_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 536.17

ФАЗОВОЕ РАВНОВЕСИЕ СИСТЕМЫ ИОННАЯ ЖИДКОСТЬ БИС-[ТРИФТОРМЕТИЛСУЛЬФОНИЛ]ИМИД 1-ЭТИЛ-3-МЕТИЛИМИДАЗОЛИЯ + *н*-ГЕКСАН ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ

© 2020 г. И. М. Абдулагатов^{а, b}, С. М. Расулов^{b, *}, И. А. Исаев^b, С. М. Оракова^b

^а Дагестанский государственный университет, Махачкала, Россия ^b Российская академия наук, Дагестанский научный центр, Институт физики им. Х.И. Амирханова, Махачкала, Россия *e-mail: suleimanr1@rambler.ru Поступила в редакцию 12.07.2019 г. После доработки 29.10.2019 г. Принята к публикации 12.11.2019 г.

Проведены исследования *PVT*-свойств с использованием пьезометра постоянного объема и фазовых равновесий бинарной системы *н*-гексан + ионная жидкость с концентрацией 0.05 и 0.1 массовых долей (бис-[трифторметилсульфонил]имид 1-этил-3-метилимидазолия) (ИЖ) в области температур 300–575 К и давлениях до 16 МПа. Получены линии фазового равновесия и критические параметры этой системы.

Ключевые слова: РVТ-свойства, ионная жидкость, *н*-гексан, фазовые переходы, критическое состояние

DOI: 10.31857/S004445372007002X

Среди электролитических систем в настоящее время большое внимание уделяют исследованию ионных жилкостей. которые имеют молекулярно-ионную природу с большой ионной составляющей. Научные исследования во многих странах мира направлены на реализацию новых процессов с применением альтернативных растворителей, удовлетворяющих принципам "зеленой химии". К числу таких растворителей относятся ионные жидкости. Широкое их применение в рефрактометрии, как электрохимические сенсоры, в катализе и в органическом синтезе, в электрохимии и в других областях требует изучения физико-химических свойств этих веществ и их растворов с другими веществами, в том числе и с углеводородами. В литературе [1-12] мало информации по этим вопросам и имеющиеся данные противоречивы.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И РЕЗУЛЬТАТЫ

В связи с этим нами проведено исследование *PVT*-свойств смесей с содержанием 0.05 и 0.1 массовых долей (масс. долей) ионной жидкости бис-[трифторметилсульфонил]имид 1-этил-3-метилимидазолия (ИЖ) и *н*-гексана. Измерения проведены с использованием пьезометра постоянного объема [13] по 10 изохорам в температурной области 300-575 К, давлениях до 16 МПа и пределах плотности 65.4-663.4 кг/м³. Ранее пьезометр использовался для измерения *PVT*-свойств чистого 1-бутанола, *PVTx*-свойств бинарных смесей H₂O + $+ h-C_5H_{12}$ и $H_2O + h-C_6H_{14}$ в широком интервале температур и давлений, включающих критические и сверхкритические области [14-19]. Для настоящих исследований вместо мембранного датчика и грузопоршневого и стрелочного манометров для измерения давления использовался датчик давления СДВ-А-16.00-4-20мА-0322С-0605-2-код с погрешностью измерения ±0.15%. Погрешность измерения температуры составляет ±0.014 K.

Объем пьезометра, определяемый калибровкой по воде, составлял 24.410 ± 0.025 см³ при температуре ~20°С. Для учета изменения объема пьезометра в зависимости от температуры и давления вносились поправки. Вся система устанавливалась на полуосях и могла свободно поворачиваться на 180°.

Компоненты смеси взвешивались на аналитических весах с погрешностью не более 0.5 мг. Для подготовки смеси были использованы ионная жидкость чистотой 99% и *н*-гексан марки "х. ч.".

Рис. 1. *Р*–*Т*-данные системы (0.9) *н*-гексан + (0.1) (ИЖ) по изохорам: $1 - \rho = 65.4$, 2 - 139.75, 3 - 228.7, 4 - 300.2, 5 - 429.3, 6 - 514.5, 7 - 576.9, 8 - 598.3 и 9 - 663.4 кг/м³.

Результаты измерения представлены на рис. 1 и в табл. 1 и 2.

В нормальном состоянии *н*-гексан и (ИЖ) не смешиваются. Ионные жидкости имеют очень низкое давление насыщенных паров и практически не влияют на давлении паров чистого *н*-гексана. На измеренных изохорах обнаруживается два излома, соответствующие фазовым переходам. До первого перехода все изохоры совпадают с изохорами чистого *н*-гексана. На рис. 2 представлена изохора с $\rho = 65.9$ кг/м³ системы с содержанием 0.05 масс. долей ионной жидкости в области первого фазового перехода.

Первый переход, можно предположить, соответствует растворению ионной жидкости в н-гексане (переход жидкость-жидкость) и одновременному разложению ионной жидкости. Такой вывод сделан из того факта, что повторные измерения *P*-*T*-данных этой области не совпадают с первоначальными измерениями, образуя гистерезис (рис. 3, 4) и после первого перехода цвет разделившейся меньшей части жидкости приобретает коричневый оттенок. Параметры при повторном измерении смещаются в сторону уменьшения давления относительно давления первоначальных измерений. Следовательно, в системе происходят необратимые процессы. Для проверки процесса, проходящего в области первого перехода был проведен эксперимент с визуальным наблюдением. В термостатирующий сосуд высокого давления с оптическими окнами под вакуумом заправляли н-гексаном и в середине н-гекса-

Рис. 2. Изохора с ρ = 65.9 кг/м³ в области первого фазового перехода системы (0.95) *н*-гексан + (0.05) (ИЖ).

на помещали тарелочку из нержавеющей стали с ионной жидкостью. Температуру системы контролировали регулятором температуры и измеряли термометром сопротивления ПТС-10. Температуру меняли от комнатной до температур выше первого фазового перехода. Наблюдения показали, что в области первого перехода ионная жидкость выделяет пузырьки, происходит образование каких-то волокон, цепочек внутри ионной жидкости и меняет цвет с бесцветного на коричневый. Однако, растворение ионной жидкости в н-гексане не происходит. Следовательно, первый переход не соответствует переходу жидкостьжидкость, а является результатом реакции ионной жидкости с н-гексаном и разложения ионной жидкости.

Исследование чистой ионной жидкости без присутствия *н*-гексана в таком же эксперименте показывает, что ионная жидкость не претерпевает никаких изменений. Это указывает на то, что в присутствии *н*-гексана атомы углеводорода влияют на термическое состояние ионной жидкости, способствуя ее разложению. Некоторые продукты разложения, видимо, растворяются в *н*-гексане и частично переходят в газ, так как термические свойства смеси меняются и становятся отличными от свойств чистого *н*-гексана. Переход жидкость—газ является переходом в газ *н*-гексана с растворенными в нем веществами в присутствии жидкого остатка ионной жидкости.

Линии первого фазового перехода в $T-\rho$ - и P- ρ -диаграммах приведены на рис. 5, параметры перехода представлены в табл. 3 и 4. Второй переход соответствует фазовому переходу жидкостьгаз. При повторном измерении области второго фазового перехода различие между данными измерений не обнаружено, обе данные в пределах погрешности измерения совпадают. Это указыва-

АБДУЛАГАТОВ и др.

Таблица 1. *Р*-*Т*-данные системы (0.95)*н*-гексан + (0.05) (ИЖ) по изохорам

Т, К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм
$\rho = 65.$	9 кг/м ³	528.22	19.200	ρ = 136	.4 кг/м ³	311.55	0.286	418.85	6.920
294.12	0.175	552.29	295.460	295.46	0.174	327.99	0.474	420.61	7.317
309.99	0.280	575.66	308.950	308.95	0.253	339.91	0.837	422.39	7.603
326.58	0.500	$\rho = 114$.9 кг/м ³	325.62	0.474	353.32	1.527	426.45	8.215
337.66	0.800	294.06	338.970	338.97	0.806	370.96	2.585	428.59	8.500
350.66	1.454	308.71	352.800	352.80	1.520	379.97	3.220	431.81	8.900
364.43	2.221	322.40	365.920	365.92	2.265	392.95	4.225	432.72	9.100
378.52	3.143	336.75	378.400	378.40	3.104	407.12	5.586	435.89	9.600
392.29	4.172	350.60	393.050	393.05	4.220	412.87	6.125	438.92	10.200
405.00	5.441	363.46	404.210	404.21	5.350	415.81	6.503	441.05	10.515
417.82	6.725	377.50	408.160	408.16	5.700	418.00	6.724	409.78	5.800
419.29	6.907	390.98	412.160	412.16	6.070	421.00	7.170	411.59	6.045
422.05	7.374	404.21	413.020	413.02	6.150	423.33	7.452	414.81	6.350
425.92	7.786	417.59	415.770	415.77	6.520	425.65	7.820	417.11	6.650
428.65	8.135	419.50	418.230	418.23	6.750	428.55	8.404	419.74	7.000
429.87	8.253	421.12	420.920	420.92	7.061	430.62	8.710	422.37	7.440
433.19	8.504	422.35	423.800	423.80	7.450	433.35	9.110	424.37	7.765
435.49	8.800	423.25	426.800	426.80	8.150	436.45	9.602	426.82	8.020
437.59	9.024	425.12	429.360	429.36	8.400	442.79	10.705	429.62	8.450
440.71	9.453	426.25	431.820	431.82	8.760	450.32	12.103	432.92	9.000
443.14	9.896	427.62	434.240	434.24	9.100	455.04	13.151	435.02	9.340
445.90	10.403	428.09	437.050	437.05	9.510	456.78	13.560	438.80	10.100
410.87	5.852	429.87	440.850	440.85	10.054	460.14	14.407	440.84	10.450
412.85	6.033	432.45	441.660	441.66	10.250	461.50	14.900	444.12	11.100
413.76	6.100	434.65	444.410	444.41	10.821	465.09	15.424	448.85	12.000
416.75	6.385	438.80	447.650	447.65	11.450	467.74	16.112	454.47	13.250
419.80	6.750	445.35	449.670	449.67	11.850	472.12	17.125	459.41	14.300
422.85	7.111	451.35	452.250	452.25	12.447	486.00	21.253	464.65	15.630
423.46	7.180	454.17	12.650	454.37	12.900	499.02	25.615	469.93	17.000
425.70	7.440	455.62	13.000	456.73	13.300	510.16	30.004	475.30	18.300
430.90	8.080	456.79	13.200	458.80	13.800	521.35	33.815	480.17	19.900
431.59	8.140	457.92	13.420	460.87	14.400	532.87	37.824	483.67	21.050
434.89	8.570	459.15	13.700	464.37	15.180	544.37	41.630	488.28	22.500
437.70	8.880	460.62	14.000	467.07	15.600	556.75	45.650	497.18	25.600
440.11	9.375	461.37	14.270	470.05	16.350	568.68	49.440	503.75	28.100
441.40	9.592	463.00	14.600	474.13	17.300	580.57	53.400	516.28	33.550
447.76	11.054	464.37	15.000	478.22	18.500	$\rho = 272$.6 кг/м ³	527.47	38.870
449.45	11.500	470.25	16.400	490.42	22.200	295.16	0.175	551.42	50.250
452.15	11.890	477.87	18.200	502.77	26.250	310.18	0.286	574.90	61.940
454.34	12.400	488.87	21.500	514.30	29.070	324.31	0.456	$\rho = 380$) кг/м ³
456.47	12.825	500.68	24.550	526.97	31.270	338.02	0.875	297.21	0.211
459.56	13.274	514.37	26.800	538.17	33.310	351.92	1.504	308.45	0.281
463.27	13.800	526.20	28.580	550.16	35.200	366.93	2.355	323.06	0.450
469.42	14.625	538.20	30.370	560.90	37.150	378.81	3.127	337.46	0.795
480.55	15.580	550.27	31.950	572.57	38.860	393.19	4.250	350.49	1.424
493.07	16.570	562.35	33.630	$\rho = 209.$	26 кг/м ³	405.95	5.520	363.75	2.123
505.68	17.450	577.00	35.700	295.56	0.173	411.60	6.041	377.55	3.015

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

996

Таблица 1. Окончание

<i>Т</i> , К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм
$\rho = 380$) кг/м ³	309.32	0.282	533.46	62.430	478.37	20.260	446.55	11.831
390.21	3.951	326.26	0.466	545.80	74.920	479.00	21.410	448.00	14.796
403.98	5.302	337.95	0.774	557.87	88.810	480.74	23.790	450.76	20.880
410.62	5.953	354.05	1.625	568.62	101.100	482.92	27.150	455.59	34.680
414.34	6.395	365.33	2.256	581.07	114.420	488.50	37.250	468.43	66.020
416.36	6.820	378.31	3.094	$\rho = 477$.4 кг/м ³	500.65	56.130	481.09	96.410
419.71	7.200	393.36	4.251	295.69	0.165	512.62	77.290	491.30	124.950
422.21	7.620	405.65	5.474	322.26	0.410	524.55	97.050	505.31	156.210
424.67	7.950	417.58	6.843	337.26	0.840	536.67	117.500	510.01	168.700
427.37	8.450	431.00	9.050	351.83	1.480	548.46	137.000	$\rho = 597$.4 кг/м ³
430.20	8.700	443.87	11.360	364.20	2.190	560.32	156.550	294.06	0.185
432.06	9.011	455.75	14.080	377.49	3.050	569.67	171.960	310.03	0.273
435.49	9.500	463.47	15.650	390.83	4.030	$\rho = 538$	8 кг/м ³	324.63	0.474
437.30	10.010	465.55	16.220	404.25	5.320	293.78	0.205	337.46	0.824
439.92	10.510	466.67	16.550	407.97	5.670	308.06	0.262	351.35	1.493
443.75	11.150	468.85	17.180	409.97	5.850	322.74	0.437	365.26	2.226
445.77	11.512	471.37	17.670	413.00	6.140	337.08	0.785	378.16	3.101
451.83	12.903	475.07	18.650	414.75	6.370	350.78	1.468	392.50	4.184
458.34	14.448	477.85	19.370	415.50	6.470	364.77	2.221	396.12	4.518
462.00	15.350	480.05	20.250	418.17	6.920	378.58	3.115	398.62	4.751
464.67	15.950	482.37	21.000	420.62	7.320	390.83	4.000	399.77	4.880
466.62	16.401	484.65	21.750	423.30	7.780	404.45	5.326	400.42	4.924
470.56	17.275	487.34	22.340	424.92	8.150	410.45	5.888	401.26	5.220
471.67	17.704	488.87	23.300	426.16	8.320	414.62	6.364	401.55	6.540
474.34	18.405	491.87	24.360	428.10	8.630	416.55	6.648	403.00	11.250
478.05	19.316	494.55	25.300	431.29	9.120	420.00	7.274	405.55	20.810
482.52	20.950	496.21	25.820	438.42	10.310	422.80	7.631	408.42	32.250
489.21	23.200	498.80	26.830	450.17	12.710	424.70	7.824	410.20	40.360
500.87	27.370	501.92	28.910	462.74	15.650	427.45	8.607	415.90	59.105
512.39	35.125	503.50	30.590	467.28	16.720	428.92	8.730	418.55	70.200
524.95	45.450	506.95	33.820	469.09	17.200	432.34	9.155	422.40	82.530
536.42	55.650	508.23	35.910	471.79	17.850	434.67	9.642	425.92	98.410
548.50	66.240	510.71	38.150	473.09	18.180	437.42	10.150	431.20	115.220
560.55	76.220	513.42	41.240	474.29	18.450	440.25	10.700	434.32	128.070
$\rho = 411.$	3 кг/м ³	515.05	42.880	475.42	18.700	442.77	11.150	437.96	142.200
292.05	0.207	521.68	49.850	476.50	19.080	445.00	11.615	443.07	158.410

ет на то, что при переходе жидкость—газ необратимые процессы не происходят. После первого перехода вплоть до перехода жидкость—газ изохоры незначительно смешены друг от друга, но практически имеют вид простых жидкостей.

Линии фазового перехода жидкость—газ приведены на рис. 6 и параметры перехода по изохорам даны в табл. 3 и 4. Критические параметры перехода жидкость—газ этой системы определены методом прямолинейного диаметра. Точность определения критической температуры составляет ±0.02°. Критические параметры равны для системы с содержанием 0.05 масс. долей ионной жидкости: $T_{\kappa} = 508.35$ K, $P_{\kappa} = 3.12$ МПа и $\rho_{\kappa} =$ = 326 кг/м³; для системы с содержанием 0.1 мол. доли ионной жидкости: $T_{\kappa} = 510.25$ K, $P_{\kappa} = 3.222$ МПа и $\rho_{\kappa} = 346$ кг/м³. Для чистого *н*-гексана критические параметры равны соответственно: $T_{\kappa} =$ = 507.82 K, $P_{\kappa} = 3.044$ МПа и $\rho_{\kappa} = 233.19$ кг/м³ [20]. Как видно добавление ионной жидкости вызыва-

АБДУЛАГАТОВ и др.

Таблица 2. *Р*–*Т*-данные системы (0.9)*н*-гексан + (0.1) (ИЖ) по изохорам

<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	Т, К
$\rho = 65.$	4 кг/м ³	434.56	9.400	472.66	18.430	485.94	23.110	487.16	23.300
307.62	0.270	439.73	10.020	474.31	18.900	488.74	24.140	489.40	24.300
314.62	0.370	435.97	10.110	478.27	19.820	491.82	25.060	491.41	24.910
323.86	0.550	443.50	11.250	478.96	20.250	493.80	25.950	493.77	25.650
336.00	0.760	447.90	11.370	481.62	21.100	496.86	26.810	496.80	26.620
349.15	1.160	448.83	12.050	484.87	22.110	498.61	27.720	498.45	27.600
361.27	1.830	453.86	13.100	489.11	24.410	501.06	28.700	500.83	29.550
374.42	2.550	460.09	13.800	493.72	25.050	504.17	29.740	503.27	31.650
386.72	3.530	461.75	14.750	498.15	26.650	506.77	30.890	505.88	33.900
399.27	4.770	468.01	16.230	501.53	27.000	509.00	31.600	513.62	41.850
412.76	6.230	471.71	16.800	505.83	29.810	514.09	34.480	519.50	48.510
422.41	7.500	474.65	17.270	517.75	33.600	519.47	37.130	529.74	61.150
429.63	8.400	478.46	17.910	528.07	37.450	529.55	41.200	555.63	88.620
435.46	9.250	485.35	19.600	538.65	41.350	541.17	48.140	$\rho = 515$	5 кг/м ³
438.41	9.800	485.87	19.620	550.60	45.200	$\rho = 429$	9 кг/м³	316.85	0.270
440.28	10.810	495.95	22.410	$\rho = 300$) кг/м³	291.70	0.120	332.60	0.680
450.28	11.600	25.31	503.170	304.35	0.260	315.33	0.420	345.96	1.050
462.90	13.850	26.03	508.060	309.51	0.280	325.58	0.590	360.17	1.760
464.25	14.450	28.65	519.190	323.85	0.540	341.13	0.820	373.28	2.460
467.60	15.040	29.60	525.520	334.10	0.700	356.59	1.530	386.78	3.600
474.15	15.430	33.04	547.700	347.67	1.120	361.02	1.800	404.16	5.280
485.15	16.600	34.91	563.910	359.99	1.760	367.42	2.170	412.62	6.350
497.15	17.780	37.89	586.330	370.95	2.380	368.08	2.180	416.70	6.670
508.11	18.800	41.75	607.910	385.23	3.430	382.71	3.200	420.71	7.220
510.26	19.120	$\rho = 225$	Э КГ/М ⁵	398.65	4.610	393.02	4.100	424.55	/.810
521.86	19.700	300.02	0.200	410.20	5.890	406.55	5.500	428.17	8.500
535.92	20.650	310.43	0.300	421.92	/.500	417.55	6./10 0.400	436.12	10.020
555 69	21.490	323.73 227.91	0.540	429.15	8.600	432.42	9.400	438.02	10.500
555.08 566.17	22.430	250.22	0.830	431.34	9.110	434.84	9.720	440.21	10.900
300.17	$\frac{25.200}{1 \text{ km}/m^3}$	364.05	2.050	433.73	9.930	430.04	10.210	442.03	11.000
200 00	+ KI / M	376.07	2.050	437.08	10.340	439.33	11 100	445.00	12 520
309.00	0.280	393 50	2.800	443 53	11.230	441.50	11.190	451 36	13 200
334 72	0.510	412 92	6 480	445.15	11.230	447.16	12 400	455.49	14 200
346.62	1 070	426.25	8 250	446 73	12 300	451.61	13 210	458.16	15.000
361.15	1.870	429.43	8 800	450 41	13 000	454 77	14 110	461 53	15.660
374.47	2.550	434.11	9.610	452.45	13.450	457.29	14.610	463.66	16.300
385.85	3.500	437.00	10.600	455.93	14.400	463.19	16.100	464.92	16.560
400.13	4.850	441.68	11.210	459.46	15.250	467.26	17.200	467.94	17.600
410.51	5.960	443.32	11.420	463.35	16.250	471.62	18.250	471.13	18.200
422.40	7.370	446.36	12.100	466.63	17.060	466.31	17.000	473.61	20.010
423.20	7.550	451.83	13.190	470.31	18.300	468.19	17.650	477.92	28.020
424.42	7.760	456.89	14.600	473.42	19.080	471.49	18.250	488.67	45.930
424.79	7.800	462.33	15.790	476.82	20.370	474.50	19.200	500.95	68.650
426.94	8.310	465.65	16.600	479.92	20.850	479.22	20.590	511.55	88.700
431.03	9.100	468.43	17.270	482.25	21.710	481.82	21.370	524.18	111.570

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

Таблица 2. Окончание

<i>Р</i> , атм	Т, К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К
431.03	9.120	469.90	17.750	483.75	22.360	484.82	22.210	548.25	163.100
$\rho = 577$.7 кг/м ³	438.31	28.370	376.59	2.660	425.00	31.810	364.07	4.850
308.03	0.270	441.06	34.730	386.96	3.650	426.76	37.800	365.72	13.210
324.29	0.550	444.15	43.650	403.93	5.000	427.65	40.260	365.86	13.900
335.72	0.760	450.30	61.250	414.13	5.210	429.63	46.600	367.29	20.650
363.15	1.920	466.34	101.800	418.00	5.750	433.00	57.400	370.35	35.250
377.35	2.810	479.96	146.190	411.13	6.150	438.40	75.790	372.91	47.830
389.67	3.800	486.67	166.200	413.66	6.450	445.00	95.190	375.98	62.070
402.92	5.150	$\rho = 598$	3 кг/м ³	414.13	6.700	450.84	113.000	378.50	74.600
415.61	6.530	303.16	0.250	414.62	6.810	461.56	148.420	87.41	381.010
423.01	7.550	322.03	0.500	419.15	7.310	$\rho = 66$	3 кг/м ³	96.10	382.830
424.71	7.820	337.21	0.780	418.00	7.500	295.06	0.160	117.25	386.770
427.17	8.350	343.64	0.990	417.65	7.490	353.58	1.380	145.61	393.190
428.15	8.680	351.49	1.290	419.95	10.120	357.29	1.580		
431.29	9.650	357.15	1.590	420.03	15.780	359.44	1.720		
433.40	14.340	363.87	1.950	420.64	15.900	362.69	1.920		
435.91	21.500	369.65	2.310	422.12	23.450	362.71	1.940		

ет незначительное увеличение критических значений температуры и давления и значительное увеличение критической плотности. Изохоры и линии фазового равновесия обеих концентраций однотипны и близки друг другу по значениям, поэтому в работе приведены рисунки не обеих, а какой-либо одной концентрации.

Как известно [21], температурную зависимость плотности жидкостей вдоль кривой сосуществования фаз и в окрестности их критической

Рис. 3. Первоначальная и повторная изохоры системы (0.9) *н*-гексан + (0.1) (ИЖ) в области первого фазового перехода.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

точки описывают степенные функции с нецелочисленными показателями степени — критическими показателями (КП):

 $\omega = B\tau^{\beta},$

где $\tau = (T_{\kappa} - T)/T_{\kappa}$ – приведенное отклонение температуры от критического значения T_{κ} ; $\omega = (\rho_{\kappa} - \rho_{\kappa})/\rho_{\kappa}$ и $\omega = (\rho_{\kappa} - \rho_{\pi})/\rho_{\kappa}$ – приведенное отклонение плотности (жидкой (ρ_{κ}) и паро-

Рис. 4. Первоначальная и повторная изохоры системы (0.9) *н*-гексан + (0.1) (ИЖ) в области первого фазового перехода.

Рис. 5. *Т*-р- и *Р*-р-диаграммы первого перехода системы (0.9)*н*-гексан + (0.1) (ИЖ).

вой (ρ_{Π}) фаз соответственно) от критического значения ρ_{κ} , β — критический показатель и *B* критическая амплитуда. Рассчитанные по экспериментальным данным значения критического показателя и критической амплитуды равны 0.357 и 1.465. Полученное в данной работе значение β отличается от его теоретической оценки 0.325. Оно хорошо согласуется со значением, приводимым в работе [22] для трехмерных систем, и близко к полученному в [23] по экспериментальным данным для простых и сложных систем.

Таким образом, на основе экспериментальных *PVT*-исследований показано, что в изученной системе по изохорам имеются два фазовых перехода. Первый переход связан растворением ионной жидкости в *н*-гексане и ее разложением, а второй

Таблица 3. Параметры фазового равновесия первого и второго перехода системы (0.95)*н*-гексан + (0.05) (ИЖ)

Nº	2	Первый	переход	Второй переход		
	р, кг/м	<i>Т</i> , К	<i>Р</i> , атм	Т, К	<i>Р</i> , атм	
1	65.9	427.15	7.97	448.95	11.41	
2	114.9	427.3	8.1	458.65	13.6	
3	136.4	427.4	8.2	464.15	15.25	
4	209.26	426.85	8.17	491.15	19.50	
5	272.6	425.75	8.17	501.95	28.40	
6	380	425.65	8.17	503.35	28.50	
7	411.3	424.75	8.16	498.16	26.6	
8	477.4	424.65	8.15	477.95	19.45	
9	538.8	424.55	8.1	446.65	11.89	
10	597.4	401.16	5.02	401.16	5.02	

Рис. 6. *Т*-р- и *Р*-р-диаграммы перехода жидкостьгаз системы (0.9)*н*-гексан + (0.1) (ИЖ).

перехол связан с фазовым переходом жилкостьгаз. Определены параметры фазовых переходов, линии фазового равновесия и критические параметры этой системы. Критические температура и давление смеси незначительно выше аналогичной величины чистого н-гексана, а критическая плотность смеси выше более 30% относительно чистого гексана. К настоящему времени не было изучено поведение исследованных составов при высоких параметрах. Поэтому в научном плане интересно проследить фазовую картину этой системы и сравнить их с картиной чистых компонентов. Данные эксперимента могут быть использованы в процессах катализа и органического синтеза, в процессе синтеза высокомолекулярных соединений.

Таблица 4. Параметры фазового равновесия первого и второго перехода системы (0.9)*н*-гексан + (0.1) (ИЖ)

No	0 KE/M ³	Первый	переход	Второй переход		
, <u>,</u>	р, кг/м	<i>Т</i> , К	<i>Р</i> , атм	<i>Т</i> , К	<i>Р</i> , атм	
1	65.4	440.8	10.75	468.65	14.82	
2	139	441.75	11.02	470.27	16.75	
3	229	441.9	11.12	489.1	24.40	
4	300	441.9	11.24	505.65	30.72	
5	429	441.15	11.16	500.66	28.52	
6	434.7	440.95	11.10	499.07	27.85	
7	515	438.19	10.81	470.65	18.21	
8	577	426.4	8.22	426.4	8.22	
9	598	411.66	6.13	411.66	6.13	
10	663	363.14	1.97	363.14	1.97	

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

- 1. *Fujii K. et al.* // J. Phys. Chem. 2008. V. B112 (14). P. 4329.
- Gahlmann A. // Aldrich Chemfiles. 2005. V. 5 (6). P. 10.
- Van-Oanh, Nquyen-Thi, Houriez C., Roussean B. // Physical Chemistry-Chemical Physics. 2010. V. 12.4. P. 930.
- Safarov J. et al. // J. Chemical and Engineering Data. 2010. V. 56. № 1. P. 106.
- 5. Andreas H., Lehmann J.K., Wertz Ch. // J. Chemical and Engineering Data. 2003. V. A107. № 42. P. 8872.
- Kelkar M.S., Maginn E.J. // J. Phys. Chem. 2007. V. B111. № 18. P. 4867.
- 7. Kato R., Krummen M., Gmehling J. // Fluid Phase Equilib. 2004. V. 224. P. 47.
- Shamsipur M., Brigi A.-A.M., Teyouri M. et al. // J. Moleqular Liquids. 2010. V. 157. P. 43.
- 9. Шведене Н.В., Чернышев Д.В., Плетнев И.В. // Росс. хим. журн. 2008. № 2. С. 80.
- Ngo H.L., LeCompte K., Hargens L. // Thermochemica Acta. 2000. V. 357–358. P. 97.
- Khupse N.D., Kumas A. // Indian J. Chemistry. 2010. V. 49A. P. 635.

- 12. Musial M., Zarebski M., Dzida M. et al. // J. Molecular Liquids. 2019. V. 276. P. 885.
- 13. *Расулов С.М., Хамидов М.* // Приборы и техника эксперимента. 1999. № 1. С. 148.
- Rasulov S.M., Abdulagatov I.M. // J. Chem. Eng. Data. 2010. V. 55. P. 3247.
- Rasulov S.M., Radzhabova L.M., Abdulagatov I.M., Stepanov G.V. // Fluid Phase Equilib. 2013. V. 337. P. 323.
- 16. Orakova S.M., Rasulov S.M., Abdulagatov I.M. // Phys. Chem. Liquids. 2014. V. 52. P. 130.
- Orakova S.M., Rasulov S.M., Abdulagatov I.M. // J. Mol. Liquids. 2013. V. 187. P. 7.
- Расулов С.М., Оракова С.М., Абдулагатов И.М. // Теплофизика высоких температур. 2015. Т. 53. № 4. С. 524.
- 19. Расулов С.М., Оракова С.М., Исаев И.А. // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 223.
- 20. Grigoryev B.A., Rastorguev Y.L., Gerasimov A.A. et al. // Int. J. Thermophys. 1988. V. 9. № 3. P. 439.
- 21. *Карапетьянц М.Х.* Химическая термодинамика. 3-е изд. М.: Химия, 1975. 584 с.
- Chang R.F., Morrison G., Levelt Sengers J.M.H. // J. Phys. Chem. 1986. V. 88. P. 3389.
- 23. Chang R.F., Levelt Sengers J.M.H. // J. Phys. Chem. 1986. V. 90. P. 5921.