СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 539.192

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ИОННО-ПАРНЫХ СОСТОЯНИЙ МОЛЕКУЛ ГАЛОГЕНОВ

© 2020 г. С. В. Алексеева^{*a*}, В. А. Алексеев^{*b,c,**}

^a Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова, Санкт-Петербург, 194021 Россия ^b Университет ИТМО, Санкт-Петербург, 197101 Россия ^c Санкт-Петербургский государственный университет, Санкт-Петербург, 199034 Россия *e-mail: vadim-alekseev@mail.ru Поступила в редакцию 09.07.2019 г. После доработки 03.12.2019 г. Принята к публикации 10.12.2019 г.

Ионно-парные состояния молекул IBr, ICl и BrCl, коррелирующие к пределам диссоциации $X^+({}^3P_{2,1,0}, {}^1D_2) + Y^-({}^1S_0)$, исследованы ССП (самосогласованного поля) методом полного активного пространства орбиталей с учетом динамических электронных корреляций и спин-орбитального взаимодействия. В согласии с экспериментом, расчетные значения равновесной энергии состояний $X^+Y^-({}^3P_2)$, коррелирующих к нижнему состоянию иона $X^+({}^3P_2)$, группируются в интервале $\Delta T_e \sim 100 \text{ сm}^{-1}$, при этом ошибка их относительного расположения также порядка 100 см⁻¹. Расхождение с экспериментом по межъядерному расстоянию для большинства состояний не превышает величины $R_e^{\exp} - R_e^{\text{calc}} = 0.02 \text{ Å}$. С использованием результатов выполненных ранее неэмпирических расчетов для молекулы I₂ проведен сравнительный анализ структуры ионно-парных состояний X⁻Y⁺ с "инвертированной" локализацией заряда, связанных с X⁺Y⁻-состояниями двухэлектронным переходом, и потенциальной возможности создания структур с двумя стабильными зарядовыми состояниями X⁺-D-Y⁻ и X⁻-D-Y⁺, где X, Y – центры сродства к электрону (атомы, молекулы, кластеры), D – диэлектрические прослойки, которые могут представлять интерес для микроэлектроники.

Ключевые слова: ионно-парное состояние, галогены, неэмпирические расчеты, квантовая химия **DOI:** 10.31857/S0044453720070043

введение

Двухатомные молекулы, содержащие атом с положительным сродством к электрону, имеют ионно-парные (ИП) состояния, коррелирующие к пределу диссоциации X⁺ + Y⁻. Как правило, энергия предела X⁺ + Y⁻ значительно превышает энергию диссоциации нижних ридберговских состояний атомов и, как следствие этого, кулоновские потенциалы пересекаются с потенциалами многочисленных ридберговских состояний. В результате конфигурационного взаимодействия, кулоновский потенциал электронного состояния данной симметрии фрагментарно входит в состав нескольких электронных состояний той же симметрии, коррелирующих к разным пределам диссоциации. Во многих случаях кулоновский потенциал пересекается также с потенциалами отталкивательных валентных состояний, которые коррелируют с высоколежащими возбужденными валентными состояниями атомов.

Галогены относятся к немногочисленной группе молекул, которые имеют невозмущенные ИП-состояния. Благодаря большому сродству к электрону атома галогена, область пересечения ИП-состояний и нижних ридберговских состояний располагается ~1 эВ ниже ионно-парного предела диссоциации. Для сравнения, типичное значение энергии диссоциации ИП-состояния галогена составляет ~4 эВ. Существенно также, что атом галогена не имеет высоколежащих возбужденных валентных состояний и, как следствие этого, молекула галогена не имеет отталкивательных состояний, потенциалы которых могли бы пересекать потенциалы ИП-состояний вблизи их минимума.

В 1970-1980-е годы ИП-состояния галогенов были предметом многочисленных эксперимен-

тальных исследований, что во многом было обусловлено возможностью создания газофазного лазера на смесях галогеносодержащих молекул с инертными газами, генерирующего на переходе из нижнего ИП-состояния D' в валентное состояние *A*'. Генерация на переходе $D' \rightarrow A'$ была продемонстрирована для всех гомо- и гетероядерных молекул (см. [1, 2]). Однако эти лазеры не получили широкого распространения, так как их характеристики уступали лазерам на аналогичном переходе с переносом заряда в молекулах галогенидов инертных газов (переход $RgX(B^{2}\Sigma^{+})$ $\rightarrow X^2\Sigma^+$)). Исключением является лазер на переходе $D' \to A'$ молекулы F_2 . Благодаря рекордно короткой длине волны генерации (157 нм), этот лазер применяется в фотолитографическом процессе при производстве интегральных схем.

Гетероядерная молекула галогена XY имеет девять ИП-состояний, коррелирующих к четырем пределам $X^+({}^3P_{J=2,1,0}, {}^1D_2) + Y^-({}^1S_0)$:

$$E 0^{+}, \beta 1, D' 2 \qquad ({}^{3}P_{2}),$$

$$h 0^{-}, G 1 \qquad ({}^{3}P_{1}),$$

$$f 0^{+} \qquad ({}^{3}P_{0}),$$

$$f' 0^{+}, g 1, \delta 2 \qquad ({}^{1}D_{2}),$$

где число, следующее за буквенным обозначением состояния, является проекцией полного углового момента электрона $\Omega = \Lambda + \Sigma$. В гомоядерной молекуле число состояний удваивается вследствие наличия центра инверсии.

Ионно-парные состояния галогенов изучены с разной степенью подробности. К настоящему времени известны спектроскопические параметры всех 18 ИП-состояний молекулы I_2 , коррелирующих к пределам $I^+({}^3P_{J=2,1,0}, {}^1D_2)$, а также большинства соответствующих состояний молекул Br_2 и Cl_2 (спектроскопические параметры и ссылки на литературу приводятся в [3]). Ионно-парные состояния F_2 остаются почти неизученными вследствие технических сложностей, связанных с нахождением ионно-ковалентных переходов в области вакуумного ультрафиолета.

Среди гетероядерных галогенов наиболее подробно изучены молекулы ICl, IBr (см. разделы 2.2 и 2.3) и ClF ([4] и ссылки в этой работе). За исключением $h 0^-$, известны спектроскопические параметры всех ИП-состояний этих молекул, коррелирующих к $X^+({}^3P_{J=2,1,0})$. Имеются также данные по колебательной структуре состояний $f' 0^+$ и g 1 молекулы ICl, коррелирующих к верхнему пределу I⁺(1D_2). Остальные гетероатомные молекулы изучены хуже. Например, в случае молекулы BrF спектроскопические параметры известны только для состояния D' 2 [5]. Благодаря доминантной роли электростатического взаимодействия, ИП-состояния данной молекулы ИП имеют весьма похожие потенциальные кривые. При этом для ИП-состояний гетероядерной молекулы, коррелирующих к одному пределу диссоциации, характерно значительно меньшее различие равновесных электронных энергий T_e по сравнению со случаем гомоядерной молекулы. В качестве примера на рис. 1а и рис. 16 сравниваются состояния, коррелирующие к нижнему ионно-парному пределу молекул I₂ и IBr.

Как видно из рис. 16, ИП-состояния IBr группируются в узком энергетическом интервале $\Delta T_e \sim 100 \text{ см}^{-1}$. Это характерно и для других гетероядерных галогенов, для ИП-состояний которых имеются экспериментальные данные, включая ICl (см. ниже) и IF ([7] и ссылки в этой работе) также группируются в пределах $\Delta T_e \sim 100 \text{ см}^{-1}$; в случае молекулы CIF различие значений T_e несколько больше: $\Delta T_e \sim 250 \text{ см}^{-1}$ [4].

Для ИП-состояний йода характерно значительно большее различие значений T_e (рис. 1а). Состояния $D' 2_g$ и $\delta 2_u$ являются соответственно нижним и верхним ИП-состояниями в рассматриваемой группе. Это справедливо и для соответствующих состояний Br_2 и Cl_2 , причем для всех гомоядерных молекул величина зазора $T_e(\delta 2_u) - T_e$ ($D' 2_g$) приблизительно одинакова и равна ≈1500 см⁻¹.

В работах [6, 8] представлены результаты квантово-химического исследования ИП-состояний молекул I₂ и Br₂. Расчеты выполнены ССП-методом (метод самосогласованного поля) полного активного пространства орбиталей с учетом (методом теории возмущений) динамических электронных корреляций и спин-орбитального взаимодействия. Активное пространство было ограниченно валентными орбиталями атомов без включения возбужденных ридберговских состояний. Результаты [6, 8] для I₂ и Br₂ весьма хорошо согласуются с экспериментальными данными. В частности, расчет воспроизводит такое "тонкое" различие в структуре ИП-состояний I₂ и Br₂ как относительное расположение состояний $E 0_g^+$ и $D 0_{\rm u}^+$, коррелирующих к нижнему пределу $X^{+}({}^{3}P_{2})$ (X = I, Br). Как видно из рис. 1а, состояние $I_2(E 0_g^+)$ располагается выше $I_2(D 0_u^+)$ (экспериментальное значение $\Delta T_e = T_e(E 0_g^+) - T_e(D 0_u^+) =$ $= 383 \text{ см}^{-1}$), тогда как для соответствующих состояний Br₂ и Cl₂ справедливо обратное (ΔT_e = = -150 и -667 см⁻¹, соответственно (см. таблицу 1 в [3]). Отметим, что "неправильное" расположение $E 0_{\rm g}^{\rm +}$ и $D 0_{\rm u}^{\rm +}$ состояний молекулы йода обусловлено спин-орбитальным взаимодействием с

Рис. 1. Потенциалы ионно-парных состояний (а): $E 0_g^+$, $\beta 1_g$, $D' 2_g$, $D 0_u^+$, $\gamma 1_u$ и (*6*) $\delta 2_u$ молекулы I_2 , рассчитанные с использованием экспериментальных спектроскопических параметров (см. [3] и ссылки в этой работе). Потенциалы ионно-парных состояний (б): $E 0^+$, $\beta 1$ и D' 2 молекулы IBr, рассчитанные с использованием экспериментальных спектроскопических параметров. Для сравнения показаны потенциальные кривые, полученные при усреднении энергий четных и нечетных состояний I_2 (а) согласно формуле $E(\Omega_{gu}) = (E(\Omega_g) + E(\Omega_u))/2$: 0_{gu}^+ , 1_{gu} и 2_{gu} . Потенциалы триплетных *ls*-состояний I_2 (в) [6]. Асимптотическая энергия принята равной нулю. Потенциалы триплетных *ls*-состояний IBr (г). Асимптотическая энергия принята равной нулю.

вышележащей ионно-парной конфигурацией ${}^{1}\Sigma_{u}^{+}$ (коррелирует к I⁺(${}^{1}D_{2}$) + I⁻(${}^{1}S_{0}$)).

Целью настоящей работы являлось выполнение аналогичных расчетов для ИП-состояний гетероядерных молекул IBr, ICl и BrCl. Квантовохимические исследования структуры этих молекул проводились ранее: IBr [9], ICl [10], и BrCl [11] (и ссылки в этих работах). Однако исследования касались прежде всего валентных состояний, поэтому расчеты проводились или без включения ИП-конфигураций или с использованием неполного набора ИП-конфигураций, необходимых для описания всех ИП-состояний, коррелирующих к пределам $X^+({}^3P_{J=2.1.0}, {}^1D_2) + Y^-({}^1S_0)$. В данной статье представлены результаты расчетов потенциалов ИП-состояний IBr, ICl и BrCl. В связи с тем, что различия в структуре ИП-состояний этих молекул не имеют качественного характера, в статье подробно обсуждаются только результаты для молекулы IBr. При этом для всех трех молекул проводится детальное сравнение расчетных спектроскопических параметров с имеющимися экспериментальными данными. На примере молекул IBr и I_2 представлен сравнительный анализ конфигурационного состава ИПсостояний гомо- и гетероядерных молекул.

Ионно-парные состояния галогенов являются уникальным объектом для получения знаний о свойствах этого типа связи в молекулах, что объясняет актуальность их исследования. Фактиче-

		I	F	3r	(C1
Параметр	Расчет	Эксперимент [17]	Расчет	Эксперимент	Расчет	Эксперимент
EA	25022	24670	26293	27131	27571	29139
IP	83957	84295.1	94085	95284.8	103691	104591.01
$X(^2P_{1/2} - {}^2P_{3/2})$	6863	7603.0	3460	3685.2	902	882.3515
$X^+({}^3P_1-{}^3P_2)$	6423	7086.9	2896	3136.4	652	696
$X^+({}^3P_0-{}^3P_2)$	6231	6447.9	3638	3837.5	941	996.47
$X^+({}^1D_2 - {}^3P_2)$	13 2 3 1	13727.2	12018	12089.1	11488	11653.58
$X^{+}({}^{1}S_{0}-{}^{3}P_{2})$	28837	29 501.3	28495	27867.1	29078	27878.02

Таблица 1. Сродство к электрону, потенциал ионизации и энергии нижних состояний атомов и ионов галогенов (см⁻¹)

ски аналогичными невозмущенными ИП-состояниями обладают только эксимерные молекулы галогенидов инертных газов RgX. Однако группа ИП-состояний этих молекул RgX сравнительно малочисленна и состоит из трех состояний, коррелирующих к $\operatorname{Rg}^+({}^2P_{3/2,1/2})$ + $X^-({}^1S_0)$. В отличие от RgX, гетероядерные галогены имеют два типа пределов диссоциации $X^+ + Y^-$ и $X^- + Y^+$. Экспериментальные сведения, касающиеся состояний Х-Ү+ с "инвертированной" локализацией заряда к настоящему времени отсутствуют. Исследования этих состояний могут представлять не только научный, но и прикладной интерес, включая, в частности, вопрос о возможности создания структур с двумя стабильными зарядовыми состояниями X^+ -D- Y^- и X^- -D- Y^+ , где X, Y – центры сродства к электрону (атомы, молекулы, кластеры). D – диэлектрические прослойки, которые могут найти применение в устройствах микроэлектроники.

МЕТОДИКА РАСЧЕТА

Методика расчета аналогична использованной ранее для I₂, Br₂ [6, 8] и молекул галогенидов инертных газов [12]. Расчеты выполнены с использованием пакета программ MOLCAS [13]. Энергии электронных состояний с учетом статической составляющей корреляционной энергии электронов рассчитываются ССП-методом полного активного пространства орбиталей CASSCF (complete active space self consistent field). Динамические электронные корреляции учитываются методом теории возмущений CASPT2 (complete active space with second order perturbation theory correction) [14]. Энергии и волновые функции, рассчитанные методом CASSCF/CASPT2, далее используются программой RASSI (restricted active space state interaction) [15] для расчета энергий с учетом спин-орбитального взаимодействия, а

также расчета дипольных моментов и скоростей излучательных переходов.

Расчеты проводились в симметрии C_{2v} . Активное пространство включало шесть орбиталей для 10 активных электронов. Как показали результаты расчетов для I₂, Br₂ [6, 8] и галогенидов инертных газов [12], энергии ИП-состояний, полученные методом CASSCF/CASPT2/RASSI для активного пространства, включающего только валентные *p*-орбитали, весьма хорошо согласуются с экспериментом.

Представленные в работе результаты получены с использованием базисных наборов

I.ano-rcc.Roos.22s19p13d5f3g.10s9p8d5f3g

Br.ano-rcc.Roos.20s17p11d4f2g.9s8p6d4f2g

Cl.ano-rcc.Roos.17s12p5d4f2g.8s7p5d4f2g

(ano – atomic natural orbital; rcc – relativistic correlation consistent). Точность расчетов методом CASSCF/CASPT2/RASSI с базисами этого типа обсуждается в [16].

Для иллюстрации точности расчетов с выбранными базисами в табл. 1 представлены энергии ионов Br⁺, I⁺ и Cl⁺, а также сродство к электрону и энергия спин-возбужденного состояния ${}^{2}P_{1/2}$ нейтральных атомов. Результаты получены для пяти (четырех — для ионов) активных электронов в активном пространстве, ограниченном валентными *p*-орбиталями.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Валентные состояния молекулы IBr

На рис. 2 представлены потенциальные кривые валентных и ИП-состояний молекулы IBr рассчитанные без учета и с учетом спин-орбитального взаимодействия (*ls*- и $\omega\omega$ -состояния соответственно). Группа валентных состояний молекулы IBr включает в себя 23 состояния, коррелирующих к четырем пределам диссоциации I(${}^{2}P_{I}$) + Br (${}^{2}P_{I}$), *J*, *J* = 3/2, 1/2. Потенциалы ва-

Рис. 2. Потенциалы молекулы IBr без учета (а) и с учетом (б) спин-орбитального взаимодействия.

лентных состояний показаны в нижней части рис. 2. Для иллюстрации точности расчетов валентных состояний, в табл. 2 представлены основные спектроскопические параметры основного электронного состояния X0⁺ и двух возбужденных валентных состояний *А* 1_и и *А*' 2_и. Для всех трех состояний различие расчетного и экспериментального значений энергии диссоциации составляет величину ≈500 см⁻¹. Результаты аналогичной точности были получены для энергии диссоциации валентных состояний молекул I₂[6] и Br₂ [8]. Отметим хорошее согласие расчетных значений равновесного межъядерного расстояния. Для гомоядерных молекул согласие несколько хуже. Детальное квантовохимическое исследование валентных состояний IBr представлено в [9].

Ионно-парные состояния молекулы IBr

На рис. За представлены потенциалы ионнопарных *ls*- и $\omega\omega$ -состояний IBr. Спектроскопические параметры *ls*-состояний приведены в табл. 3. Для характеризации относительного расположения потенциалов состояний, коррелирующих к общему пределу диссоциации, в табл. 3 приводятся разности равновесных электронных энергий ΔT_e и равновесных межъядерных расстояний ΔR_e . Состояния ${}^{3}\Sigma^{-}$ и ${}^{3}\Pi$ отвечают соответственно параллельной и перпендикулярной ориентациям дважды заполненной *p*-орбитали Br⁺ относительно молекулярной оси. Как следует из рис. 3 и данных в табл. 3, потенциал ${}^{3}\Pi$ располагается несколько выше ${}^{3}\Sigma^{-}$ и имеет большее межъядерное расстояние. Такое расположение состояний ${}^{3}\Pi$ и ${}^{3}\Sigma^{-}$ характерно и для других гетероядерных молекул галогенов, включая ClF [4], ICl и BrCl (см. табл. 3).

Вследствие спин-орбитального (СО) взаимодействия триплетные состояния $E 0^+$, $f 0^+$, $\beta 1$, G 1являются смесью характеров ${}^{3}\Sigma^{-}$ и ${}^{3}\Pi$, состояния D' 2 и $h 0^{-}$ являются ${}^{3}\Pi$ -состояниями. Триплетные ИП-состояния ${}^{3}\Sigma^{-}$ и ${}^{3}\Pi$ также связаны СО

Таблица 2. Спектроскопические параметры валентных состояний $X 0^+$, $A' {}^3\Pi_2$ и $A {}^3\Pi_1$ молекулы IBr

Состояция	Pacy	нет/Эксперимент ^а				
Состояние	$R_{e_{i}}$ Å	$D_{e,}$ см ⁻¹	$\omega_{e,}$ см ⁻¹			
<i>X</i> 0 ⁺	2.470/2.469	14204/14660	267.0/268.7			
$A'^{3}\Pi_{2}$	2.839/2.842	3783/3357	148.5/147.6			
$A^{3}\Pi_{1}$	2.865/2.858	2910/2424	136.6/135.2			

^а [9] и ссылки в этой работе

Рис. 3. Расчетные потенциальные кривые ионно-парных состояний молекулы IBr (a) и ICl(б). Is-состояния показаны линиями с символами и $\omega\omega$ -состояния линиями без символов. Величины энергии в атомных единицах смещены на 715 и 572 а.u. для IBr и ICl соответственно. Энергия в единицах эВ отсчитывается от нижнего предела диссоциации (I ${}^{2}P_{3/2}$ + Br ${}^{2}P_{3/2}$ для IBr и I ${}^{2}P_{3/2}$ + Cl ${}^{2}P_{3/2}$ для ICl).

взаимодействием с вышележащими синглетными ИП-состояниями. При этом матричный элемент синглет-триплетного СО-взаимодействия в 21/2 раза меньше триплет-триплетного СО-взаимодействия [18]. Вследствие большой величины матричного элемента СО взаимодействия в ионе йода, синглетные оостояния в йодсодержащих галогенах заметно смещены вверх по энергии относительно соответствующих ls-состояний (рис. 3). В свою очередь, триплетные шо-состояния смещены вниз. Сдвиг составляет величину $\sim 1000 \,\mathrm{cm}^{-1}$, а приобретаемая в результате синглеттриплетного СО-взаимодействия примесь противоположной мультиплетности имеет вес ~7%. Отметим, что это относится не только к состояниям $E 0^+, f 0^+, \beta 1, \mu G 1,$ имеющим смешанный ${}^{3}\Sigma^{-} \sim {}^{3}\Pi$ характер, но и к ${}^{3}\Pi$ -состоянию *D*' 2, так как конфигурация ³П связана СО взаимодействием с ${}^{1}\Delta$. Таким образом, единственным "чистым" триплетным состоянием является *h*0⁻. Вследствие запретов налагаемых правилами отбора для дипольных переходов, это состояние гетероядерных галогенов до сих пор не наблюдалось экспериментально (см. [19, 20] о методике исследования состояний $0^+_{g/u}$ молекулы йода).

Расчетные и экспериментальные спектроскопические параметры ИП-состояний IBr сравниваются в табл. 4. Как можно видеть, величина $\Delta R = R_e^{\exp} - R_e^{calc}$ не превышает ± 0.02 Å, различие расчетных и экспериментальных значений ω_e не превышает 2%. Исключением является состояние *G* 1, для которого $\Delta R = -0.036$ Å и ($\omega_e^{\exp} - -\omega_e^{calc}$)/ $\omega_e^{\exp} \approx 3\%$.

Равновесная электронная энергия T_e ИП-состояния относительно минимума основного электронного состояния $X0^+$ определяется из соотношения

$$T_e(\text{IP}) = IP(X) - EA(Y) - D_e(\text{IPS}) + D_e(X 0^+),$$

где IP(X) — потенциал ионизации атома X, EA(Y) сродство к электрону атома Y, $D_e(IP)$ и $D_e(X0^+)$ энергия диссоциации ионно-парного и основного электронного состояния, соответственно. Точность расчета $T_e(IPS)$ зависит от точности расчета величин, входящих в это соотношение. Отклоне-

Парам	метры	R_e , Å	ω_e , см ⁻¹	$\omega_e x_e, \mathrm{cm}^{-1}$	$\Delta R_e, \text{\AA}$	ΔT_e , см $^{-1}$
			L	IBr		
^{3}P	$^{3}\Sigma^{-}$	3.304	135.0	0.356	${}^{3}\Pi - {}^{3}\Sigma^{-} = 0.198$	$^{3}\Pi - ^{3}\Sigma^{-} = 394$
	³ Π	3.502	126.2	0.374	$^{1}\Pi - ^{1}\Sigma^{+} = 0.083$	$^{1}\Pi - ^{1}\Sigma^{+} = 419$
${}^{1}D_{2}$	$^{1}\Pi$	3.423	130.6	0.319	${}^{1}\Pi - {}^{1}\Delta = 0.155$	$^{1}\Pi - ^{1}\Delta = -73$
	$^{1}\Sigma^{+}$	3.340	115.4	0.204		
	$^{1}\Delta$	3.268	135.7	0.348		
	•		I	ICl	I	I
³ <i>P</i>	$^{3}\Sigma^{-}$	3.149	194.1	0.729	${}^{3}\Pi - {}^{3}\Sigma^{-} = 0.211$	$^{3}\Pi - {}^{3}\Sigma^{-} = 571$
	³ Π	3.360	178.9	0.781	$^{1}\Pi - ^{1}\Sigma^{+} = 0.030$	$^{1}\Pi - ^{1}\Sigma^{+} = 250$
${}^{1}D_{2}$	$^{1}\Pi$	3.273	187.0	0.660	$^{1}\Pi - ^{1}\Delta = 0.172$	$\Pi - {}^{1}\Delta = -102$
	$^{1}\Sigma^{+}$	3.243	192.9	0.650		
	$^{1}\Delta$	3.101	193.8	0.667		
			1	BrCl	<u>1</u>	1
^{3}P	$^{3}\Sigma^{-}$	3.013	210.1	0.796	${}^{3}\Pi - {}^{3}\Sigma^{-} = 0.162$	${}^{3}\Pi - {}^{3}\Sigma^{-} = 214$
	³ Π	3.175	199.5	0.715	$^{1}\Pi - ^{1}\Sigma^{+} = 0.057$	$^{1}\Pi - ^{1}\Sigma^{+} = 507$
${}^{1}D_{2}$	$^{1}\Pi$	3.098	206.7	0.706	$^{1}\Pi - ^{1}\Delta = 0.119$	$11 - \Delta^{-1} \Delta = -462$
	$^{1}\Sigma^{+}$	3.041	183.4	0.429		
	$^{1}\Delta$	2.979	210.3	0.749		
	•		I ₂ <i>i</i>	и-состояния	•	·
^{3}P	$^{3}\Sigma^{-}$	3.75			${}^{3}\Pi - {}^{3}\Sigma^{-} = 0.35$	${}^3\Pi - {}^3\Sigma^- = 998$
	³ Π	3.40			$^{1}\Pi - ^{1}\Sigma^{+} = 0.45$	$^{1}\Pi - ^{1}\Sigma^{+} = 4422$
${}^{1}D_{2}$	$^{1}\Pi$	3.70			$^{1}\Pi - ^{1}\Delta = 0.30$	$^{1}\Pi - ^{1}\Delta = 916$
	${}^{1}\Sigma^{+}$	3.25				
	$^{1}\Delta$	3.40				
			I ₂ 8	g-состояния		•
^{3}P	$^{3}\Sigma^{-}$	3.50			${}^{3}\Pi - {}^{3}\Sigma^{-} = 0.00$	$^{3}\Pi - ^{3}\Sigma^{-} = -1575$
	$^{3}\Pi$	3.50			$^{1}\Pi - ^{1}\Sigma^{+} = 0.20$	$ \Pi^{-1} \Sigma^{+}$ (иррегулярность)
${}^{1}D_{2}$	$^{1}\Pi$	3.45			$^{11}-^{1}\Delta = -0.05$	$^{11}-^{1}\Delta = -2011$
	$^{1}\Sigma^{+}$	3.65				
	$^{1}\Delta$	3.50				

Таблица 3. Расчетные спектроскопические параметры ионно-парных *ls*-состояний IBr, ICl и BrCl

ния разного знака могут частично компенсировать друг друга, поэтому результирующее отклонение $T_e^{\exp} - T_e^{calc}$ зависит не только от величин отклонений, но и их знаков. Так для состояния $E0^+$ молекулы IBr $T_e^{\exp} - T_e^{calc} = 2266$ см⁻¹ (см. сноску табл. 4).

Для характеристики точности расчета ИП-состояний относительно друг друга удобно сравнивать расчетные и экспериментальные энергии относительно одного из ионно-парных состояний. В качестве такого состояния мы выбрали состояние $E 0^+$. Расчетные и экспериментальные значения энергетических зазоров $T_e(IP) - T_e(E 0^+)$ сравниваются в табл. 4. Как следует из представленных данных, три нижних ИП-состояния располагаются в пределах ~100 см⁻¹, при этом состояние $E 0^+$ является нижним по энергии. Согласно экспериментальным данным, нижним является состояние D' 2, однако расхождение экспериментальных и расчетных значений $T_e (D' 2) - T_e (E 0^+)$ составляет величину ~100 см⁻¹ (табл. 4). Близость энергий трех нижних ИП-состояний характерна и для IBr и BrCl (см. ниже).

Для ИП-состояний, коррелирующих к вышележащим пределам диссоциации, точность величины $T_e(IPS) - T_e(E 0^+)$ во многом определяется точностью расчета энергетических зазоров между состоянием I⁺(³P₂) и соответствующими вышеле-

2020

1045

		$T_{e}, { m cm}^{-1}$		Расчет/Эк	сперимент	
		(эксперимент)	$T_e - T_e(E0^+)$	$R_{e_{i}}$ Å	$\omega_{e_{i}} \operatorname{cm}^{-1}$	$\omega_e x_e$, cm ⁻¹
${}^{3}P_{2}$	D' 2	39456.6 [21]	73/-31	3.502/3.4806	125.5/123.06	0.38/0.2813
	β1	39507.8 [22]	47/20	3.435/3.4344	122.9/122.09	0.34/0.2546
	$E 0^+$	39487.8 [23]*	0/0	3.401/3.4067	120.8/119.43	0.20/0.2055
${}^{3}P_{1}$	$h 0^-$		5828/	3.507/	125.9/	0.37/
	<i>G</i> 1	45996.0 [24]	5568/6508	3.402/3.3636	132.4/128.5	0.46/0.3188
${}^{3}P_{0}$	$f0^+$	45382.6 [23]	5424/5894	3.415/3.3937	131.1/128.8	0.42/0.363
${}^{1}D_{2}$	$f' 0^+$		11169/	3.357/	118.6/	0.20/
	g 1		11414/	3.422/	130.8/	0.33/
	δ2		~11490**/	3.280/	134.6/	0.34/

Таблица 4. Расчетные и экспериментальные спектроскопические параметры ионно-парных состояний IBr, коррелирующих к пределам диссоциации $I^+({}^3P_{2,1,0}, {}^1D_2) + Br^-({}^1S_0)$

* Расчетное значение энергии $E0^+$ состояния равно $T_e^{\text{calc}} = 41753 \text{ см}^{-1}$; соответственно, точность расчета $T_e^{\text{exp}} - T_e^{\text{calc}} = -2266 \text{ см}^{-1}$.

** Состояние расщеплено на две компоненты ($\Delta \sim 100 \text{ см}^{-1}$). Приводятся средние значения.

жащими состояниями иона. Сравнение показывает, что расхождение между расчетными и экспериментальными энергиями ИП-состояний коррелирует с величиной расхождения для соответствующих состояний иона I⁺. Так экспериментальное и расчетное значения относительной энергии состояния IBr (*G* 1) различаются на 940 см⁻¹ (табл. 3). Для сравнения, экспериментальные и расчетные значения энергетического зазора между состояниями I⁺(³*P*₁) и I⁺(³*P*₂) различаются на 664 см⁻¹ (табл. 1). В свою очередь, для состояния IBr(*f* 0⁺) соответствующие величины различаются на 470 см⁻¹, а экспериментальные и расчетные значения энергетического зазора между состояния и растического зазора межди у состояния энергетического зазора межди величины различаются на 470 см⁻¹, а экспериментальные и расчетные значения энергетического зазора межди состояниями I⁺(³*P*₀) и I⁺(³*P*₂) на 217 см⁻¹.

Ионно-парные состояния молекулы ICl

Результаты расчетов ИП-состояний ICl представлены на рис. 36. Как можно видеть из сравнения с рис. 3а, относительное расположение потенциалов триплетных $\omega\omega$ -состояний молекул ICl и IBr практически одинаково. Интересно, что при этом зазор между *ls*-состояниями ${}^{3}\Sigma^{-}$ и ${}^{3}\Pi$ молекулы ICl приблизительно на 30% больше чем в молекуле IBr: 571 и 394 см⁻¹ соответственно (табл. 3).

Расчетные и экспериментальные спектроскопические параметры ИП-состояний ICl сравниваются в табл. 5. Как можно видеть, для большинства состояний величина $\Delta R = R_e^{\exp} - R_e^{calc}$ не превышает ±0.02 Å. Исключением является состояние *G* 1, для которого $\Delta R = -0.027$ Å. Относительная точность расчета ω_e составляет величину ($\omega_e^{\exp} - \omega_e^{calc}$)/ $\omega_e^{\exp} \sim 3\%$. Здесь исключением является состояние $f' 0^+$, для которого ($\omega_e^{\exp} - -\omega_e^{calc}$)/ $\omega_e^{\exp} \approx 7\%$. Это состояние также характеризуется весьма малым значением ангармонизма колебаний, $\omega_e x_e = 0.195 \text{ см}^{-1}$, что почти в два с половиной раза меньше расчетного значения. Причина расхождений расчетных и экспериментальных значений спектроскопических параметров состояния $f' 0^+$ остается не ясной.

Аналогично IBr, экспериментальные значения равновесных энергий T_e трех нижних ИП-состояний ICl различаются не более чем на 100 см⁻¹. В целом, расчеты воспроизводят этот результат. Однако для состояний ICl(g 1) и ICl(f' 0⁺), также коррелирующих к общему пределу диссоциации, расхождение значительно: экспериментальное и расчетное значения величины $T_e(g 1) - T_e(f' 0^+)$ равны 416 и 98 см⁻¹ соответственно.

Как отмечалось выше, точность расчета относительной энергий ИП-состояний (относительно $E0^+$), коррелирующих к вышележащим пределам диссоциации, во многом определяется точностью расчета энергетических зазоров между состоянием $I^+({}^3P_2)$ и вышележащими состояниями иона йода. Как следует из данных в табл. 4 и 5, экспериментальное значение $T_{e}(f0^{+}) - T_{e}(E0^{+})$ для IBr и ICl различаются не более чем на 50 см⁻¹, что составляет менее 1% величины $T_e(f0^+) - T_e(E0^+)$. Интересно, что столь же хорошо согласуются и расчетные значения $T_e(f0^+) - T_e(E0^+)$ (см. табл. 4 и 5); это справедливо и для экспериментальных и расчетных значений $T_e(G1) - T_e(E0^+)$ для IBr и ICl. Отметим также, что расчетные значения относительных энергий состояний, коррелирую-

		$T_{e}, { m cm}^{-1}$		Расчет/Эк	сперимент	
		(эксперимент)	$T_e - T_e(E0^+)$	R_e , Å	$\omega_e, \mathrm{cm}^{-1}$	$\omega_e x_e$, cm ⁻¹
${}^{3}P_{2}$	D' 2	39061.83 [25]	122/3	3.359/3.3502	177.1/173.63	0.770/0.5572
	β1	39103.6 [25]	60/44	3.287/3.2930	170.6/170.31	0.462/0.4706
	$E 0^+$	39059.48 [26]*	0/0	3.251/3.2553	169.9/165.68	0.445/0.288
${}^{3}P_{1}$	$h 0^-$		5857/	3.364/	178.4/	0.800/
	<i>G</i> 1	45552.8 [27]	5515/6493	3.257/3.2294	185.8/184.85	0.631/0.6737
${}^{3}P_{0}$	$f0^+$	44924.44 [26]	5398/5865	3.273/3.2582	190.2/184.16	1.118 /0.7439
${}^{1}D_{2}$	$f' 0^+$	51199.96 [28]	11232/12140	3.248/	172.0/160.72	0.483/0.195
	g 1	51615.6 [29]	11330/12556	3.273/	187.5/184.03	0.669/0.596
	δ2		~11330**/	3.130/	192.3/	0.64/

Таблица 5. Расчетные и экспериментальные спектроскопические параметры ионно-парных состояний ICl, коррелирующих к пределам диссоциации I^+ (${}^{3}P_{2,1,0}$, ${}^{1}D_2$) + CI^- (${}^{1}S_0$)

* Расчетное значение энергии $E 0^+$ состояния равно $T_e^{\text{calc}} = 40914 \text{ см}^{-1}$; соответственно, точность расчета $T_e^{\text{exp}} - T_e^{\text{calc}} = -1854 \text{ см}^{-1}$.

** Состояние расщеплено на две компоненты ($\Delta \sim 100 \text{ см}^{-1}$). Приводятся средние значения.

щих к I⁺(¹ D_2), также оказались весьма близки. Например $T_e(f' 0^+) - T_e(E 0^+) = 11169$ и 11232 см⁻¹ для IBr и ICl соответственно (см. табл. 4 и 5). Необходимые для сравнения экспериментальные данные отсутствуют.

Ионно-парные состояния молекулы BrCl

Результаты расчетов для молекулы BrCl представлены на рис. 4. Отличие от IBr и ICl (рис. 3а, 4б) носит количественный характер и обусловлено главным образом различием в величине СОвзаимодействия в ионах I⁺ и Br⁺. Матричный элемент СО-взаимодействия в ионе Br⁺ приблизительно в два раза меньше. Этим, в частности, объясняется сравнительно малое смещение шосостояний, коррелирующих к $Br^{+}(^{1}D_{2})$, относительно ls-состояний, коррелирующих к этому пределу. В молекулах галогенов, состоящих из легких атомов (Cl₂, F₂, ClF), обсуждаемое смещение становится пренебрежимо малым, вследствие малой величины СО-взаимодействия (при этом зазор между *ls*-состояниями $X^{+}(^{1}D)$ и $X^{+}(^{3}P)$ приблизительно одинаков для всех галогенов).

В литературе имеются неполные экспериментальные данные только для трех нижних ИП-состояний. Расчетные и экспериментальные спектроскопические параметры ИП-состояний BrCl сравниваются в табл. 6.

Наряду с BrF, молекула BrCl остается одной из наименее изученных. Эффективным методом исследования ИП-состояний галогенов является метод двойного оптического резонанса с использованием валентного состояния *A* 1 в качестве промежуточного. Состояние *A* 1 может быть оптически заселено из основного состояния молекулы. В свою очередь, *А* 1 связано разрешенными переходами с ИП-состояниями *D*' 2, β 1 и *E* 0⁺, а также с вышележащими ИП-состояниями симметрии $\Omega = 0^+$, 1, 2. В частности, эта методика ис-

Рис. 4. Расчетные потенциальные кривые ионно-парных состояний молекулы BrCl. Is-состояния показаны линиями с символами и ооо-состояния линиями без символов. Величина энергии в атомных единицах смещена на 65 а.u. Энергия в единицах эВ отсчитывается от нижнего предела диссоциации Br ${}^{2}P_{3/2}$ + Cl ${}^{2}P_{3/2}$.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

1047	'

		<i>T</i> 1		Расчет/Эк	сперимент	
		I_e , CM	$T_e - T_e(E0^+)$	$R_e, Å$	$\omega_e, \mathrm{cm}^{-1}$	$\omega_e x_e$, см ⁻¹
${}^{3}P_{2}$	D' 2		17/	3.176/3.113 [30]	199.4/197.88	0.729/0.71
	β1	48830 ± 3 [31]	50/-24	3.103/3.082	186.3/	0.435
	$E 0^+$	48854.29 ± 0.05 [31]*	0/0	3.075/3.042	191.1/196.4	0.514/1.7
${}^{3}P_{1}$	$h 0^-$		2584/	3.175	199.3	0.710
	<i>G</i> 1		2496/	3.101	216.7	1.029
${}^{3}P_{0}$	$f0^+$		3186/	3.119	211.4	0.943
${}^{1}D_{2}$	$f' 0^+$		10185/	3.044	184.7	0.401
	g 1		10670/	3.097	206.9	0.713
	δ 2**		~11070/	2.981	210.6	0.768

Таблица 6. Расчетные и экспериментальные спектроскопические параметры ионно-парных состояний BrCl, коррелирующих к пределам диссоциации $Br^+({}^3P_{2,1,0}, {}^1D_2) + Cl^-({}^1S_0)$

* Расчетное значение энергии $E 0^+$ состояния равно $T_e^{\text{calc}} = 48278 \text{ см}^{-1}$; соответственно, точность расчета $T_e^{\text{exp}} - T_e^{\text{calc}} = 576 \text{ см}^{-1}$.

** Состояние расщеплено на две компоненты ($\Delta \sim 100 \text{ см}^{-1}$). Приводятся средние значения.

пользовалась для исследования ИП-состояний ClF [32].

СРАВНЕНИЕ СТРУКТУРЫ ИОННО-ПАРНЫХ СОСТОЯНИЙ ГОМОЯДЕРНЫХ И ГЕТЕРОЯДЕРНЫХ МОЛЕКУЛ ГАЛОГЕНОВ

Как отмечалось во введении, существенным отличием структуры ИП-состояний гомоядерных молекул от гетероядерных является сравнительно большой разброс значений равновесной энергии *T_e* (см. рис. 11а, 2б). Расчеты достаточно точно воспроизводят указанное различие. Интересно, что это достигается в результате весьма тонкого баланса факторов, влияющих на относительное расположение состояний. Для иллюстрации на рис. 1в и рис. 1г сравниваются потенциальные кривые триплетных *ls*-состояний ${}^{3}\Pi$ - и ${}^{3}\Sigma^{-}$ -молекул I₂ и IBr. Как можно видеть, в смысле относительного расположения, потенциалы IBr весьма похожи на потенциалы нечетных *ls*-состояний I₂. Величины $R_e({}^{3}\Pi) - R_e({}^{3}\Sigma^{-})$ и $T_e({}^{3}\Pi) - T_e({}^{3}\Sigma^{-})$ для состояний IBr и нечетных состояний I2 различаются на ≈ 0.15 Å и ≈ 600 см⁻¹ соответственно (табл. 3). При этом для трех нижних нечетных шо-состояний I_2 , которые "получаются" из *ls*-состояний ${}^3\Sigma_{u}^{-}$ и ³П_и при диагонализации матрицы гамильтониана спин-орбитального взаимодействия, различие равновесных энергий составляет ~ 800 см⁻¹, тогда как для состояний $E 0^+$, $\beta 1$ и D' 2 IBr указанное различие не превышает 100 см⁻¹, при этом величина спин-орбитального взаимодействия в рассматриваемых молекулах одинакова.

Представляет интерес более подробно рассмотреть МО конфигурации ИП-состояний го-

мо- и гетероядерных молекул галогенов. На рис. 5а-5в представлены зависимости весовых коэффициентов МО-конфигураций от межъядерного расстояния для ионно-парных состояний молекулы IBr; дополнительно в табл. 7 приведены численные значения весовых коэффициентов для трех значений межъядерного расстояния $R_e^{\Sigma\Pi}$ и $R_e^{\Sigma\Pi} \pm 1$, где $R_e^{\Sigma\Pi} = 3.4$ Å, что приблизительно со-ответствует среднему значению равновесных межъядерных расстояний состояний ${}^{3}\Sigma^{-}$ и ${}^{3}\Pi$. $R_{e}^{\Sigma\Pi} \approx (R_{e}(^{3}\Sigma^{-}) + R_{e}(^{3}\Pi))/2$. Как следует из этих данных, при $R = R_e^{\Sigma\Pi}$, состояния ³П и ¹П являются смесью конфигураций 2431 (~80%) и 1432 (~20%). В свою очередь для состояний ${}^{3}\Sigma^{-}$ и ${}^{1}\Delta$ доминантной конфигурацией вблизи $R_e^{\Sigma\Pi}$ является 2422 (>95%). Наконец, синглетное состояние ${}^{1}\Sigma^{+}$ является смесью трех конфигураций 2440 (58%), 1441 (21%) и 2422 (21%).

Для сравнения на рис. 5 (см. также табл. 7) представлены зависимости весовых коэффициентов МО-конфигураций ИП-состояний I₂. При больших межъядерных расстояниях, при которых можно пренебречь обменным взаимодействием, конфигурации $\sigma_g^2 \sigma_u^0$ и $\sigma_g^0 \sigma_u^2$ энергетически эквивалентны и имеют одинаковый вес; это также относится к парам $\sigma_g^1 \sigma_u^2 / \sigma_g^2 \sigma_u^1$, $\pi_u^4 \pi_g^2 / \pi_u^2 \pi_g^4$ и $\pi_u^4 \pi_g^3 / \pi_u^3 \pi_g^4$. Например ³П_g является смесью 1432(50%) + 2341(50%) (рис. 5). Конфигурации 1441 и 2332 являются "уникальными". Как следует из рис. 5г ¹ Σ_u^+ является смесью конфигураций 1441 и 2332, причем в области больших межъядерных расстояний веса этих конфигураций составляют 76 и 24%

Рис. 5. МО-конфигурации $\sigma_g^k \pi_u^l \pi_g^{*n}$ ионно-парных ls-состояний молекулы IBr (а—в). МО-конфигурации $\sigma_g^k \pi_u^l \pi_g^m \sigma_u^n$ ионно-парных ls-состояний молекулы I₂ (г—е). Линии без символов соответствуют *g*-состояниям, линии с символами – u-состояниям.

соответственно. Состояния ${}^{3}\Sigma_{u}^{-}$ и ${}^{1}\Delta_{u}$ имеют конфигурацию 2332 во всей области межъядерного расстояния.

В отличие от орбиталей σ_g и σ_u молекулы I₂, орбитали σ и σ^* молекулы IBr не являются энергетически эквивалентными при больших межъядерных расстояниях. Это также относится и к орбиталям π и π^* . Разрыхляющие орбитали σ^* и π^* преимущественно локализованы на атоме I, тогда как связывающие орбитали σ и π локализованы на атоме Br. В соответствии с этим, ИП-состояния IBr при больших межъядерных расстояния имеют МО конфигурации $\sigma^2 \pi^4 \pi^{*m} \sigma^{*n}$ (m + n = 4) с полностью заполненными связывающими σ - и π -орбиталями. Так состояния ³П и ¹П отвечает конфигурация $\pi^{*3}\sigma^{*1}$, состояния ³Σ⁻ и ¹Δ

конфигурация $\pi^{*2}\sigma^{*2}$, а ${}^{1}\Sigma^{+}$ является смесью $\pi^{*4}\sigma^{*0}$ и $\pi^{*2}\sigma^{*2}$ (рис. 4).

Наряду с ИП-состояниями с полностью заполненными связывающими орбиталями, молекула IBr имеет также ИП-состояния с полностью заполненными (при больших межъядерных расстояниях) разрыхляющими σ^* - и π^* -орбиталями. Эти состояния имеют конфигурации $\sigma^n \pi^m \pi^{*4} \sigma^{*2}$ (m + n = 4) и коррелируют с распадом на I⁻ + Br⁺. Энергетический зазор между асимптотами I⁺(${}^{3}P_{2}$) + Br⁻(${}^{1}S_{0}$) и I⁻(${}^{1}S_{0}$) + Br⁺(${}^{3}P_{2}$) можно оценить с использованием известных значений потенциалов ионизации и сродства к электрону атомов I и Br. Расчеты показывают, что величина зазора составляет 1.66 эВ. В силу стечения обстоятельств, эта величина близка к величине зазора между состоя-

аолиц	(a / . IVI	О-конфиту	рации и	111-0001	оянии	молекул те	олекул ты и 1 ₂ и их весовые коэффициенты (%)						
Состояние иона I ⁺			IBr	•		I	₂ <i>g</i> -сост	ояния		I ₂ <i>и</i> -состояния			
		$\sigma^k \pi^l \pi^{*m} \sigma^{*n}$		вес. (%)		$\sigma_{g}^{k}\pi_{u}^{l}\pi_{g}^{m}\sigma_{u}^{n}$		вес. (%))	$\sigma_{g}^{k}\pi_{u}^{l}\pi_{g}^{m}\sigma_{u}^{n}$		вес. (%))
^{3}P	$^{3}\Sigma^{-}$	2422	46	97	100	2242	95	63	52				
		2332	54	3	0	2422	5	37	48	2332	100	100	100
	$^{3}\Pi$	2431	10	78	98					2431	1	18	42
		1432	88	21	2	1432	97	74	56	1342	99	82	58
		2341	2	1	0	2341	3	26	44				
$^{1}D_{2}$	$^{1}\Sigma^{+}$	2440	9	58	77	2440	0	7	28				
-		2422	2	21	21	2422	10	16	12				
		1441	87	21	2	2242	71	20	12	1441	96	80	76
		2332	2	0	0	0442	19	57	46	2332	4	20	24
	$^{1}\Pi$	2431	17	85	99					2431	2	24	44

93

7

8

92

2.6

67

33

40

60

3.6

54

46

48

52

4.6

состояний молекул IBr и L и их ресовые коэффициенты (%) Таблица 7.

* Веса конфигураций приводятся для трех значений межъядерного расстояния $R_e^{\Sigma\Pi} - 1$, $R_e^{\Sigma\Pi}$ и $R_e^{\Sigma\Pi} + 1$, где $R_e^{\Sigma\Pi} \approx (R_e^{(3\Sigma^-)} + 1)$ + $R_e(^{3}\Pi))/2$ для ИП состояний IBr и $R_e^{\Sigma\Pi} \approx (R_e(^{3}\Sigma_{g}^{-}) + R_e(^{3}\Pi_{g}))/2 \approx (R_e(^{3}\Sigma_{u}^{-}) + R_e(^{3}\Pi_{u}))/2$ для ИП состояний I₂.

1432

2341

2422

2242

1

0

0

100

4.4

ниями ¹*D*₂ и ³*P*₂ иона I⁺ (1.702 эВ). Аналогичный расчет для BrCl и ICl дает 1.40 и 3.01 эВ соответственно.

79

3

58

42

2.4

14

1

98

2

3.4

1432

2341

2422

2332

 $^{1}\Delta$

R (Å)*

Выполненные в ходе настоящей работы пробные расчеты показали, что Х+У-- и Х-У+-состояния располагаются приблизительно параллельно и имеют близкие равновесные межъядерные расстояния и энергии диссоциации. В частности, состояния $X^{-}({}^{1}S_{0}) + Y^{+}({}^{3}P_{2})$ молекул IBr и BrCl оказались вблизи состояний $X^+({}^1D_2) + Y^-({}^1S_0)$, так как зазор между этими асимптотами близок к зазору между X^+ (³ P_2) и X^+ (¹ D_2).

Отметим, что пробные расчеты проводились без включения ридберговских конфигураций. Взаимодействие между ионно-парным и ридберговским состояниями связано с перемещением электрона между орбиталями ионно-парного и ридберговского состояний и, как следствие этого, пропорционально интегралу перекрывания орбиталей. Нижние ридберговские состояния коррелируют с возбужденными состояниями атома Х* и, соответственно, при больших и средних (порядка $R_{\rm e}$) расстояниях ридберговские орбитали локализованы на атоме Х. В свою очередь, в случае состояний X⁺Y⁻ заряд локализован на атоме Ү. Как следствие этого, взаимодействие конфигураций Х*Ү и Х+Ү- сравнительно слабое. Однако в случае X-Y+-состояний, перемещение электрона происходит между орбиталями локализованными на атоме Х. Можно ожидать, что взаимодействие конфигураций X*Y и X⁻Y⁺ существенно сильнее. Для ответа на этот вопрос требуются более детальные расчеты с включением ридберговских конфигураций.

1342

2332

98

100

2.6

76

100

3.6

56

100

4.6

С точки зрения общих положений квантовой механики, расщепление между потенциальными кривыми состояний $\Omega_{
m g}$ и $\Omega_{
m u}$, сходящимися к одному пределу диссоциации, является результатом проницаемости потенциального барьера, разделяющего энергетически эквивалентные конфигурации X⁺X⁻ и X⁻X⁺. В отличие от туннельного перехода $X^+X \leftrightarrow XX^+$ между эквивалентными конфигурациями иона гомоядерной молекулы, переход $X^+X^- \leftrightarrow X^-X^+$ предполагают туннелирование пары электронов [33]. В рамках представлений о туннелировании, состояния противоположной четности с одинаковым значением Ω располагаются симметрично относительно пары гипотетических состояний X⁺X⁻ и X⁻X⁺, в которых "разрешена" локализация электронов аналогично случаю Х+Ү- и Х-Ү+ состояний гетероядерных галогенов. Как можно видеть из рис. 16, относительное расположение таких "усредненных" ионно-парных состояний йода замечательно похоже на расположение потенциалов состояний $E 0^+, \beta 1$ и D' 2 молекулы IBr. Усреднение энергий соответствующих ИП-состояний молекулы Вг₂ также дает группу из трех близколежащих состояний ($\Delta T_e < 100 \text{ см}^{-1}$), относительное расположение которых весьма схоже с расположением состояний $E 0^+$, $\beta 1$ и D' 2 молекулы BrCl (рис. 4).

В зависимости от МО-конфигурации туннельный переход X⁺X⁻ \leftrightarrow X⁻X⁺ предполагает туннелирование двух π -электронов, одного π -электрона и одного σ -электрона, или двух σ -электронов. Переходам π – π отвечают конфигурации $\sigma_g^2 \pi_u^m \pi_g^n \sigma_u^2$ (m+ n = 6) состояний ${}^{3}\Sigma^-$ и ${}^{1}\Delta$, переходам σ – π -конфигурации $\sigma_g^{l(2)} \pi_u^m \pi_g^n \sigma_u^{2(1)}$ (m + n = 7) состояний ${}^{1,3}\Pi$, и переходам σ – σ -конфигурации $\sigma_g^m \pi_u^4 \pi_g^4 \sigma_u^n$ (m + n= 2) состояний ${}^{1}\Sigma^+$. Отметим, что электроны являются энергетически эквивалентными только в случае π – π -туннелирования в конфигурациях $\sigma_g^2 \pi_u^2 \pi_g^4 \sigma_u^2$ и $\sigma_g^2 \pi_u^4 \pi_g^2 \sigma_u^2$ и σ – σ -туннелирования в конфигурациях $\sigma_s^2 \pi_u^4 \pi_g^4 \sigma_u^0$ и $\sigma_s^0 \pi_u^4 \pi_s^4 \sigma_u^2$.

Как следует из рис. 1в, расщепление между состояниями ${}^{3}\Sigma^{-}$, МО конфигурации которых отвечают случаю π - π -туннелирования, существенно меньше чем между состояниями ³П, отвечающими случаю $\sigma = \pi$ -туннелирования: $|T_e({}^{3}\Sigma_u^{-}) - T_e({}^{3}\Sigma_g^{-})| \approx$ ≈ 0.1 эВ и $|T_e({}^{3}\Pi_u) - T_e({}^{3}\Pi_o)| \approx 0.22$, соответственно. С этой точки зрения, тот факт, что среди ИП-состояний I_2 , коррелирующих к $I^+({}^3P_2)$ (рис. 1а), расщепление между состояниями $\Omega = 2$, объясняется тем, что эти состояния имеют "чистый" ³П характер, тогда как $\Omega = 0^+$, 1 имеют смешанный ${}^{3}\Pi \sim {}^{3}\Sigma^{-}$ характер. Сравнение потенциалов других ИП состояний I₂ показывает [6], что для синглетных и триплетных пар состояний с одинаковыми МО-конфигурациями величина расщепления приблизительно одинакова. Так ${}^{1}\Pi_{u/g}$ и ${}^{1}\!\Delta_{2g/u}$ имеют такие же МО-конфигурации как соответственно ${}^{3}\Pi_{u/g}$ и ${}^{3}\Sigma_{g/u}^{-}$ (см. рис. 5 и табл. 7), поэтому $|T_{e}({}^{1}\Pi_{u}) - T_{e}({}^{1}\Pi_{g})| \approx |T_{e}({}^{3}\Pi_{u}) - T_{e}({}^{3}\Pi_{g})| > T_{e}({}^{1}\Delta_{u}) -$ $-T_e(^{1}\Delta_g) \approx T_e(^{3}\Sigma_u^{-}) - T_e(^{3}\Sigma_g^{-})$. Расщепление достигает максимальной величины для ${}^{1}\Sigma^{+}$ -состояний, $T_e({}^{1}\Sigma_{g}^{+}) - T_e({}^{1}\Sigma_{u}^{+}) \approx 0.7$ эВ (см. рис. 1 в [6]). МОконфигурации этих состояний отвечают случаю σ - σ -туннелирования.

В контексте обсуждаемого вопроса отметим, что механизм некоторых процессов двухэлектронной перезарядки $A^{2+} + B \rightarrow A + B^{2+}$ также предполагает коррелированное туннелирование двух электронов. В частности, это относится к процессам $Rg^{2+} + Rg \rightarrow Rg + Rg^{2+}$, которые сравнительно хорошо изучены экспериментально ([34] и ссылки в этой работе). Относительное расположение потенциалов димера Rg_2^{2+} исключает возможность двухэлектронной перезарядки как последовательности двух одноэлектронных процессов; одноэлектронная перезарядка $Rg^{2+} + Rg \rightarrow$

 \rightarrow Rg⁺ + Rg⁺ наблюдается при энергиях столкновения >10 эВ, при которых энергетически возможно пересечение потенциалов Rg²⁺ + Rg и Rg⁺ + Rg⁺. Насколько нам известно, единственным изученным процессом двухэлектронной перезарядки для анион-катионных столкновений является процесс H⁺ + H⁻ \rightarrow H⁻ + H⁺ ([35] и ссылки в этой работе). Однако сечение этого процесса мало – основным каналом является взаимная нейтрализация ионов.

Представляет интерес вопрос об оптических переходах между ИП-состояниями. В случае гомоядерной молекулы ИП-состояния Ω_{g} и Ω_{u} , сходящиеся к одному пределу диссоциации, связаны разрешенным оптическим переходом. Вследствие малой величины энергетического зазора между $\Omega_{
m g}$ и $\Omega_{
m u}$, рассматриваемым переходам отвечает далекая ИК-область и их скорость мала по сравнению со скоростью ионно-ковалентного перехода с $X^+X^-_{g/u} \to XX_{u/g}$ в видимой области спектра. С другой стороны, при лазерном возбуждении ИП-состояний большой дипольный момент является благоприятным фактором для возникновения эффекта усиленного спонтанного излучения (УСИ), а также ряда других нелинейных оптических эффектов [36]. К настоящему времени эффект УСИ наблюдался на нескольких переходах между ИП-состояниями I₂ ([37] и ссылки в этой работе) и Br₂ [38]. Эффект УСИ наблюдался также на переходе $EF(^{1}\Sigma_{g}^{+}) \rightarrow B(^{1}\Sigma_{u}^{+})$ молекулы Н₂ [39]. Следует, однако, отметить, что в отличие от состояния $B({}^{1}\Sigma_{u}^{+})$, распределение двухэлектронной плотности в состоянии $EF(^{1}\Sigma_{g}^{+})$ не является характерным для связи ионно-парного типа [40].

Аналогично ионно-ковалентным переходам, переход X⁺X⁻ ($\Omega_{g} \leftrightarrow \Omega_{u}$) физически отвечает переносу заряда вдоль оси молекулы, причем величина дипольного момента линейно возрастает с ростом межъядерного расстояния [41]. Такое поведение функции дипольного момента является следствием наличия центра симметрии. Для иллюстрации на рис. ба представлены потенциалы ИП-состояний ${}^{1}\Sigma_{u}^{+}$ и ${}^{1}\Sigma_{g}^{+}$, а также основного валентного состояния ${}^{1}\Sigma_{u}^{+}$ молекулы H₂, рассчитанные для активного пространства, ограниченного только Is-орбиталями атома H; рис. бб приводится функция дипольного момента перехода между ИП-состояния ${}^{1}\Sigma_{u}^{+}$ и ${}^{1}\Sigma_{g}^{+}$.

Переход X^+X^- ($\Omega_g \leftrightarrow \Omega_u$) имеет интересную особенность – в отличие от одноэлектронных пе-

Рис. 6. Потенциальные кривые (а) молекулы водорода (сплошные линии) и линейного трехатомного комплекса HeH₂ при фиксированном расстоянии R(HeH) = 1.5 A (штриховые линии), рассчитанные для активного пространства электронов, состоящего только из 1*s*-орбиталей атомов H и He. Функции дипольных моментов (б) переходов между состояниями H₂ и HeH₂. Расчеты выполнены с помощью программы MOLCAS методом CASSCF/CASPT2.

реходов $\Omega_g \leftrightarrow \Omega_u$ между состояниями иона гомоядерной молекулы, коррелирующими к общему пределу диссоциации, дипольный момент этого перехода обусловлен перемещением двух электронов вдоль оси молекулы. В случае гетероядерной молекулы переходу X^+X^- ($\Omega_g \leftrightarrow \Omega_u$) отвечает переход $X^+Y^-(\Omega) \leftrightarrow X^-Y^+(\Omega)$, двухэлектронный характер которого очевиден. Однако дипольный момент перехода $X^+Y^-(\Omega) \leftrightarrow X^-Y^+(\Omega)$ уменьшается при больших межъядерных расстояниях, что объясняется уменьшением интеграла перекрывания орбиталей локализованных на разных атомах. В качестве иллюстрации на рис. 1 представлены результаты модельных расчетов для линейного комплекса HeH₂. Эта система не имеет центра инверсии. Наличие атома Не приводит к расщеплению асимптотически вырожденных термов ионно-парных состояний Н₂. Как можно видеть, ионно-парные состояния, коррелируюшие к H^- + (HHe)⁺ и H^+ + (HHe)⁻, различаются по энергии при больших межъядерных расстояниях, а дипольный момент перехода, связывающий эти состояния, быстро уменьшается в области R > 2 Å. Отметим, что функция дипольного момента имеет иррегулярность в области $R \sim 4 \text{ Å}$, что совпадает с положением иррегулярности на потенциальных кривых ИП-состояний HeH₂. Этот эффект вероятно связан с "подмешиванием" ридберговских конфигураций (в области энергий ~10 эВ ИП-состояния H₂ пересекаются с ридберговскими состояниями, коррелирующими к 2s- и 2p-состояниями атома водорода). В данной работе этот эффект подробно не анализировался и функция дипольного момента перехода между ИП-состояниями HeH_2 в области R > 3.5 Å не приводится.

Насколько нам известно, к настоящему времени отсутствуют экспериментальные данные, касающиеся обнаружения ИП-состояний X⁻Y⁺ с инверсной локализацией заряда. Резонансы $X^+Y^- + h_V \rightarrow$ \rightarrow X⁻Y⁺ могут быть обнаружены методом ЛИФ по ослаблению люминесценции $X^+Y^- \rightarrow XY + hv$ или появлению новых спектральных переходов (предполагается, что для заселения Х⁺У⁻ используется методика двойного оптического резонанса). Как отмечалось выше, есть основания полагать, что состояния X⁻Y⁺ подвержены сильному взаимодействию с ридберговскими состояниями. В матрицах инертных газов ридберговские и ионно-парные состояния молекул галогенов смещаются по энергии в противоположных направлениях, что связано с различным характером взаимодействия с матрицей (обменное отталкивание и сольватация диполя, соответственно) [17]. Смещение может достигать нескольких эВ. Благодаря этому эффекту возможна стабилизация предиссоциированных (в газовой фазе) состояний Х-Ү+.

ЗАКЛЮЧЕНИЕ

В данной работе представлены результаты неэмпирических расчетов ИП-состояний молекул IBr, ICl и BrCl. Полученные результаты достаточно хорошо согласуются с имеющимися экспериментальными данными. В частности, расхождение по межъядерному расстоянию для большинства состояний не превышает величины $R_e^{\exp} - R_e^{calc} = 0.02$ Å. В согласие с экспериментом, расчетные значения T_e состояний первого яруса группируются в интервале ~100 см⁻¹ и, хотя последовательность расположения состояний отличается от экспериментальной (согласно расчетам нижним является состояние $E 0^+$, согласно эксперименту – D' 2), ошибка расчета их относительного расположения не превышает 100 см⁻¹. Отсутствие экспериментальных данных для вышележащих ИП-состояний, коррелирующих к X⁺ (1D_2), не позволяет провести сравнение с результатами расчета.

Вероятно наибольший интерес для дальнейшего исследования представляет вопрос о ионнопарных состояниях Х-Ү+ с "инвертированным" расположением заряда. К настоящему времени отсутствуют какие-либо экспериментальные данные, касающиеся этих состояний. Насколько нам известно, систематических исследований этих состояний с использованием методов квантовой химии также не проводилось. Выполненные нами пробные расчеты показали, что потенциалы Х-Ү+-состояний располагаются параллельно потенциалам X⁺Y⁻-состояний и при этом заметное конфигурационное взаимолействие межлу этими группами состояний отсутствует. Однако есть основания полагать, что в сравнении с состояниями X^+Y^- , состояния X^-Y^+ значительно сильнее взаимодействуют с ридберговскими состояниями. Пробные расчеты проводились без включения ридберговских конфигураций. В связи с этим результаты выполненных расчетов для этой группы состояний в статье не приводятся.

В заключение отметим, что структуры типа Х-D-Y, где Х, У – центры сродства к электрону (атомы, молекулы, кластеры), D – прослойка из молекул инертной матрицы, имеющие два стабильных зарядовых состояния X⁺-D-Y⁻ и X⁺-D-Y⁻, могут представлять технологический интерес для микроэлектроники, включая, в частности, для создания так называемых клеточных автоматов (cellular automata) – устройств с двумя устойчивыми расположениями дискретных зарядов, разделенных потенциальным барьером. В случае атомов галогенов в качестве центров сродства к электрону, такие структуры будут неустойчивы вследствие излучательного распада, но могут представлять интерес как модельная система для исследования свойств таких структур, так как излучение является удобным монитором. Структуры, в которых ИП-состояние является асимптотически нижним, потенциально могут быть созданы из кластеров металлов. Известно, что по мере увеличения размера кластера, сродство к электрону и потенциал ионизации приближаются к величине работы выхода электрона из металла (W): $EA(M_n) = W + ae^2/(r_s n^{1/3})$ и $IP(M_n) = W - W$ $-be^{2}/(r_{s}n^{1/3})$, где r_{s} – радиус Вигнера–Зейтса, n – число атомов в кластере; параметры а и b приблизительно одинаковы для всех металлов и равны a = 3/8 и b = 5/8 [42]. Для модельной структуры, состоящей из двух кластеров разных металлов

 $M1_{n1}$ и $M2_{n2}$, разделенных диэлектрическим промежутком, энергетический зазор между ковалентной и ИП асимптотами равен IP(M1_{n1}) - $- EA(M2_{n^2})$. Например, согласно экспериментальным данным [42], потенциал ионизации кластера атомов калия ($W_{\rm K} = 2.22$ эВ) при $n_{\rm K} \sim 60$ и сродство к электрону кластера меди при $n_{\rm Cu} \sim 40$ приблизительно одинаковы и равны ~2.8 эВ. В соответствии с этим, состояния K₆₀ + Cu₄₀ и $(K_{60})^{+} + (Cu_{40})^{-}$ имеют одинаковые асимптотические энергии. По мере увеличения размеров кластеров, энергетический зазор между ионно-парными состояниями приближается к разности работ выхода электронов из металлов. Например, $W_{\rm Na} - W_{\rm K} = 0.13$ эВ и, соответственно, переход между ИП-состояниями кластерной пары Na_{n1} + К_{n2} при n1, n2 > 100 лежит в ИК-области спектра.

Расчеты выполнены в Ресурсном центре "Вычислительный Центр СПбГУ".

В недавно опубликованной работе [43] состояние $f'0^+$ молекулы ICl исследовалось методом двойного оптического резонанса. Анализ вращательной структуры позволил определить со спектроскопической точностью равновесное межьядерное состояние в этом состоянии. Согдасно [43], $T_e = 51200.42 \text{ см}^{-1}$, $R_e = 3.2262 \text{ Å}$, $\omega_e = 160.599 \text{ см}^{-1}$, $\omega_e x_e = 0.1760 \text{ см}^{-1}$ (см. табл. 5 для сравнения с результатами неэмперических расчетов).

Мы благодарим Dr. Shoma Hoshino за репринт работы [43].

СПИСОК ЛИТЕРАТУРЫ

- McCusker M.V. // Excimer Lasers, Topics in Applied Physics edited by Ch. K. Rhodes: Springer, Berlin 1979. V. 30. P. 67.
- Diegelmann M., Hohla K., Rebentrost F., Kompa K.L. // J. Chem. Phys. 1982. V. 76. P. 1233.
- 3. *Алексеев В.А.* // Опт. и спектр. 2005. Т. 99. № 5. С. 719.
- 4. Alekseyev A.B., Liebermann H.-P., Buenker R.J., Kokh D.B. // J. Chem. Phys. 2000. V. 112. P. 2274.
- Narayani R.I., Tellinghuisen J. // J. Molec. Spectrosc. 1990. V. 141. P. 79.
- 6. Алексеев В.А. // Опт. и спектр. 2014. Т. 116. № 3. С. 355.
- Hoy A.R., Jordan K.J., Lipson R.H. // J. Phys. Chem. 1991. V. 95. P. 611.
- 8. *Овчинникова Н.Е., Алексеев В.А. //* Опт. и спектр. 2016. Т. 120. № 2. С. 200.
- Patchkovskii S. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 926.
- Kalemos A., Prosmiti R. // J. Chem. Phys. 2014. V. 141. P. 104312.
- 11. Wang M., Wang B., Chen Z. // J. Molec. Struct.: THEOCHEM. 2007. V. 806. P. 187.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

том 94

№ 7

2020

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ

- Alekseev V.A. // J. Phys. B: At. Mol. Opt. Phys. 2014. V. 47. P. 105101.
- 13. Aquilante F., DeVico L., Ferré N. et al. // J. Comput. Chem. 2010. V. 31. P. 224.
- 14. *Finley J., Malmqvist P.-Å., Roos B.O., Serrano-Andrés L. //* Chem. Phys. Lett. 1998. V. 288. P. 299.
- 15. *Malmqvist P.-Å., Roos B.O., Schimmelpfennig B.* // Ibid. 2002. V. 357. P. 230.
- Roos B.O., Lindh R., Malmqvist P.-Å. et al. // J. Phys. Chem. A. 2004. V. 108. P. 2851.
- Linstrom P.J., Mallard W.G. Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899.
- Lefebvre-Brion H., Field R.W. Perturbations in the Spectra of Diatomic Molecules N.Y.: Academic Press, 1986.
- Motohiro S., Nakajima S., Ishiwata T. // J. Chem. Phys. 2002. V. 117. P. 187.
- Motohiro S., Nakajima Sh., Aoyama K. et al. // Ibid. 2002. V. 117. P. 9777.
- Radzykewycz D.T., Littlejohn C.D., Carter M.B. et al. // J. Molec. Spectrosc. 1994. V. 166. P. 287.
- Clevenger J.O., Ray Q.P., Tellinghuisen J., Zheng X., Heaven M.C. // Can. J. Phys. 1994. V. 72. P. 1294.
- 23. Brand J.C.D., Hoy A.R., Risbud A.C. // J. Mol. Spectrosc. 1985. V. 113. P. 47.
- Brand J.C.D., Dhatt D.R., Hoy A.R., Tse D.C.P. // J. Molec. Spectrosc. 1986. V. 119. P. 398.
- Bussieres D., Hoy A.R. // Can. J. Phys. 1984. V. 62. P. 1941.
- Brand J.C.D., Hoy A.R., Jaywant S.M. // J. Mol. Spectrosc. 1984. V. 106. P. 388.

- 27. Hudson J.B., Sauls L.J., Tellinghuisen P.C., Tellinghuisen J. // J. Mol. Spectrosc. 1991. V. 148. P. 50.
- 28. Donovan R.J., Lawley K.P., Ridley T., Wilson P.J. // Chem. Phys. Lett., 1993. V. 207. P. 129.
- 29. Donovan R.J., Ridley T., Lawley K.P., Wilson P.J. // Ibid. 1993. V. 205. P. 129.
- Chakraborty D.K., Tellinghuisen P.C., Tellinghuisen J. // Chem. Phys. Lett. 1987. V. 141. P. 36.
- Brown S.W., Dowd C.J., Tellinghuisen J. // Molec. Spectrosc. 1988. V. 132. P. 178.
- Alekseev V.A., Setser D.W., Tellinghuisen J. // J. Molec. Spectrosc. 1999. V. 195. P. 162.
- Brand J.C.D., Hoy A.R. // Appl. Spectrosc. Rev. 1987. V. 23. P. 285.
- Hadjar O., Ascenzi D., Bassi D. et al. // Chem. Phys. Lett. 2004. V. 400. P. 476.
- 35. Bräuning H., Helm H., Briggs J.S., Salzborn E. // Ibid. 2007. V. 99. P. 173202.
- 36. *Алексеев В.А.* // Опт. спектроск. 2002. Т. 93. № 3. С. 366.
- Hoshino S., Araki M., Nakano Y. et al. // J. Chem. Phys. 2016. V. 144. P. 034302.
- Hoshino S., Araki M., Ishiwata T., Tsukiyama K. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 19464.
- 39. Luk T.S., Egger H., Muller W., Pummer H., Rhodes C.K. // J. Chem. Phys. 1985. V. 82. P. 4479.
- 40. Wang J., Kim K.S., Baerends E.J. // Ibid. 2011. V. 135. P. 074111.
- 41. Lawley K.P. // Chem. Phys. 1988. V. 127. P. 363.
- 42. De Heer W.A. // Rev. Mod. Phys. 1993. V. 65. P. 611.
- 43. Hoshino S., Muto Y., Nishimichi D. et al. // J. Molec. Struc. 2020. V. 1209. P. 127913.