ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2020, том 94, № 7, с. 1024–1030

СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 536.413

РАСЧЕТЫ МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ СТАБИЛЬНОСТИ И СТАТИСТИЧЕСКОЙ РАЗУПОРЯДОЧЕННОСТИ В КРИСТАЛЛАХ КАППА-ФАЗ $Me_{3+x}W_{10-x}C_{3+y}$ (Me = Fe, Co, Ni)

© 2020 г. И. И. Чуев^{а,*}, Д. Ю. Ковалев^а, С. В. Коновалихин^а, С. А. Гуда^b

^a Российская академия наук, Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова, Черноголовка Московской области, Россия ^bЮжный федеральный университет, Ростов на Дону, Россия *e-mail: ichuev@ism.ac.ru Поступила в редакцию 01.07.2019 г. После доработки 01.07.2019 г. Принята к публикации 15.10.2019 г.

Проведены DFT-расчеты стабильности каппа-фазы соединений $Me_{3+x}W_{10-x}C_{3+y}$ (Me = Fe, Co, Ni). Для расчетов кристаллических структур с разупорядоченными позициями использован аддитивный подход. Кристаллическое строение каппа-фазы представлено в виде суперпозиции четырех структур: $Me_3W_{10}C_4$ (A), $Me_3W_{10}C_3$ (B), $Me_4W_9C_4$ (C) и $Me_4W_9C_3$ (D). Характер статистической разупорядоченности в кристалле определен на основании относительных вкладов этих структур. Оценка вклада каждой структуры проведена на основании расчетных величин энтальпий. В рамках предложенного подхода изучено влияние 3*d*-металла на стабильность каппа-фазы и характер статистической разупорядоченности.

Ключевые слова: метод функционала плотности, каппа-фаза, статистическая разупорядоченность **DOI:** 10.31857/S0044453720070080

Изучение кристаллической структуры тройных карбидов Me–W–C играет важную роль для понимания процесса образования сложных карбидных фаз на основе вольфрама, имеющих широкое практическое применение [1, 2]. По данным [2–7], структура каппа-фаз относится к гексагональной сингонии с пространственной группой $P6_3/mmc$ (N 194), тип металлической подрешетки — Mn_3Al_{10} , в которой тригональнопризматические (2c) и октаэдрические (6g) позиции заполнены атомами углерода (рис. 1).

Следует отметить, что для *k*-(Me–W–C)-фаз характерна широкая область гомогенности, что проявляется в изменениях объема элементарной

Рис. 1. Структура каппа-фазы (проекция вдоль гексагональной оси с).

	$Me_{3+x}W_{10-x}C_{3+y}$	$\mu(\mathrm{Fe}_{3.57}\mathrm{W}_{9.43}\mathrm{C}_{3.54})$	$\mu(Co_3W_{10}C_{3.59})$	$\mu(Ni_{3.35}W_{9.65}C_4)$
А	$x = 0, y = 1 \text{ Me}_3 W_{10} C_4$	0-0.43	0.59	0.65
В	$x = 0, y = 0 \text{ Me}_3 W_{10} C_3$	0-0.43	0.41	—
С	$x = 1, y = 1 \text{ Me}_4 \text{W}_9 \text{C}_4$	0.11-0.54	—	0.35
D	$x = 1, y = 0 \text{ Me}_4 \text{W}_9 \text{C}_3$	0.03-0.46	—	—

Таблица 1. Формулы структур A–D, составляющих каппа-фазы и их вклад (µ) по данным рентгенодифракционного анализа

ячейки [3]. Причину таких изменений позволили установить структурные исследования соединений Fe_{3.57}W_{9.43}C_{3.54}[5] и Co₃W₁₀C_{3.59}[6]. Оказалось, что изменения объема элементарной ячейки связаны со статистической разупорядоченностью позиций 2а и 2с [3, 6, 7]. Так, несмотря на меньший металлический радиус Со по сравнению с Fe, объем элементарной ячейки $Co_3W_{10}C_{3.59}$ – 416.35 Å³ [6] больше, чем у Fe_{3.57}W_{9.43}C_{3.54} – 412.4 Å³ [5]. В соединении Fe_{3.57}W_{9.43}C_{3.54} атомы W и Fe разупорядочены в позициях 2a и 6h, а атом углерода в позиции 2с обладает частичной заселенностью. В Со₃W₁₀C_{3.59} установлена лишь частичная заселенность атома углерода в позиции 2с, а позиции 2a и 6h полностью заселены атомами W. Таким образом, замещение атома W меньшим по размеру атомом Fe в позициях 2a и 6h приводит к уменьшению объема элементарной ячейки.

Учитывая, что металлы в ряду Fe, Co, Ni – соседи в периодической системе и их металлические радиусы близки, можно ожидать аналогию в их кристаллическом строении. Однако экспериментально наблюдается качественное различие в характере статистической разупорядоченности и как, следствие, изменение содержания атомов 3*d* металла Me в элементарной ячейке k-(Me–W–C). Цель данной работы – изучение влияние природы атома 3*d* металла на характер статистической разупорядоченности и стабильность k-(Me–W– C) (Me = Fe, Co, Ni) методом DFT.

МЕТОДИКА РАСЧЕТОВ

Квантово-химические расчеты проводились методом DFT по программе VASP 5.0 [8, 9]. Для обменно-корелляционного потенциала использовалась GGA-аппроксимация [10] по схеме PBE [11, 12]. При оптимизации и расчетах электронной структуры использовалась Г-центрированная *k*-сетка 11 × 11 × 11. Для построения базиса использовалось разложение по плоским волновым функциям с кинетической энергией в интервале до 500 эВ. Точность сходимости по энергии при оптимизации $\leq 10^{-4}$ эВ/атом. Коррекция ван-дер-ваальсова взаимодействия проводилась по методу DFT-D3 Гримма [13, 14]. Расчет энтальпии образования проводился на основании выражения:

$$\Delta H(\mathrm{Me}_{3+x}\mathrm{W}_{10-x}\mathrm{C}_{3+y}) = (E_{\kappa p}(\mathrm{Me}_{3+x}\mathrm{W}_{10-x}\mathrm{C}_{3+y}) - (3+x)E(\mathrm{Me}) - (10-x)E(\mathrm{W}) - (1) - (3+y)E(\mathrm{C}))/N,$$
(1)

где $E_{\kappa p}(Me_{3+x}W_{10-x}C_{3+y})$ – энергия элементарной ячейки $Me_{3+x}W_{10-x}C_{3+y}$; E(Me), E(W), E(C) – энергия наиболее стабильных кристаллических фаз в расчете на один атом; N – число атомов в элементарной ячейке.

Анализ электронного строения проводился на основании диаграмм COHP (crystal orbital Hamiltonian population) [15] построенных по программе Lobster [16]. Расчет зарядов и порядков связей проводился по методу DDEC6 [17–20].

Моделирование кристаллических структур с разупорядоченными позициями предполагает проведение расчетов для суперъячеек больших размеров, что связано с привлечением значительных вычислительных ресурсов. Для упрощения ситуации был использован "аддитивный" подход, описанный ниже.

Анализ строения каппа-фаз $Me_{3+x}W_{10-x}C_{3+y}$ (Me = Fe, Co, Ni) свидетельствует о том, что кристаллическую структуру можно представить как суперпозицию структур (A, B, C, D) с заселенностью разупорядоченных позиций 2a и 2c, равной 1 или 0 (табл. 1).

Вклад ($\mu_{A\div D}$) каждой из структур A–D в строение итогового соединения определяется на основании данных по заселенностям разупорядоченных позиций [3–8] (табл. 2).

Так, соединение $Co_3W_{10}C_{3.59}$, в кристалле которого позиция 2с частично заселена атомом углерода (0.54), можно представить в виде суперпозиции структур А и В. Величины вкладов ($\mu_{A,B}$) (табл. 1) можно рассчитать из системы уравнений балансирующих стехиометрические коэффициенты при атоме углерода:

$$4\mu_{A} + 3\mu_{B} = 3.59,$$

$$\mu_{A} + \mu_{B} = 1,$$

$$\mu_{A} = 0.59, \mu_{B} = 0.41.$$

			~	
Соединение	a, Å	<i>c</i> , Å	<i>V</i> , Å ³	Заселенности позиций
Fe _{3.57} W _{9.43} C _{3.54} [4]	7.7987	7.8298	412.40	2a (Fe (0.45) + W(0.55); 2c (C(0.54)); 6h (Fe(0.04) + W(0.96))
$Co_3W_{10}C_{3.59}$ [5]	7.8304	7.8361	416.35	2c (C(0.415))
$Ni_{3.35}W_{9.65}C_4$ [6]	7.8344	7.8048	414.87	2a (Ni(0.35) + W(0.65))
<i>k</i> -(Ni–W–C) [3]	7.848	7.848	419.00	нет данных

Таблица 2. Структурные данные каппа-фаз $Me_{3+x}W_{10-x}C_{3+y}$

Аналогично для $Ni_{3.35}W_{9.65}C_4$ (заселенность позиции 2a распределена между атомами W(0.65) и Ni(0.35)) получаем $\mu_A = 0.65$; $\mu_C = 0.35$.

Для соединения $Fe_{3.57}W_{9.43}C_{3.54}$ ситуация осложняется тем, что в кристалле реализуются сразу три разупорядоченные позиции 2a (W(0.55) + + Fe(0.45)), 2c (C(0.54)) и 6h (W(0.96) + Fe(0.04)). Для расчета вкладов структур А–D использовалась система линейно независимых уравнений, балансирующих стехиометрические коэффициенты при атомах Fe и C (при W получается линейно зависимое уравнение):

$$3\mu_{\rm A} + 3\mu_{\rm B} + 4\mu_{\rm C} + 4\mu_{\rm D} = 3.57({\rm Fe}),$$

$$4\mu_{A} + 3\mu_{B} + 4\mu_{C} + 3\mu_{D} = 3.54(C),$$

$$\mu_{A} + \mu_{B} + \mu_{C} + \mu_{D} = 1,$$
 (2)

 $\mu_A, \mu_B, \mu_C, \mu_D \geq 0.$

В результате получается набор решений:

$$\begin{split} \mu_{\rm B} &= 0.43 - \mu_{\rm A}, \\ \mu_{\rm C} &= 0.54 - \mu_{\rm A}, \\ \mu_{\rm D} &= 0.03 + \mu_{\rm A}, \\ \mu_{\rm A} &\leq 0.43. \end{split} \tag{3}$$

Таким образом, соединение Fe_{3.57}W_{9.43}C_{3.54} можно представить в виде четырех структур, вклады которых находятся в интервалах (табл. 1).

Далее на основании DFT-расчетов получали величины энтальпии образования (ΔH_A , ΔH_B , ΔH_C , ΔH_D), по которым оценивалась относительная стабильность и, следовательно, вклад структур A–D в итоговое строение каппа-фазы. Так как все расчеты проводились при T = 0 K, то количественный расчет вклада по распределению Больцмана некорректен, и полученные данные использовались только для качественных оценок.

Итоговые значения энтальпии образования и объема элементарной ячейки каппа-фазы рассчитывались как средневзвешенные значения, рассчитанные для структур A–D:

$$\Delta H = \mu_{\rm A} \Delta H_{\rm A} + \mu_{\rm B} \Delta H_{\rm B} + \mu_{\rm C} \Delta H_{\rm C} + \mu_{\rm D} \Delta H_{\rm D}, \quad (4)$$

$$V = \mu_{\rm A} V_{\rm A} + \mu_{\rm B} V_{\rm B} + \mu_{\rm C} V_{\rm C} + \mu_{\rm D} V_{\rm D}.$$
 (5)

Возможность применения аддитивного подхода определяется малостью величины энергии взаимодействия структур A–D в кристалле по сравнению с рассчитываемой величиной энтальпии ΔH . Оценка этой энергии проводилась по формуле:

$$E_{\rm B334MM} = (E(A, B) - (1/2)(E(A) + E(B)))/N, \quad (6)$$

где E(A, B) — энергия модельного кристаллического соединения, элементарная ячейка которого построена из двух формульных единиц, соответствующих разным структурам A и B, т.е. вклад каждой из структур $\mu_{A,B} = 0.5$; E(A), E(B) — энергии элементарной ячейки "чистой" кристаллической структуры, построенной из A, B; N — число атомов в элементарной ячейке.

Расчет $E_{\rm взаим}$ проводился для всех возможных пар структур AB, AC, AD, BC, BD, CD в двух вариантах: для элементарной ячейки с *k*-сеткой 11 × 11 × 11 и для суперъячейки 2 × 2 × 2 с *k*-сеткой 3 × 3 × 3. По результатам расчетов оказалось, что аддитивный подход вполне оправдан:

 $|\Delta H(A\div D) = (-0.285\div -0.415 \ эB/атом) \gg |E_{\text{взаим}}|$ ($\leq 10^{-3} \ 3B/атом$) (табл. 3).

Таблица 3. Данные DFT-расчетов для структур A–D

No	Ма			IZ Å 3	-F $2B$	$-\Delta H_i$,
INU	wie	u, A	ι, Α	V, A	$-L_{\rm Kp}$, 5D	эВ/атом
А	Fe	7.823	7.800	413.42	402.83	0.42
В	Fe	7.787	7.815	410.43	383.46	0.43
С	Fe	7.713	7.793	401.55	392.41	0.41
D	Fe	7.699	7.791	399.96	373.10	0.42
А	Co	7.822	7.799	413.18	397.12	0.41
В	Co	7.770	7.821	408.90	377.91	0.42
С	Co	7.719	7.768	400.35	383.17	0.35
D	Co	7.697	7.779	399.07	363.50	0.34
А	Ni	7.823	7.800	413.39	387.86	0.38
В	Ni	7.775	7.837	410.22	368.51	0.38
С	Ni	7.752	7.749	403.25	371.19	0.32
D	Ni	7.719	7.767	400.76	351.16	0.29

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

Рис. 2. "Строительные блоки" каппа-фазы. Обозначения атомов как на рис. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В рамках используемой аддитивной модели можно сделать вывод, что характер разупорядоченности в кристалле определяется вкладом структур А–D в кристаллическое строение каппафазы. Так, вклад структуры В приводит к частичному заселению позиции 2с, а вклад структуры С обусловливает разупорядоченность позиции 2а. Величина вклада, в свою очередь, определяется относительной стабильностью структур А–D. В связи с этим сопоставим данные DFT-расчетов энтальпии образования (табл. 3) с результатами рентгенодифракционных исследований.

Для k-(Fe–W–C) значения энтальпий для структур A–D близки, следовательно, вклад каждой из структур равновероятен. В кристалле Fe_{3.57}W_{9.43}C_{3.54} реализуются разупорядоченные позиции 2a и 2c. С целью упрощения позиция 6h (0.05) не рассматривалась из-за малой степени разупорядоченности по сравнению с позициями 2a (0.45) и 2c (0.54). Из набора решений (3) можно выбрать решения с равномерным распределением вкладов ($\mu_A = 0.22-0.25$; $\mu_B = 0.18-0.21$; $\mu_C = 0.29-0.32$; $\mu_D = 0.25-0.28$), которые хорошо согласуются с данными расчетов. Для k-(Co–W–C) наиболее стабильны структуры A и B, что согласуется со структурными данными (табл. 1). В кристалле реализуется частичная заселенность позиции 2c атомом углерода.

Для k-(Ni–W–C) наиболее стабильны структуры A и B. Ожидалось, что характер разупорядоченности в кристалле должен быть аналогичен характеру разупорядоченности для k-(Co–W–C), т.е. в кристалле должна реализовываться частичная заселенность позиции 2с атомом углерода. Однако сравнение со структурными данными для k-(Ni–W–C) [6] свидетельствует о том, что в кристалле Ni_{3.35}W_{9.65}C₄ реализуется другой характер статистической разупорядоченности: позиция 2а частично заселена либо атомом Ni (0.35), либо W (0.65), а позиция 2с полностью заселена атомом углерода. Следовательно, на основании структурных данных можно заключить что k-(Ni–W–C) является суперпозицией структур A и C, причем, согласно расчетам, структура C менее стабильна, чем B.

Это расхождение можно объяснить, если учесть, что при DFT-расчетах моделируется наиболее стабильная структура соединения, в то время как кристаллизация фазы Ni_{3.35}W_{9.65}C₄ [1] происходила в условиях самораспространяющегося высокотемпературного синтеза (СВС) в течение короткого времени, и, следовательно, важную роль в формировании структуры играет кинетический фактор. Более вероятно, что расчет воспроизводит наиболее стабильную кристаллическую структуру, которая формируется в условиях длительной изотермической выдержки. Согласно литературным данным, объем элементарной ячейки 419 Å³ [4] для каппа-фазы, полученной в этих условиях, больше, чем объем элементарной ячейки для соединения, полученного при СВС – 414.87 Å³ [2], что свидетельствует о различии в кристаллическом строении данной каппа-фазы. Так как координаты атомов в [4] для структуры *k*-(Ni-W-C) отсутствуют, то возможно лишь косвенное сопоставление расчетов и эксперимента по данным объемов. Расчетная величина объема элементарной ячейки для более стабильного соединения, построенного из структур А и В, равна 411.81 Å³, что больше объема 409.84 Å³ для соединения построенного из структур А и С, моделирующего фазу, полученную при СВС.

Образование менее стабильной структуры в условиях СВС можно объяснить, если учитывать, что в процессе кристаллизации могут участвовать не только атомы, но и их кластеры [12]. Анализ кристаллического строения (рис. 2) свидетельствует о том, что в построении кристалла могут участвовать кластеры Ni_n (n = 3, 4). Известно [13], что более стабильны кластеры Ni₄. Участие этих кластеров в образовании кристалла предопределяет преимущественное образование структуры С или D в кристаллах соединений [2], где наблюдается статистическая разупорядоченность атомов W и Me в позиции 2а.

Расчет энтальпии образования по формуле (4) для каппа-фаз в ряду Fe, Co, Ni свидетельствует о том, стабильность кристаллических соединений незначительно уменьшается (Me=Fe (-0.42 эВ/атом), Me=Co (-0.41 эВ /атом), Me=Ni (-(0.36-0.38) эВ/ атом). При этом объем элементарной ячейки (формула (5)) воспроизводится с точностью менее 2% ($V_{Me=Fe} = 405.7$ (412.4 Å³ [4]), $V_{Me=Co} = 410.7$ (416.4 Å³ [5]), $V_{Me=Ni} = 412$ (419 Å³ [2]), (CBC) 409.8 (414.9 Å³ [6]).

Так как 3d металлы (Fe, Co, Ni) известны как сильные ферромагнетики, то для кристаллических структур было проведено изучение магнитных свойств. Магнитный момент (М) структур А-D рассчитывался, исходя из коллинеарного расположения локальных магнитных моментов в кристалле. Оказалось, что структуры А и В для всех 3*d* металлов немагнитны ($M < 0.05 \mu_{\rm B}$). Структуры С и D, согласно расчетам, могут быть ферромагнетиками Me=Fe ($M_{\rm C} = 2.23\mu_{\rm B}$, $M_{\rm D} = 4.42\mu_{\rm B}$), Me=Co ($M_{\rm C} = 2.66\mu_{\rm B}$, $M_{\rm D} = 6.78\mu_{\rm B}$). Увеличение намагниченности структур С и D для Ме=Со по сравнению с Me=Fe связано с тем, что для Me=Fe локальные магнитные атомов Fe в позиции 2а направлены противоположно магнитным моментам атомов Fe в позиции 6h, в то время как для Ме=Со все магнитные моменты атомов Со сонаправлены. Для каппа-фазы с Me=Ni все структуры оказались немагнитны. Так как структуры С и D имеют ненулевой вклад только для каппа-фазы Fe_{3.57}W_{9.43}C_{3.54}, то для этого соединения можно ожидать проявления магнитных свойств.

Таким образом, используемая модель позволяет качественно описывать характер статистической разупорядоченности в кристаллах исходя из относительной стабильности структур А–D. Поэтому задача по изучению влияния электронного строения на характер статистической разупорядоченности в кристаллах каппа-фазы сводится к изучению влияния электронного строения на стабильность соответствующих структур А–D.

Анализ электронного строения проводился с помощью диаграмм СОНР, в которых анализировалось перекрывание атомных орбиталей для всех контактов в интервале от 1.5 до 3 Å. На рис. 3 представлены диаграммы для структур А (Me=Fe, Со, Ni – верхняя строка) и С (Me=Fe, Co, Ni – нижняя строка). Диаграммы для структур В и D не приводятся в силу их идентичности диаграммам для А и С соответственно. Закрашенная часть -рСОНР-диаграмма, соответствующая перекрываниям между *d*-орбиталями связей Me-Me и Me-W, и, как видно из рисунка, вносит основной вклад в разрыхляющие орбитали в окрестности уровня Ферми. В ряду Fe, Co, Ni для структуры A заселенность этих орбиталей растет, что приводит к смещению уровня Ферми в область разрыхляющих орбиталей. В нижнем ряду для структуры С аналогичная тенденция проявляется существенно заметней. Это связано с большим количеством атомов Ме в элементарной ячейке, и как следствие, с большим количеством Ме-Ме-контактов (18) в структурах C, D по сравнению с A, B (6). Замещение атома Ме его соседом с дополнительным валентным электроном приводит к тем большей дестабилизации структуры, чем больше валентных электронов локализуется в области связей Me-Me и Me-W.

Таблица 4. Значения зарядов (Q) Ме подрешетки и суммы порядков связей (SBO) атомов Ме и атомов в позиции 2a (а – для структуры A, б – для структуры C)

Me	Q	SBO(Me)	SBO(2a)		
(a)					
Fe	-2.484	4.67	6.41		
Co	-2.628	4.48	6.26		
Ni	-3.012	4.28	6.2		
(6)					
Fe	-3.734	4.63	4.67		
Co	-2.624	4.39	4.36		
Ni	-2.568	4.11	4.03		

Из табл. 3 следует, что стабильность структур уменьшается в ряду Fe, Co, Ni. В этом же ряду возрастает количество валентных электронов, приходящихся на элементарную ячейку. "Дополнительные" валентные электроны заселяют вакантные разрыхляющие орбитали, что и приводит к дестабилизации кристаллической структуры.

Анализ изменений в распределении зарядов и порядков связей представлен в табл. 4. В стабилизации кристаллической структуры важную роль играют как обменное, так и кулоновское взаимодействие. Первое проявляется в изменении порядков связей, второе — в атомных зарядах.

Для анализа порядков связей в металлической подрешетке использовались суммарный порядок связей для атома Me (SBO(Me)) и суммарный порядок связей для атома в позиции 2a (SBO(2a)). Распределение зарядов анализировалось с помощью суммарного заряда всех атомов металлической подрешетки (Q). Из табл. 4а следует, что стабильность структуры А убывает в ряду Fe, Co, Ni одновременно с суммарными порядками связей SBO для атомов составляющих металлическую подрешетку. В этом же ряду наблюдается рост заряда подрешетки. Таким образом, уменьшение обменного взаимодействия частично компенсируется ростом кулоновского взаимодействия, что выражает в незначительном уменьшении величины энтальпии в этом ряду (от -0.42 до -0.38 эв/атом). Для структуры С (табл. 4б) уменьшение стабильности сопровождается симбатным уменьшением как порядков связей SBO, так и заряда, т.е. здесь оба фактора (обменный и кулоновский) действуют в одном направлении, что приводит к более заметному изменению энтальпии (от -0.43 до -0.32 эВ/атом). Различная чувствительность стабильности структур А и С к замещению 3*d*-металла приводит к изменению их относительной стабильности и, как следствие, к изменению характера статистической разупорядоченности. Следовательно, 3d-металлы являются важным элементом в составе каппа-фазы, ко-

 $-4 = -20 \quad 0 \quad 20 \quad 40 \qquad -20 \quad 0 \quad 20 \quad 40 \qquad -20 \quad 0 \quad 20 \quad 40$

Рис. 3. СОНР-диаграммы для структур А (верхний ряд) и структур С (нижний ряд). Заштрихованная область соответствует рСОНР-диаграммам перекрывания *d*-орбиталей для контактов Ме–Ме и Ме–W.

торый определяет стабильность и характер статистической разупорядоченности в кристалле.

 $E, \Im B$

 $E, \Im B$

Таким образом, в рамках аддитивной модели изучена стабильность кристаллов со статистически разупорядоченными позициями. Исследовано влияние электронной природы 3d-металла Ме в кристаллах k-(Me–W–C) на характер статистической разупорядоченности. Предложена модель образования k-(Ni–W–C) в условиях CBC.

Работа выполнена в рамках государственного задания ИСМАН (тема 44№ 0091-2018-0001). С.А. Гуда благодарит Южный федеральный университет за финансовую поддержку (ВнГр-07/2017-08).

СПИСОК ЛИТЕРАТУРЫ

- Yukhvid V.I. // Advanced Materials & Technologies. 2016. № 4. P. 22.
- 2. Коновалихин С.В., Хоменко Н.Ю., Чуев И.И. и др. // Неорган. материалы. 2019. В печати.
- Rautala P., Norton J.T. // Trans. AIME. 1952. V. 194. P. 1045.
- Harsta A., Rundqvist S. // J. Solid State Chem. 1987. V. 70. P. 210.
- 5. Kuo K. // J. Iron Steel Inst. 1953. V. 173. P. 363.
- Harsta A., Rundqvist S., Thomas J.O. // J. Solid State Chem. 1983. V. 49. P. 118.
- 7. Harsta A., Johanson T., Rundqvist S., Thomas J.O. // Acta Chem. Scand. 1977. Ser. A. V. 31. P. 260.

- Kresse G., Furtmuller J. // Comput. Mat. Sci. 1996. V. 6. P. 15. https://doi.org/10.1016%2f0927-0256(96)00008-0
- Kresse G., Furtmuller J. // Phys. Rev. Ser. B. 1996. V. 54.
 P. 11169. https://doi.org/. B.54.11169 https://doi.org/10.1103/PhysRev
- Perdew J.P., Chevary J.A., Vosko S.H. et al. // Phys. Rev. Ser. B. 1992. V. 46. P. 6671. https://doi.org/10.1103/PhysRevB.46.6671
- 11. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Sanchez-Portal D., Artacho E., Soler J.M. // Solid State Commun. 1995. V. 95. P. 685. https://doi.org/10.1103/PhysRevLett.77.3865
- 13. Grimme S., Antony J., Ehrlich S., Krieg S. // J. Chem. Phys. 2010. V. 132. P. 154104.

- Grimme S., Ehrlich S., Goerigk // J. Comp. Chem. 2011. V. 32. P. 1456.
- Dronskowski R., Blöchl P.E. // J. Phys. Chem. 1993. V. 97. P. 8617.
- 16. *Maintz S., Deringer V.L., Tchougréeff A.L., Dronskowski R.* // J. Comput. Chem. 2016. V. 37. P. 1030.
- 17. *Manz T.A., Gabaldon Limas N. //* RSC Adv. 2016. V. 6. P. 47771.
- 18. Manz T.A. // RSC Adv. 2017. V. 7. P. 45552.
- Joo-Hwan Han, Doh-Yeon Kim // Acta Materialia. 2003. V. 51. № 18. P. 5439.
- 20. *Goel S., Masunov A.E.* // J. Mol. Modeling. 2011. V. 18. Nº 2. P. 783.