ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ И НАНОМАТЕРИАЛОВ —

УДК 544.032:544.778:546.883'261

ВАКУУМНЫЙ ОТЖИГ НАНОПОРОШКОВ ТаС

© 2020 г. А. С. Курлов^{а,*}, Н. Д. Юмашева^а, Д. А. Данилов^b

^а Российская академия наук, Уральское отделение, Институт химии твердого тела, Екатеринбург, Россия

^bУральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия

> *e-mail: kurlov@ihim.uran.ru Поступила в редакцию 13.08.2019 г. После доработки 13.08.2019 г. Принята к публикации 10.12.2019 г.

Размолом микрокристаллического порошка TaC получены нанопорошки с разным средним размером частиц от 20 до 40 нм. Методами аналитической химии, рентгеновской дифракции, сканирующей электронной микроскопии и Брунауэра—Эммета—Теллера изучено влияние среднего размера частиц нанопорошка TaC и температуры его вакуумного отжига ($400-1400^{\circ}$ C) на химический и фазовый состав, морфологию и средний размер частиц порошка после отжига. Установлено, что вакуумный отжиг нанопорошков TaC во всем исследованном интервале температур сопровождается их обезуглероживанием в результате взаимодействия углерода с примесным кислородом. Показано, что увеличение температуры отжига нанопорошка TaC сопровождается ростом его частиц и усилением обезуглероживания, вследствие которого меняется не только состав *у* карбида TaC_y, но и фазовый состав всего порошка; после вакуумного отжига при температуре 1200°C и выше нанопорошок TaC становится микрокристаллическим.

Ключевые слова: карбид тантала, размол, нанопорошок, вакуумный отжиг **DOI:** 10.31857/S0044453720070183

Карбид тантала ТаС – яркий представитель семейства карбидов переходных металлов, обладающих рядом очень ценных свойств, таких как высокие твердость и температура плавления, хоротеплопроводность И электрическая шая проводимость [1]. Благодаря наивысшей температуре плавления (~3990°C), хорошей стойкости к тепловому удару и низкому давлению пара при повышенной температуре, ТаС считается одним из важнейших компонентов сверхвысокотемпературных материалов [2]. Благодаря своей твердости, износостойкости и прочности при высоких температурах, способности препятствовать росту зерен WC при спекании и повышать сопротивление пластической деформации, ТаС, наряду с другими кубическими карбидами переходных металлов, используется в качестве добавки при получении твердых сплавов [3]. Однако, из-за высокой температуры плавления (T_{nn}) и низких коэффициентов самодиффузии возникают трудности получения плотной керамики на основе ТаС, особенно высокоплотной однофазной, при относительно низких температурах спекания (<0.7 Т_{пл}). Один из способов понизить температуру спекания и повысить плотность спеченного материала – использование нанокристаллического порошка TaC вместо микрокристаллического и электроимпульсного плазменного спекания (ЭИПС или SPS) вместо обычного вакуумного спекания [4, 5]. Но, наряду с особенностями TaC, одним из наиболее важных факторов, препятствующих спеканию карбидных порошков, является присутствие хемосорбированного кислорода, образующего оксидные слои на карбидных частицах [6], с уменьшением размера которых проблема только усугубляется.

Исследование микро- и нанокристаллических порошков TaC показало, что содержание в них адсорбированного кислорода линейно возрастает вместе с удельной поверхностью порошка, причем большая часть кислорода в порошках находится преимущественно в хемосорбированном состоянии, образуя на поверхности частиц несколько монослоев оксидной фазы Ta_2O_5 [7]. Оценка возможной потери углерода карбида вследствие десорбции хемосорбированного кислорода в виде CO показала, что высокотемпературное спекание нанокристаллических порошков TaC, в отличие от микрокристаллического, может сопровождаться их значительным обезуглероживанием, которое в конечном счете приведет не только к изменению состава у карбида TaC_y , но и фазового состава порошка. Предполагаемое поведение наблюдалось для нанопорошков менее тугоплавких карбидов WC и VC_y при нагреве в вакууме до 1400°C и подробно описано в экспериментальных работах [8, 9].

Данная работа посвящена экспериментальному изучению влияния среднего размера частиц порошка TaC и температуры его вакуумного отжига на химический и фазовый состав, а также морфологию и средний размер частиц этого порошка после отжига, т.е. проверке выдвинутого выше предположения о возможной деградации нанопорошков TaC при нагреве в вакууме.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нанокристаллические порошки ТаС получали мокрым размолом микрокристаллического порошка ТаС (чистота >99.5%, размер частиц <1 мкм, АО "КЗТС", Россия) в планетарной шаровой мельнице PM 200 (Retsch, Германия), используя мелющие шары и футеровку размольных стаканов из твердого сплава WC-6 мас. % Со и изопропиловый спирт. Средний размер частиц нанопорошков варьировали от ~40 до ~20 нм путем изменения продолжительности размола от 5 до 15 ч соответственно. Остальные параметры размола фиксированы. После размола порошки сушили в вакуумном шкафу VDL 23 (Binder, Германия) при остаточном давлении ~103 Па и температуре 85°С. Получение исследуемых в данной работе нанопорошков ТаС и их аттестация подробно описаны в [7].

Отжиг микро- и нанопорошков ТаС осуществляли в Та-тиглях в высокотемпературной вакуумной печи LF-22-2000 (Centorr/Vacuum Industries, США) с футеровкой и нагревателями из вольфрама. Отжиг в вакууме (~10⁻³ Па) проводили следующим образом: нагрев до температуры отжига (T_{ann}) со скоростью 10 К/мин, выдержка при T_{ann} в течение 1 ч и охлаждение с печью. Температуры отжига T_{ann} составляли 400, 600, 800, 1000, 1200 и 1400°С. Для каждого отжига использовали только исходные, ранее не отожженные, порошки (навески по 3 и 1.5 г микро- и нанопорошков соответственно). Максимальная температура отжига T_{апп} близка к температуре спекания (1400-1500°С) традиционных твердых сплавов, содержащих карбид тантала [10], и является минимальной температурой, при которой обычно спекают порошки ТаС на практике [11].

Содержание общего C_{total} и свободного C_{free} углерода в порошках TaC до и после отжига определяли путем их сжигания в атмосфере кислорода с помощью анализатора CS-30 (Метавак, Россия), а затем рассчитывали содержание в них связанного углерода $C_{fix} = C_{total} - C_{free}$. Общее содержание

кислорода О_{total} в этих порошках определяли методом восстановительного плавления в токе аргона на газоанализаторе EMGA-620W/C (Horiba, Япония) в режиме импульсного нагрева до ~2500°C. Измерения проводили в режиме автоматической загрузки образца. Порошок карбида тантала помещали в оловянную капсулу и при анализе сбрасывали в предварительно дегазированный тигель. Систему градуировали по стандартным образцам стали SS-2-74 и оксида железа JSS-009-3.

Кристаллическая структура, фазовый состав и параметры решетки порошков ТаС до и после отжига определяли с помощью рентгеновского порошкового автодифрактометра XRD-7000 (Shimadzu, Япония). Спектры снимали в интервале углов 2θ от 10° до 140° с пошаговым сканированием $\Delta(2\theta) = 0.03^{\circ}$ и временем экспозиции 2 с в точке в излучении CuK_{a1.2}. Рентгенограммы анализировали методом Ритвельда, используя программный пакет X'Pert HighScore Plus Version 2.2е и встроенную в него библиотеку рентгеноструктурных данных. Для нанокристаллических порошков ТаС по уширению дифракционных отражений определяли средний размер D_X областей когерентного рассеяния (ОКР) и величину микродеформаций є без учета их анизотропии, используя алгоритм, описанный в работе [12].

Морфологию и размер частиц порошков TaC до и после отжига исследовали с помощью сканирующего электронного микроскопа JSM 6390 LA (JEOL, Япония), оборудованного энерго-дисперсионным рентгеновским (EDX) анализатором JED 2300 (JEOL, Япония).

Площадь удельной поверхности S_{BET} порошков ТаС до и после отжига измеряли адсорбционным методом Брунауэра-Эммета-Теллера (БЭТ) с помощью анализатора удельной поверхности и пористости Gemini VII 2390 (Micromeritics, США). Перед измерением S_{вет} порошки дегазировали в вакууме ~10 Па при температуре 350°С в течение 1 ч. В приближении одинакового размера и шарообразной формы частиц по измеренной величине $S_{\rm BET}$ определяли средний размер частиц $D_{\rm BET} = 6/(\rho_{\rm X}S_{\rm BET}),$ где $\rho_{\rm X}$ — рентгеновская плотность. Рентгеновскую плотность $\rho_{\rm X}$ рассчитывали по формуле $\rho_X = nM/N_AV$, где n = 4 - число формульных единиц ТаС, приходящихся на элементарную ячейку с кубической структурой B1; M == 192.959 г/моль — молярная масса TaC; $N_{\rm A}$ = $= 6.022 \times 10^{23}$ моль⁻¹ – число Авогадро; $V = (a_{R1})^3$ – объем элементарной ячейки ТаС с периодом решетки *а*_{*B*1}.

Рис. 1. Рентгенограммы порошков TaC: а – микрокристаллический (TaC-0h) и нанокристаллические порошки, полученных размолом микрокристаллического в течение 5 (TaC-5h), 10 (TaC-10h) и 15 ч (TaC-15h); 6 – эти же порошки после отжига в вакууме при 1400°С. На спектрах отмечены только наиболее интенсивные отражения присутствующих фаз.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 приведены дифракционные рентгеновские спектры микро- и нанопорошков TaC до (рис. 1а) и после отжига в вакууме при 1400°С (рис. 1б). Согласно рентгенограмме, микрокристаллический порошок TaC является однофазным и имеет кубическую (пр. гр. Fm-3m) структуру типа B1 (рис. 1а). Нанопорошки, полученные размолом микрокристаллического, судя по их рентгенограммам (рис. 1а), наряду с основной фазой TaC, содержат небольшое количество примесного карбида вольфрама WC (пр. гр. P-6m2), появление которого обусловлено натиранием материала мелющих шаров и футеровки стаканов. Количественный фазовый анализ показал, что

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

содержание WC в нанопорошках TaC, полученных размолом, возрастает от ~2.5 до ~6.5 мас. % с увеличением продолжительности размола от 5 до 15 ч. Кроме этого, увеличение времени размола $t_{\rm mill}$ сопровождается уширением дифракционных отражений (рис. 1а), которое обусловлено малым размером OKP ($D_{\rm X}$) и наличием микродеформаций (є) в нанопорошках (табл. 1).

На рентгенограммах (рис. 16) порошков TaC после отжига в вакууме при 1400°С, наблюдаются изменения положения и ширины дифракционных линий, а для нанопорошков еще и фазового состава, как и было предсказано в работе [7]. Микрокристаллический порошок TaC оказался наиболее устойчивым к нагреву среди исследуе-

КУРЛОВ и др.

Порошок	t _{mill} , ч	$T_{\rm ann} \pm 5, \ ^{\circ}C$		$\Delta C_{ ext{total}} \pm 0.05$ Mac. %	ζ*	Фазовый состав	Фаза ТаС _у (пр. гр. <i>Fm</i> -3 <i>m</i> , стр. тип <i>B</i> 1)				
			$C_{\rm fix} \pm 0.05$ mac. %				$a_{B1} \pm 0.0005 \text{\AA}$	y**	$\begin{array}{c} \rho_X \pm \\ \pm \ 0.01 \\ r/cm^3 \end{array}$	<i>D</i> _X ± ±5нм	$\epsilon \pm \pm 0.03\%$
TaC-0h	0	25	6.19	0.00	0.99	TaC _y	4.4552	0.99	14.49	_	_
TaC-5h	5	85	6.05	0.00	0.97	TaC _y , WC	4.4470	0.95	14.57	42	0.80
TaC-10h	10		6.01	0.00	0.96	TaC_{y} , WC	4.4435	0.92	14.61	28	0.93
TaC-15h	15		5.91	0.00	0.95	TaC _y , WC	4.4427	0.92	14.62	23	0.97
TaC-0h-400°C	0	400	5.97	0.06	0.96	TaC _y	4.4550	0.99	14.50	_	_
TaC-5h-400°C	5		5.35	0.25	0.85	TaC_{y} , WC	4.4483	0.95	14.56	53	0.58
TaC-10h-400°C	10		4.67	0.42	0.74	TaC_{y} , WC	4.4465	0.94	14.58	29	0.61
TaC-15h-400°C	15		4.47	0.47	0.70	TaC _y , WC	4.4454	0.94	14.59	25	0.72
TaC-0h-600°C	0	600	5.95	0.17	0.95	TaC _y	4.4550	0.99	14.50	_	_
TaC-5h-600°C	5		5.51	0.41	0.88	TaC _y , WC	4.4496	0.96	14.55	54	0.52
TaC-10h-600°C	10		5.15	0.60	0.82	TaC_{y} , WC	4.4478	0.95	14.57	34	0.59
TaC-15h-600°C	15		4.66	0.73	0.74	TaC _y , WC	4.4476	0.95	14.57	27	0.60
TaC-0h-800°C	0	800	6.06	0.25	0.97	TaC _y	4.4549	0.99	14.50	_	_
TaC-5h-800°C	5		5.42	0.89	0.86	TaC_{y} , WC, $Ta_{2}O_{5}$	4.4470	0.95	14.57	56	0.43
TaC-10h-800°C	10		5.10	1.28	0.81	TaC_{y} , WC, W, Ta_2O_5	4.4447	0.93	14.60	37	0.48
TaC-15h-800°C	15		4.87	1.53	0.77	TaC_{y} , W, Ta_2O_5	4.4433	0.92	14.61	31	0.50
TaC-0h-1000°C	0	1000	5.97	0.34	0.96	TaC _y	4.4528	0.98	14.52	_	_
TaC-5h-1000°C	5		4.98	1.33	0.79	TaC _y , W	4.4344	0.87	14.70	61	0.22
TaC-10h-1000°C	10		4.54	1.84	0.72	TaC _y , W, Ta ₂ O ₅	4.4277	0.83	14.77	48	0.24
TaC-15h-1000°C	15		4.40	2.00	0.69	TaC _y , W, Ta ₂ O ₅	4.4269	0.82	14.77	38	0.25
TaC-0h-1200°C	0	1200	5.93	0.38	0.95	TaC _y	4.4524	0.98	14.52	_	_
TaC-5h-1200°C	5		4.91	1.40	0.78	TaC _y , W	4.4288	0.84	14.75	_	0.01
TaC-10h-1200°C	10		4.21	2.17	0.66	$TaC_{y}, W, Ta_{2}C, \zeta-Ta_{4}C_{3-x}$	4.4229	0.80	14.81	90	0.05
TaC-15h-1200°C	15		3.71	2.69	0.58	$TaC_{y}, W, Ta_{2}C, \zeta-Ta_{4}C_{3-x}$	4.4222	0.79	14.82	64	0.09
TaC-0h-1400°C	0	1400	5.86	0.45	0.94	TaC _y	4.4525	0.98	14.52	_	_
TaC-5h-1400°C	5		4.85	1.46	0.77	TaC _y , W	4.4271	0.82	14.77	_	0.00
TaC-10h-1400°C	10		4.09	2.29	0.64	TaC _y , W, Ta ₂ C, ζ -Ta ₄ C _{3-x}	4.4219	0.79	14.82	118	0.04
TaC-15h-1400°C	15		3.56	2.84	0.56	$TaC_{y}, W, Ta_{2}C, \zeta-Ta_{4}C_{3-x}$	4.4222	0.79	14.82	97	0.08

Таблица 1. Химический и фазовый состав микро- и нанопорошков TaC до и после вакуумного отжига, период решетки, состав, плотность, средний размер OKP и величина микродеформаций кубической фазы TaC_v

1086

* *z* – молярное отношение C_{fix}/Та в системе Та−С. ** 0.71 ≤ *y* ≤ 1.00 – состав кубической фазы TaC_y, рассчитанный по периоду решетки a_{B1} , используя зависимость $a_{B1}(y) = 0.43256 + 0.00869y + 0.00441y^2$ [14].

1087

мых в данной работе порошков; сохранив свою однофазность, он все же претерпел небольшие изменения, о которых свидетельствуют более узкие дифракционные отражения с отчетливо наблюдаемым расщеплением $CuK_{\alpha l, 2}$ – дублетов в малых углах, начиная с рефлекса (022), что свидетельствует о высокой степени гомогенности карбида и крупнозернистости порошка. Отжиг также спровоцировал небольшое, но заметное изменение периода решетки (табл. 1), которое, скорее всего, обусловлено изменением состава карбида тантала, а точнее, уменьшением содержания в нем углерода [13, 14]. Из нанопорошков ТаС наиболее устойчивым к нагреву, как и предполагалось, оказался нанопорошок TaC-5h с наибольшим средним размером наночастиц. Согласно рентгенограммам (рис. 1), нанопорошок TaC-5h после отжига сохранил кубическую фазу ТаС, в полном объеме, но при этом существенно изменился ее состав у и значительно увеличился размер частиц, о чем свидетельствуют очень узкие и хорошо различимые дифракционные отражения (рис. 1б), а также уменьшение периода решетки (табл. 1). После отжига на рентгенограммах нанопорошков (рис. 1б) исчезают отражения примесного WC, и вместо них появляются линии W (пр. гр. Im-3m) вследствие полного обезуглероживания карбида, как показано в работе [8]. С уменьшением размера частиц нанопорошков ТаС их нагрев приводит к более значительным изменениям. Нанопорошки TaC-10h и TaC-15h после нагрева в вакууме до 1400°С, судя по рентгенограммам (рис. 1б), становятся не только крупнозернистыми, но и многофазными, особенно ТаС-15h-1400°С, в котором содержание кубической фазы TaC_v в ~2 раза меньше, чем образовавшейся вместо нее гексагональной фазы Ta₂C (пр. гр. $P6_3/mmc$).

Рассмотрим более детально нагрев нанопорошков на примере TaC-15h с минимальным средним размером частиц из исследуемых в данной работе порошков и претерпевшего наибольшие изменения в результате отжига в вакууме при 1400°C (рис. 1, табл. 1).

Нагрев нанопорошка TaC-15h в вакууме до 600°С не приводит к изменению его фазового состава, а сопровождается только едва заметным сужением рентгеновских рефлексов (рис. 2), анализ уширения которых свидетельствует о незначительном увеличении среднего размера OKP D_X и весьма существенном уменьшении величины микродеформаций ε (табл. 1). Аналогичная картина наблюдается и для двух других нанопорошков TaC-5h и TaC-10h.

Повышение температуры отжига до 800°С сопровождается не только сужением дифракционных линий, обусловленным увеличением D_X и уменьшением ε (табл. 1), но и появлением в составе нанопорошков оксида тантала, о чем свидетельствуют слабые отражения фазы Ta_2O_5 (пр. гр. *Amm2*) на рентгенограмме порошка TaC-15h-800°С (рис. 2). Появление Ta_2O_5 вполне ожидаемо, поскольку практически весь содержащийся в нанопорошках кислород находится в хемосорбированном состоянии [7], а взаимодействие кислорода с карбидом тантала при температурах от 800°С и выше приводит к образованию оксида Ta_2O_5 [15] и сопровождается выделением СО или CO_2 , в зависимости от соотношения С/О, приводя к обезуглероживанию этих порошков.

На рис. 3 приведены зависимости содержания общего углерода С_{total} (рис. 3а) и общего кислорода О_{total} (рис. 3б) в порошках ТаС от температуры их отжига в вакууме, которые наглядно демонстрируют обезуглероживание этих порошков, вызванное их нагревом и кислородом, содержащимся в них. При нагреве порошков ТаС в вакууме адсорбированный кислород взаимодействует как со свободным углеродом, присутствующим в них, так и со связанным в ТаС и в примесном WC, обнаруженном в нанопорошках. После отжига в вакууме при температурах 800°С и выше свободный углерод во всех исследуемых порошках ТаС отсутствует, а WC, вследствие обезуглероживания, частично (в TaC-10h-800°С) или полностью (в TaC-15h-800°С) переходит в W (табл. 1).

На рентгенограммах нанопорошков ТаС после отжига в вакууме при 1000°С дифракционные линии WC отсутствуют, а вместо них появляются слабые рефлексы фазы W. Дифракционные рефлексы основной фазы ТаС заметно сужаются вследствие роста наночастиц и уменьшения величины микродеформаций, а также немного смещаются вдоль оси 20 из-за уменьшения периода решетки *а*_{*B*1}, обусловленного, скорее всего, изменением состава у карбида ТаС, (табл. 1). На рентгенограммах порошков TaC-10h-1000°С и TaC-15h-1000°С наряду с дифракционными отражениями фаз TaC и W, все еще наблюдаются слабые рефлексы фазы Та₂О₅. Количественный фазовый анализ показал, что содержание оксидной фазы в порошках после отжига при 1000°С стало меньше, чем в тех же самых порошках, но отожженных при 800°С. Проведенные в широком интервале температур и давлений термодинамические расчеты для систем Ta₂O₅-TaC [7] и Ta₂O₅-C [16] подтверждают возможность восстановления оксида в вакууме не только свободным, но и связанным углеродом, что объясняет отсутствие (в ТаС-5h-1000°С) или уменьшение количества оксидной фазы в отожженных при 1000°С порошках (TaC-10h-1000°С и TaC-15h-1000°С).

Рис. 2. Рентгенограммы нанопорошка TaC-15h после отжига в вакууме при различных температурах: *1* – 600, *2* – 800, *3* – 1200, *4* – 1400°С. На спектрах отмечены только наиболее интенсивные отражения присутствующих фаз.

Рис. 3. Влияние температуры вакуумного отжига на химический состав порошков TaC: а – содержание общего углерода C_{total} ; б – содержание общего кислорода O_{total} ; 1 - TaC-0h, 2 - TaC-5h, 3 - TaC-10h, 4 - TaC-15h.

Увеличение температуры отжига до 1200°С способствует сильному обезуглероживанию нанопорошков ТаС, вследствие которого меняется не только состав у кубической фазы ТаС, но и, в случае нанопорошков TaC-10h и TaC-15h, их фазовый состав (табл. 1). На рентгенограмме порошка TaC-15h-1200°C больше не наблюдается рефлексов фазы Та₂O₅, зато наряду с дифракционными отражениями фаз ТаС и W появились более интенсивные рефлексы гексагональной фазы Та₂С, а также слабые рефлексы тригональной фазы ζ -Та₄С_{3-x} (пр. гр. *R*-3*m*), условия образования которой и структура подробно описаны в работе [17]. Такое же разнообразие фаз наблюдается и в порошке TaC-10h-1200°C, но соотношение между этими фазами иное. Если в порошке TaC-10h-1200°С содержится более 70 мас. % TaC_y , а на фазу Ta₂C приходится \sim 16 мас. %, то в порошке TaC-15h-1200°C содержится более 50 мас. % Та₂С и только ~35 мас. % ТаС_v. В нанопорошке ТаС-5h, как и в микрокристаллическом TaC-0h, после отжига при 1200°С кубическая фаза ТаС, сохраняется в полном объеме, однако меняется ее состав у (табл. 1). Наряду с изменением состава, вакуумный отжиг при 1200°С, согласно анализу уширения дифракционных отражений, также приводит к значительному росту частиц нанопорошков ТаС и почти полному исчезновению в них микродеформаций (табл. 1). Узкие и хорошо различимые дифракционные отражения кубической фазы TaC_v на рентгенограмме порошка TaC-5h-1200°С свидетельствуют о его крупнозернистости $(D_{\rm X} > 150$ нм). По уширению дифракционных отражений кубической фазы ТаС, на рентгенограммах порошков TaC-10h-1200°С и TaC-15h-1200°С

(рис. 2) удалось определить D_X и є (табл. 1), однако, эти величины могут быть занижены, поскольку данные порошки многофазны и близко расположенные, а местами накладывающиеся линии тригональной фазы ζ -Та₄С_{3-х} вносят дополнительный вклад в уширение линий кубической фазы и тем самым уменьшают рассчитанный размер ОКР. При повышении температуры отжига порошков ТаС в вакууме до 1400°С наблюдается похожая картина, но с еще большим обезуглероживанием и ростом частиц порошков (рис. 16, рис. 2, табл. 1).

На рис. 4 изображены зависимости удельной поверхности S_{BET} и определенного по этой величине среднего размера частиц D_{BET} порошков TaC от температуры их отжига в вакууме. На них отчетливо видно, что микрокристаллический порошок TaC-0h на фоне нанокристаллических во всем интервале температур отжига практически не претерпевает никаких изменений, в то время как нанопорошки резко деградируют при повышении температуры отжига и становятся микрокристаллическими уже после отжига при 1200°C.

Исследование морфологии и оценка среднего размера частиц нанопорошков TaC до и после вакуумного отжига с помощью сканирующей электронной микроскопии (СЭМ) подтвердило предположения о росте частиц в результате отжига, сделанные на основе данных рентгеновской дифракции и метода БЭТ. В качестве иллюстрации на рис. 5 представлены СЭМ-изображения нанопорошка TaC-15h после отжига при температурах 800, 1000, 1200 и 1400°С. Вакуумный отжиг TaC-15h при температуре 800°С уже приводит к видимым изменениям размера и формы его частиц, КУРЛОВ и др.

Рис. 4. Влияние температуры вакуумного отжига на дисперсность порошков TaC: а – удельная поверхность S_{BET} , измеренная методом БЭТ; б – средний размер частиц D_{BET} , рассчитанный по удельной поверхности; 1 – TaC-0h, 2 – TaC-5h, 3 – TaC-10h, 4 – TaC-15h.

Рис. 5. СЭМ-изображения нанопорошка TaC-15h после вакуумного отжига при 800 (а), 1000 (б), 1200 (в) и 1400°С (г).

которые в отличие от частиц нанопорошка до отжига (рис. 2г [7]) имеют большие размеры, десятки нанометров, но так же, как и в исходном нанопорошке, имеют округлую форму и объединены в крупные рыхлые агрегаты с размерами до нескольких микрометров (рис. 5а). После вакуум-

ного отжига при 1000°С в порошке TaC-15h-1000°С все меньше наблюдается отдельных наночастиц и больше крупных агрегатов, образованных уже сросшимися между собой, но еще различимыми по форме округлыми частицами размером от нескольких десятков до сотен нанометров (рис. 5б). Повышение температуры отжига до 1200°С приводит к спеканию наночастиц и образованию вместо рыхлых агрегатов крупных пористых частиц (рис. 5в). Во время отжига в вакууме при 1400°С нанопорошок TaC-15h превращается в микрокристаллический TaC-15h-1400°C, о чем свидетельствует рис. 5г, на котором отчетливо видны крупные плотные частицы размером несколько микрометров, образовавшиеся за счет коалесценции наночастиц. Похожая картина наблюдается и для двух других нанопорошков TaC-5h и TaC-10h.

Следует отметить, что величины среднего размера частиц исходных нанопорошков ТаС и отожженных при температурах до 800°С, определенные по уширению дифракционных отражений, методом БЭТ и с помощью СЭМ, хорошо согласуются между собой. Однако, средние размеры частиц нанопорошков ТаС после отжига при температуре 1200°С и выше, определенные с помощью СЭМ, как минимум, на порядок превышают величины D_{χ} , полученные по уширению рефлексов, а также отличаются от размеров D_{BET} , рассчитанных по удельной поверхности порошков S_{вет}. Это объясняется тем, что на СЭМ-изображениях наблюдаются частицы порошков, форма которых далека от сферической, и, кроме того, они могут быть многофазными, как в случае отжига нанопорошков TaC-10h и TaC-15h, а для расчета D_{BFT} бралась удельная поверхность всего порошка и предполагалось, что он состоит только из одинаковых шарообразных однофазных частиц с плотностью TaC. Оценка средних размеров OKP D_X также осуществлялась только для кубической фазы ТаС,, и на рентгенограммах многофазных порошков близко расположенные дифракционные рефлексы разных фаз накладывались, внося дополнительный вклад в уширение дифракционных линий ТаС_у, тем самым искажая истинные размеры ОКР. Кроме этого, наблюдаемые с помощью СЭМ отдельные частицы порошка могут быть образованы более мелкими тесно граничащими кристаллитами, но не различимыми на СЭМ-изображениях. К тому же, дифракционный метод имеет ограничения и не годится для оценки размеров кристаллитов крупнее 150 нм.

Таким образом, экспериментально изучено влияние температуры вакуумного отжига на химический и фазовый состав, средний размер частиц и величину остаточных микродеформаций микро- и нанокристаллических порошков TaC. Показано, что, нагрев порошков TaC в вакууме, как и предполагалось, сопровождается их обезуглероживанием в результате взаимодействия примесного кислорода с углеродом карбида. Присутствие в нанопорошках ТаС после отжига в вакууме при 800 и 1000°С небольшого количества фазы Ta₂O₅ свидетельствует о том, что большая часть примесного кислорода находится в них в хемосорбированном виде. После вакуумного отжига нанопорошков ТаС при 1200 и 1400°С оксидная фаза Та₂O₅ исчезает, а значительное обезуглероживание ТаС, вследствие десорбции хемосорбированного кислорода в виде СО и СО₂, приводит к изменению состава у карбида ТаС_v и даже фазового состава порошка, обусловленное появлением наряду с кубическим TaC_{ν} фаз Ta_2C и ζ - $Ta_4C_{3-\kappa}$ в том случае, когда потери углерода приводят к пересечению нижней границы области гомогенности кубической фазы ТаС,. Кроме этого, нагрев порошков ТаС в вакууме приводит к росту их частиц и уменьшению величины микродеформаций. Чем меньше средний размер частиц в порошке, тем более значительные изменения он претерпевает при нагреве в вакууме. Нагрев нанопорошков ТаС в вакууме до 1200°С и выше приводит к полному исчезновению в них остаточных микродеформаций и увеличению среднего размера частиц на несколько порядков, в результате чеони становятся микрокристаллическими. го Таким образом, полученные в данной работе экспериментальные результаты подтвердили выдвинутые в работе [7] предположения о возможной деградации нанопорошков TaC при нагреве в вакууме.

Авторы благодарят Л.Ю. Булдакову за помощь в определении содержания углерода в исследованных порошках. Исследование выполнено в соответствии с государственным заданием ИХТТ УрО РАН (номер государственного учета НИ-ОКТР АААА-А19-119031890029-7).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тот Л*. Карбиды и нитриды переходных металлов. Пер. с англ. М.: Мир, 1974. 294 с.
- 2. *Shabalin I.L.* Tantalum Carbides. In: Ultra-High Temperature Materials II. Springer, Dordrecht, 2019. PP. 9–144.
- 3. Garcia J., Cipres V.C., Blomqvist A., Kaplan B. // Int. J. Refract. Met. Hard Mater. 2019. V. 80. P. 40.
- 4. *Khaleghi E., Lin Y.-S., Meyers M.A., Olevsky E.A. //* Scripta Mater. 2010. V. 63. P. 577.
- Feng L., Lee S.-H., Yoon B.-L. // Ceram. Int. 2015. V. 41. P. 11637.
- 6. Gubernat A. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2391.
- 7. *Курлов А.С., Юмашева Н.Д., Данилов Д.А.* // Журн. физ. химии. 2019. Т. 93. № 3. С. 405.
- 8. Курлов А.С. // Там же. 2013. Т. 87. № 4. С. 664.

- 9. *Курлов А.С., Белькова Т.Д., Бельков А.М., Ремпель А.А.* // Неорган. материалы. 2015. Т. 51. № 12. С. 1339.
- 10. Панов В.С., Чувилин А.М. Технология и свойства спеченных твердых сплавов и изделий из них. М.: МИСИС, 2001. 428 с.
- 11. Zhang X., Hilmas G.E., Fahrenholtz W.G. // Mater. Sci. Eng. A. 2009. V. 501. P. 37.
- Kurlov A.S. // Int. J. Refract. Met. Hard Mater. 2019. V. 82. P. 317.
- Santoro G. // Trans. Met. Soc. AIME. 1963. V. 227. № 6. P. 1361.
- 14. *Kurlov A.S., Gusev A.I.* // Int. J. Refract. Met. Hard Mater. 2014. V. 46. P. 125.
- 15. Самсонов Г.В., Виницкий И.М. Тугоплавкие соединения (справочник). М.: Металлургия, 1976. 560 с.
- Севастьянов В.Г., Симоненко Е.П., Игнатов Н.А., Ежов Ю.С., Кузнецов Н.Т. // Неорган. материалы. 2010. Т. 46. № 5. С. 563.
- 17. *Gusev A.I., Kurlov A.S., Lipatnikov V.N.* // J. Solid State Chem. 2007. V. 180. № 11. P. 3234.