_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УЛК 543.344+542.061

ФАЗОВЫЕ РАВНОВЕСИЯ И ЭКСТРАКЦИЯ ИОНОВ МЕТАЛЛОВ В СИСТЕМАХ НА ОСНОВЕ СМЕСЕЙ ХЛОРИДА АЛКИЛБЕНЗИЛДИМЕТИЛАММОНИЯ И ОКСИЭТИЛИРОВАННЫХ НОНИЛФЕНОЛОВ

© 2020 г. Ю. И. Исаева^а, А. М. Елохов^{а,b,*}, С. А. Денисова^а, О. С. Кудряшова^b

^аПермский государственный национальный исследовательский университет. 614990, Пермь, Россия

^bЕстественнонаучный институт Пермского государственного национального исследовательского университета. 614990, Пермь, Россия

*e-mail: elhalex@yandex.ru

Поступила в редакцию 14.08.2019 г. После доработки 24.10.2019 г. Принята к публикации 12.11.2019 г.

Исследована высаливающая способность сульфата, хлорида и нитрата натрия в отношении смесей хлорида алкилбензилдиметиламмония (катамин AB) и оксиэтилированного нонилфенола (неонол A Φ 9-12) из водных растворов, а также экстракция ионов металлов смесью катамина AB и неонола A Φ 9-12 с соотношением 3 : 1 в присутствии высаливателя — нитрата натрия. Установлено, что способность к высаливанию и экстракционная способность смесей ПAB определяется компонентом, присутствующим в большем количестве.

Ключевые слова: высаливание, катионные ПАВ, оксиэтилированные нонилфенолы, жидкостная экстракция, неорганические соли

DOI: 10.31857/S0044453720070158

Смеси поверхностно-активных веществ (ПАВ) находят широкое применение в методах жидкостной экстракции. Использование смесей двух неионных ПАВ с различной степенью оксиэтилирования позволяет варьировать температуру помутнения их растворов и осуществлять экстракцию в удобном для работы интервале температур [1, 2]. При экстракции неионными ПАВ с добавками анионных или катионных ПАВ последние могут выступать в роли модификатора, в результате чего увеличивается электрическая проводимость экстракта или изменяются фотометрические характеристики образующихся в экстракте комплексных соединений органических реагентов с ионами металлов [3-5].

Наиболее часто используются смеси катионных и анионных ПАВ, вследствие электростатического взаимодействия ионных групп которых образуются расслаивающиеся смеси без введения высаливателей [6, 7]. Подобные системы применяются для концентрирования ионов металлов, органических и биологически-активных веществ [8—10]. Кроме того, использование смеси противоположно заряженных ПАВ, содержащих ион-

ные группы, способные к комплексообразованию, позволяет получить ряд синергетических эффектов, как в высаливающей, так и экстракционной способности [11].

Настоящая работа посвящена исследованию закономерностей высаливания неорганическими солями и экстракционной способности смесей катионного ПАВ хлорида алкилбензилдиметиламмония (катамин АБ) и неионного ПАВ оксиэтилированного нонилфенола (неонол АФ 9-12).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали технические ПАВ: катионный — хлорид алкилбензилдиметиламмония ($[C_nH_{2n+1}N(CH_3)_2CH_2C_6H_5]CI$, n=10-18, катамин АБ, ТУ 9392-003-48482528-99, основного вещества — 50 мас. %) и оксиэтилированный нонилфенол (неонол АФ-9-12, $C_9H_{19}C_6H_4(OCH_2CH_2)_{12}OH$, ТУ 2483-07705766801-98); неорганические соли: сульфат, хлорид и нитрат натрия, сульфаты индия(III), железа(III), галлия, цинка, кадмия, таллия(III) квалификации "ч.д.а."; неорганические кислоты: серную и хлороводородную квалификации "ч.д.а.".

Высаливающую способность неорганических солей в отношении смесей ПАВ оценивали на основании бинодальных кривых систем неорганическая соль—смесь ПАВ—вода, полученных методом изотермического титрования. Растворы смесей ПАВ или соли с известной концентрацией титровали раствором соли или смеси ПАВ с заданной концентрацией. Высаливающаую способность нитрата, хлорида и сульфата натрия определяли в отношении смесей ПАВ с массовым соотношением неонол АФ 9-12: катамин АБ, равным 3:1 (ПАВ-1), 1:1 (ПАВ-2) и 1:3 (ПАВ-3).

Растворимость в системе NaNO₃—ПАВ-3—вода при 25°С изучали изотермическим методом сечений. В качестве физического свойства измеряли показатель преломления жидкой фазы на рефрактометре ИРФ-454Б. На основании полученных данных строили зависимости показателя преломления от концентрации одного из компонентов и по изломам на графике определяли границы фазовых переходов.

Экстракцию в системе $NaNO_3$ – ΠAB -3–вода осуществляли следующим образом. В делительные воронки вносили 2.0 г $NaNO_3$, 1.0 г ΠAB -3, 2.0 мл 0.1 моль/л раствора соли металла, расчетное количество неорганической кислоты и доводили объем дистиллированной водой до 20.0 мл. Полученную смесь встряхивали в течение 1 мин и после установления равновесия фазы разделяли. Степень извлечения металлов определяли комплексонометрическим титрованием рафината. Экспериментально установлено, что остаточное содержание катамина AB не влияет на точность определения.

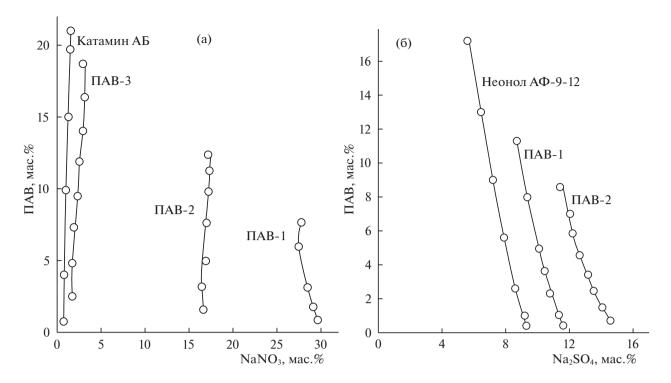
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основная задача при разработке экстракционных систем на основе ПАВ — выбор высаливателя, обеспечивающего при минимальном содержании образование расслаивающейся смеси. Ранее установлено, что для неонола АФ-9-12 эффективными высаливателями при комнатной температуре служат соли многозарядных анионов, например, сульфаты [12], а для катамина АБ — нитраты и хлориды щелочных металлов [13, 14].

На рис. 1а представлены границы области расслаивания в системах NaNO₃—ПАВ—вода, увеличение содержания катамина АБ в смесях приводит к уменьшению концентрации нитрата натрия, достаточной для образования расслаивания. Концентрация сульфата натрия в расслаивающихся смесях уменьшается с увеличением массовой доли неонола АФ 9-12; так, сульфат натрия не высаливает катамин АБ и ПАВ-3 (рис. 1б). Катамин АБ и ПАВ-1 образуют расслаивающиеся смеси при концентрации хлорида натрия более 15 мас. %. Неонол АФ 9-12, ПАВ-1 и ПАВ-2 расслаивающихся

смесей с хлоридом натрия не образуют. Определяющую роль в высаливании катамина АБ играет обмен аниона у макрокатиона ПАВ. Замена хлорид-иона на нитрат-ион, обладающий меньшей энергией гидратации, снижает растворимость образующегося ионного ассоциата в воде [14], поэтому понижение содержания катамина АБ в смесях ПАВ приводит к сокращению области расслаивания (рис. 1а).

Высаливающая способность неорганических солей в отношении оксиэтилированных неионных ПАВ определяется преимущественно величиной энергии гидратации аниона [12], которая уменьшается в ряду SO_4^{2-} , CI^- , NO_3^- , поэтому снижение массовой доли неонола $A\Phi$ 9-12 в смеси ПАВ понижает высаливающую способность сульфата натрия (рис. 16).


Особое положение занимает хлорид натрия. Вследствие низкой высаливающей способности при температуре, близкой к комнатной, он не образует расслаивающихся смесей с неонолом $A\Phi$ 9-12 и высаливает катамин AE при концентрации выше 15 мас. %, поэтому увеличение содержания неонола $A\Phi$ 9-12 в смесях приводит к снижению высаливающей способности хлорида натрия.

Таким образом, исследование способности к высаливанию смесей катамина АБ и неонола АФ 9-12 показало, что с ростом содержания катамина АБ высаливающая способность нитратов увеличивается, а сульфатов — уменьшается, что соответствует ряду высаливающей способности отдельных ПАВ. Полученные данные позволяют подобрать наиболее эффективный высаливатель для смеси катамина АБ и неонола АФ 9-12 любого состава.

Для дальнейших исследований выбрана система $NaNO_3$ — ΠAB -3—вода, так как нитрат натрия является одним из наиболее эффективных высаливателей, а экстракция ионов металлов катамином AB в присутствии нитратов изучена достаточно подробно, что позволит оценить влияние неонола $A\Phi$ 9-12 на экстракционную способность катамина AB.

С целью определения оптимальных концентрационных параметров экстракции изучена растворимость в системе $NaNO_3$ — ΠAB -3—вода при $25^{\circ}C$.

На фазовой диаграмме системы (рис. 2) обнаружены области: расслаивания (L_1+L_2) , монотектического равновесия (L_1+L_2+S) , ненасыщенных растворов (L) и кристаллизации нитрата натрия (L+S). Область расслаивания расположена достаточно близко к вершине воды и примыкает к двойной подсистеме нитрат натрия—вода. Характер расположения нод в области расслаивания свидетельствует о доминирующем взаимодействии в подсистеме нитрат натрия—вода.

Рис. 1. Границы области расслаивания в системах $NaNO_3$ - ΠAB -вода (а) и Na_2SO_4 - ΠAB -вода (б) при 25°C.

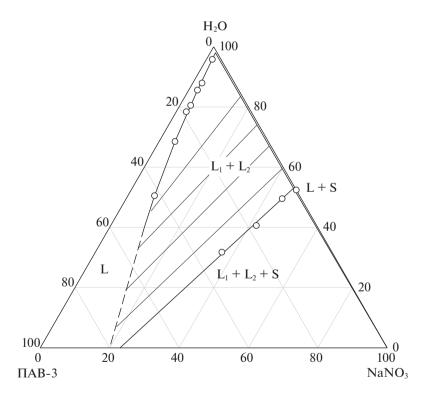


Рис. 2. Фазовая диаграмма системы NaNO₃-ПAB-3-вода при 25°C.

На основании полученных данных по фазовым равновесиям в системе $NaNO_3$ — ΠAB -3—вода выбраны оптимальные концентрационные пара-

метры экстракции: максимальное содержание воды в расслаивающихся смесях и соотношение компонентов, обеспечивающее приемлемое для

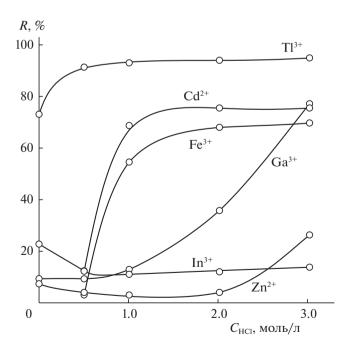

Ион металла Экстракционная система Tl(III) Zn(II) Fe(III) In(III) Ga(III) HNO₃-катамин АБ-вода [14] 93 (>0.5) 12 (>0.25) 18 (>0.25) 17 (>0.25) >99 (>0.0) NH₄NO₃-катамин АБ-вода [14] 90 (1.5-3.0) 55 (3.0) 50 (3.0) $(NH_4)_2SO_4$ -неонол $A\Phi$ 9-12-вода [15] 100 (>0.5) 17 (>0.6) 17 (>0.6) 45 (>0.6) NaNO₃-ПАВ-3-вода 97 (>0.5) 26 (3.0) 70 (>2.0) 12 (3.0) 79 (3.0)

Таблица 1. Распределение ионов металлов в системах на основе катамина АБ, неонола АФ 9-12 и их смесей

Примечание. В скобках – максимальная степень извлечения (кислотность, моль/л).

работы соотношение фаз и быстрое установление равновесия. Экстракцию осуществляли из смесей, содержащих 85.0 мас. % воды, $NaNO_3$ и ΠAB_3 в соотношении 2:1. Экстракт представляет собой прозрачную подвижную жидкость, расположенную над водной фазой. Относительный объем экстракта (отношение объема экстракта к общему объему системы) равен 0.10.

В оптимальных концентрационных условиях исследовано распределение ряда катионов металлов в присутствии серной и хлороводородной кислот (рис. 3). С ростом концентрации хлороводородной кислоты степень извлечения таллия (III) увеличивается до 94% при кислотности выше 0.5 моль/л, максимальная степень извлечения железа(III) — 72% при кислотности выше 2.0 моль/л, галлия(III) — 79% при кислотности

Рис. 3. Распределение ионов металлов в системе Na-NO₃-ПAB-3-вода в присутствии хлороводородной кислоты.

 $3.0 \, \mathrm{моль/л}$, кадмия — 75% при кислотности $1.5 \, \mathrm{моль/л}$. Степень извлечения цинка начинает увеличиваться при кислотности более $2 \, \mathrm{моль/л}$ и достигает 25% при концентрации кислоты $3 \, \mathrm{моль/л}$. Степень извлечения индия мало зависит от концентрации кислоты и не превышает 15%. В присутствии серной кислоты характер кривых распределения ионов металлов аналогичен, извлечение таллия(III) увеличивается с ростом концентрации серной кислоты до 97% ($1.8 \, \mathrm{моль/л} \, H_2 \mathrm{SO_4}$), а экстракция железа(III) и индия практически не зависит от кислотности и не превышает 20%.

Сравнение степеней извлечения (табл. 1), а также характер кривых распределения ионов металлов в системах на основе катамина АБ и неонола АФ 9-12 подтверждают, что катамин АБ оказывает доминирующее влияние на экстракционную способность смеси ПАВ. Экстракция ионов металлов осуществляется катамином АБ по анионообменному механизму в виде хлоридных ацидокомплексов, а таллий(III) извлекается по гидратно-сольватному механизму неонолом АФ 9-12 в виде тетрахлороталлата водорода.

Таким образом, проведенные исследования показали, что при использовании смесей катионных и неионных ПАВ закономерности их высаливания из водных растворов неорганическими солями и экстракционная способность смесей определяется тем компонентом, который присутствует в смеси в большем количестве.

СПИСОК ЛИТЕРАТУРЫ

- Rocha S.A.N., Costa C.R., Celino J.J., Teixeira L.S. // J. Surfactants and Detergents. 2013. V. 16. № 3. P. 299.
- 2. *Naqvi A.Z.*, *Khatoon S.* // J. Sol. Chem. 2011. V. 40. № 4. P. 643.
- 3. *Altunay N., Gürkan R., Yıldırım E.* // Food Analytical Methods. 2016. V. 9. № 10. P. 2960.
- 4. *El-Hay S.S.A.*, *Gouda A.A.* // J. Radioanalytical and Nuclear Chem. 2016. V. 310. № 1. P. 191.
- 5. Hassanien M.M., Kenawy I.M., Khalifa M.E. et al. // Microchemical Journal. 2016. V. 127. P. 125.

- Zhao G.X., Xiao J.X. // J. Colloid and Interface Sci. 1996. V. 177. P. 513.
- 7. *Zhang J.*, *Wang Y.*, *Peng Q.* // Korean Journal of Chemical Engineering. 2013. V. 30. № 6. P. 1284.
- 8. Zhang J., Wang Y., Peng Q. // Chinese Journal of Chemical Engineering. 2013. V. 21. P. 31.
- Xiao J.-X., Sivars U., Tjerneld F. // J. Chromatography B. 2000. V. 743. P. 327.
- 10. *Chen D., Zhang P., Li Yu. et al.* // Analytical and Bioanalytical Chemistry. 2014. V. 406. P. 6051.
- 11. *Елохов А.М., Богомолов Н.В., Денисова С.А. и др. //* Изв. АН. Сер. хим. 2018. № 9. С. 1612.
- 12. *Станкова А.В., Елохов А.М., Кудряшова О.С. //* Журн. физ. химии. 2018. Т. 92. № 7. С. 1145.
- 13. *Кудряшова О.С., Бортник К.А., Чухланцева Е.Ю. и др. //* Журн. неорган. химии. 2013. Т. 58. № 2. С. 290.
- 14. *Исаева Ю.И., Елохов А.М., Денисова С.А. и др. //* Журн. физ. химии. 2019. Т. 93. № 2. С. 220.
- 15. *Станкова А.В., Елохов А.М., Денисова С.А., Леснов А.Е.* // Известия АН. Сер. хим. 2018. № 9. С. 1608.