимости для этой пары компонентов. Аналогичная температурная зависимость отношений [S(ehon) + S(ke-to)]/ $S(C_8)$ наблюдается и для растворов эфира (II) в гексане, но для сокращения объема обсуждения результатов соответствующие данные не включены в табл. 4.

Таким образом, эффекты дискриминации, безусловно, влияют на характеристики температурной зависимости относительных площадей пиков таутомеров и, следовательно, на надежность определения термодинамических параметров таутомерного равновесия "кето д енол". В рассматриваемом случае можно отметить, что

Рис. 4. Зависимость $\ln S_{\text{отн}}$ от температуры испарителя (1/*T*) для раствора этилацетоацетата в гексане. Параметры линейной регрессии: $a = 1.31 \pm 0.04$, $b = -4.31 \pm 0.10$, R = 0.998, $S_0 = 0.02$.

отношения $S(\text{кето})/S(C_8)$ для растворов (II) в этаноле (табл. 3) при увеличении температуры увеличиваются в 2.2 раза, тогда как оценка с учетом эффектов дискриминации соответствует увеличению всего приблизительно в 1.3 раза. Более точный учет их влияния требует дальнейшего совершенствования методов обработки экспериментальных данных и специального рассмотрения.

Идентификация неизвестной примеси в образце этилацетоацетата. Кроме двух таутомеров с RI = 880 и 909 (значения для режима программирования температуры), в хранившемся в течение длительного времени образце этилацетоацетата

Рис. 5. Графическое представление зависимостей относительных площадей пиков: $1 - S(\text{енол})/S(\text{C}_8)$, $2 - S(\text{кето})/S(\text{C}_8)$, $3 - S(\text{C}_{10})/S(\text{C}_8)$ (для сравнения) от температуры испарителя. Сплошная линия – результат полиномиальной аппроксимации возрастающей зависимости средних значений [$S(\text{енол})/S(\text{C}_8) + S(\text{кето})/S(\text{C}_8)$]/2 от температуры (по данным для раствора этилацетоацетата в этиловом спирте).

была обнаружена примесь с RI = 957 со следующим масс-спектром ИЭ:

 $m/z \ge 39$ ($I_{\text{отн}} \ge 2\%$): 146(1), 119(1), 75(17), 74(74), 73(24), 59(8), 57(17), 56(17), 47(8), 46(7), 45(100), 44(18), 43(40), 42(6), 41(11).

Характерная особенность этого масс-спектра присутствие двух интенсивных сигналов с m/z == 45 и 74, относящихся к гомологическим группам v = 3 и 4. Такое сочетание массовых чисел редко встречается в масс-спектрах органических соединений; библиотечный поиск по этим двум пикам с использованием базы данных NIST [14] привел всего к 10 альтернативным ответам с факторами совпадения менее 0.5, так что ни один из них не может быть принят к дальнейшему рассмотрению. Идентификация по номерам гомологических групп главных сигналов и массспектрам ионных серий [27] также не дала положительных результатов. Безрезультатными оказались попытки предположить природу этого компонента исходя из схемы синтеза этилацетоацетата и. в том числе. гипотезы о возможном образовании этилового эфира енольной формы [28]. Следует заметить, что любые производные енольной формы (II) должны быть исключены на основании отрицательного значения коэффициента температурной зависимости индексов удерживания ($\beta = -0.10 \pm 0.01$). Таким образом, пик с RI = 957 принадлежит неидентифицированному компоненту "Х".

Тем не менее, установление его структуры возможно в результате совместной интерпретации масс-спектра ИЭ и индекса удерживания на стандартной неполярной неподвижной фазе. Слабый сигнал масс-спектра с максимальным значением m/z = 146, скорее всего, принадлежит молекулярным ионам. Такое отнесение подтверждается наличием в масс-спектре еще одного слабого сигнала с m/z = 119, соответствующего осколочным ионам $[M - C_2H_3]^+$, типичным для этиловых эфиров карбоновых кислот (разрыв связей с "двойной" перегруппировкой водорода [29]). Если так, то образование соединения с M = 146 из этилацетоацетата $C_6 H_{10} O_3$ с M = 130 представляет собой его окисление, что согласуется с длительным хранением образца в контакте с атмосферным воздухом. Окисление протекает растворенным в эфире (II) кислородом воздуха по свободнорадикальному механизму.

Образующиеся при этом гидропероксиды и полимерные пероксиды нестабильны при нагревании и, следовательно, недоступны для газохроматографического анализа, так что наблюдаемый компонент "Х", наиболее вероятно, имеет структуру этил-2-гидрокси-3-оксобутаноата $C_6H_{10}O_4$:

Это соединение упоминается в литературе, о чем свидетельствует его САЅ № 15863-59-9, однако ни каких-либо его физико-химических характеристик, ни спектральных данных для него найти не удалось. На основании масс-спектра можно только предположить, что интенсивный сигнал масс-спектра с m/z = 74 соответствует ионам, образующимся в результате разрыва связи С-С с миграцией атома водорода, например, M^+ (*m*/*z* = $= 146) \rightarrow [M - CH_3COCHO]^+ ([M - 72] = 74). Сле$ довательно, основным источником информации при доказательстве структуры этого соединения должно быть совпадение экспериментального значения его газохроматографического индекса удерживания (957 в режиме программирования температуры) с теоретически вычисленной исходя из структуры величиной.

Из всех известных способов предсказания газохроматографических индексов удерживания наиболее информативным в данном случае представляется алгоритм. основанный на гипотетической "сборке" требуемой молекулярной структуры из структур более простых аналогов с последующими арифметическими операциями (суммирование и вычитание) с известными значениями RI таких аналогов [30-32]. Фактически, это - один из вариантов аддитивных схем. В данном случае решение задачи осложняется наличием внутримолекулярной водородной связи, вследствие чего сначала необходимо оценить ее вклад в аддитивную оценку RI. Для этого сравним, например, оценку RI 2-гидрокси-3-пентанона, содержащего аналогичную водородную связь в молекуле, с экспериментальным значением RI этого соединения. В качестве справочных значений RI использованы данные базы [14]:

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 6 2020

Следовательно, не учитываемый такой аддитивной схемой инкремент внутримолекулярной водородной связи равен $862 - (787 \pm 10) = 75 \pm 10$ ед. индек-

са. Далее проведем аналогичную сборку структуры целевого этил-2-гидрокси-3-оксобутаноата уже с учетом полученного инкремента:

Окончательно получаем: 1027 - 75 = 952.

Оценкой стандартного отклонения полученного результата является квадратный корень из суммы квадратов стандартных отклонений всех используемых при расчетах данных, т.е. $(4^2 + 5^2 + 10^2 + 2^2 + 2^2)^{1/2} \approx 12$. Следовательно, вычисленное значение RI = 952 ± 12 совпадает с экспериментальной величиной (957), что в данном случае можно рассматривать как решающее доказательство правильности предполагаемой структуры компонента "Х" – этил-2-гидрокси-3-оксобутаноат.

Таким образом, рассмотрение особенностей газохроматографического разделения таутомеров этилацетоацетата (II) позволило сделать следующие выводы.

- Отсутствие зависимости относительных площадей пиков таутомеров от природы растворителя при разных температурах показывает, что результаты газохроматографического анализа преимущественно отражают положение равновесия "кето денол" в паровой фазе испарителя хроматографа.

- Следствием этого оказываются близкие значения термодинамических параметров (стандартных энтальпии и энтропии активации) таутомерного равновесия, определяемые с использованием растворов этилацетоацетата в различных растворителях.

- Температурные вариации относительных площадей пиков таутомеров заметно превышают их температурные вариации за счет эффектов дискриминации состава проб, дозируемых в капиллярные колонки с делением потока. Тем не менее, можно полагать, что именно эффекты дискриминации вносят некоторые погрешности в результаты определений.

- Следствием малых абсолютных значений $\Delta H^{\#}$ оказывается легкость обратимых взаимных превращений таутомеров в процессе газохроматографического разделения. При температурах колонок 100°С и выше их разделение, видимо, невозможно.

- Установлено, что кето- и енольный таутомеры этилацетоацетата характеризуются значительными различиями температурных коэффициентов газохроматографических индексов удерживания на стандартных неполярных фазах.

- Использование модифицированного варианта аддитивных схем оценки газохроматографических индексов удерживания позволило идентифицировать примесь в образце этилацетоацетата как продукт его окисления растворенным кислородом атмосферного воздуха, а именно этил-2гидрокси-3-оксобутаноат.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Minkin V.I., Olekhnovich L.P., Zhdanov Yu.A.* Molecular design of tautomeric compounds. Kluwer Publ.: Dordrecht-Boston-Tokio, 1958. 312 p. https://doi.org/10.1007/978-94-009-1429-2
- Spencer J.N., Holmboe E.S., Kirshembaum M.R., Firth D.W., Pinto P.B. // Can. J. Chem. 1982. V. 68. P. 1178.
- Umnahanant P., Chickos J.S. // J. Chem. Eng. Data, 2005. V. 50. № 5. P. 1720. https://doi.org/10.1021/je050179z
- 4. *Antic D.* Measuring the Equilibrium Constant of a Keto-Enol Tautomerism Using Benchtop NMR. ThermoScientific Application Note, AN52327. 2017. 3 p.
- Rogers M.T., Burdett J.L. // Can. J. Chem. 1965. V. 43. P. 1516.
- 6. *Tiess D.* // Wiess Z. Willhelm-Pieck-Univ. Rostock Math. Naturwiss. Reiche. 1984. V. 33. P. 6.
- Peppard T.L. // J. Agric. Food Chem. 1992. V. 40. № 2. P. 257. https://doi.org/10.1021/jf00014a018
- 8. *Tudor E.* // J. Chromatogr. A. 1997. V. 779. P. 287. https://doi.org/10.1016/S0021-9673(97)00453-6
- 9. *Tudor E., Moldovan D., Zarna N.* // Rev. Roum. Chim. 1999. V. 44. № 2. P. 665.
- 10. Jordan M.J., Goodner K.L., Shau P.E. // J. Agric. Food Chem. 2002. V. 50. № 6. P. 1523. https://doi.org/10.1021/jf011077p
- Adamova M., Orinak A., Halas L. // J. Chromatogr. A. 2005. V. 1087. P. 131. https://doi.org/10.1016/j.chroma.2005.01.003
- Pino J.A., Mesa J., Munos Y., Marti M.P., Marbot R. // J. Agric. Food Chem. 2005. V. 53. № 6. P. 2213. https://doi.org/10.1021/jf0402633
- Bianchi F., Careri M., Mangia A., Musci M. // J. Sep. Sci. 2007. V. 39. № 4. P. 563.
- 14. The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Software/Data Version

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 6 2020

(NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899: <u>http://webbook.nist.gov</u> (дата обращения: октябрь 2019 г.).

- 15. Masur M., Grutzmascher H.-F., Munster H., Budzikieicz H. // Org. Mass Spectrom. 1987. V. 22. P. 493.
- Allegretti P.E., Schiavoni M.M., Di Loreto H.E., Furlong J.J.P., Della Vedova C.O. // J. Mol. Struct. 2001. V. 560. P. 327.
- Ruggiero S.J., Luaces V.-M. // J. Chem. Educ. 1988.
 V. 65. № 7. P. 629. https://doi.org/10.1021/ed065p629
- 18. *Krishman V.* // Inventions. 2019. V. 4. 15 p. https://doi.org/10.3390/inventions4010013
- Kornilova T.A., Ukolov A.I., Kostikov R.R., Zenkevich I.G. // Rapid Commun. Mass Spectrom. 2013. V. 27. № 3. P. 461. https://doi.org/10.1002/rcm.6457
- Зенкевич И.Г., Подольский Н.Е. // Аналитика и контроль. 2017. Т. 21. № 2. С. 125. https://doi.org/10.15825/analitika.2017.21.2.002
- Skrdla P.J., Antomucci V., Lindemann C. // J. Chromatogr. Sci. 2001. V. 39. P. 431.
- Руководство по газовой хроматографии. Под ред.
 Э. Лейбница и Х.Г. Штруппе. М.: Мир, 1988. В 2 т.
- 23. Grob K., Neukom H.P. // J. Chromatogr. A. 1982. V. 236. P. 297. https://doi.org/10.1016/S0021-9673(00)84878-5

- 24. Зенкевич И.Г., Олисов Д.А. // Лаборатория и производство. 2018. № 2. С. 92.
- Зенкевич И.Г., Лелеев Е. // Аналитика и контроль. 2019. Т. 23. № 1. С. 110. https://doi.org/10.15826/analitika.2019.23.1.012
- 26. Зенкевич И.Г., Олисов Д.А. // Журн. аналит. химии. 2019. Т. 74. № 7. С. S40. https://doi.org/10.1134/S1061934819070190
- 27. Зенкевич И.Г., Иоффе Б.В. Интерпретация массспектров органических соединений. Л.: Химия, 1986, 176 с.
- 28. Зенкевич И.Г., Лукина В.М. // Аналитика и контроль. 2019. Т. 23. № 3. С. 410. https://doi.org/10.15826/analitika.2019.23.3.009
- 29. *Hamming M.C., Foster N.G.* Interpretation of Mass Spectra of Organic Compounds. New York: Academic Press, 1979. 694 p.
- Zenkevich I.G., Moeder M., Koeller G., Schrader S. // J. Chromatogr. A. 2004. V. 1025. P. 227. https://doi.org/10.1016/j.chroma.2003.10.106
- Зенкевич И.Г., Уколов А.И. // Журн. общ. химии. 2011. Т. 81. № 9. С. 1479. https://doi.org/10.1134/1070363211090143
- 32. Зенкевич И.Г., Уколов А.И. // Масс-спектрометрия. 2011. Т. 8. № 4. С. 264. https://doi.org/10.1134/S1061934812130114