ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 541.183

АДСОРБЕНТЫ СО2, НАНЕСЕННЫЕ НА КАРБИД КРЕМНИЯ

© 2020 г. И. С. Портякова^{*a*}, А. В. Антипов^{*b*}, И. В. Мишин^{*a*,*}, Л. М. Кустов^{*a*,*c*,**}

^а Российская академия наук, Институт органической химии им. Н.Д. Зелинского, Москва, 119991, Россия ^bOOO "ИнХимСинтез", Москва, 119991, Россия

^сМосковский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, 119992, Россия

*e-mail: igo@ioc.ac.ru

***e-mail: lmk@ioc.ac.ru* Поступила в редакцию 20.07.2019 г. После доработки 20.07.2019 г. Принята к публикации 03.09.2019 г.

Синтезированы нанесенные на карбид кремния адсорбенты для поглощения CO_2 (Li_2ZrO_3 , Li_4SiO_4 , $CaSiO_3$, MgO, Li_2O). Адсорбенты эффективны в области средних (300–400°С) или высоких (450–750°С) температур, обладают большой динамической адсорбционной емкостью по CO_2 и повышенной скоростью адсорбции.

Ключевые слова: адсорбенты CO₂, карбид кремния, цирконаты лития и кальция, силикаты лития и кальция, оксид лития

DOI: 10.31857/S0044453720070237

В связи с угрозой глобального потепления особую актуальность приобретает проблема улавливания углекислого газа из промышленных газообразных выбросов. В настоящее время наиболее перспективными методами очистки газовых потоков от CO_2 в промышленности считаются адсорбция твердыми адсорбентами [1–13] или поглощение диоксида углерода жидкими растворами аминов [14–16]. Поскольку отходящие газы обычно нагреты, в качестве адсорбентов используют системы, такие как цирконаты, силикаты и оксиды Ca, Mg, Li, способные адсорбировать CO_2 в области средних (–400°C) или высоких (450– 750°C) температур.

Однако степень поглощения и скорость поглощения CO_2 массивными адсорбентами невелика, а их регенерация сопряжена с высокими затратами. Поэтому представляет интерес приготовление адсорбентов путем нанесения сорбирующего материала Li_2ZrO_3 , Li_4SiO_4 , $CaSiO_3$, MgO и Li_2O на различные носители. Это позволяет сформировать на поверхности носителя тонкий слой мелкодисперсного равномерно распределенного адсорбента, благодаря чему можно добиться увеличения удельной поверхности и, следовательно, адсорбционной емкости по CO_2 и снизить содержание сорбирующего материала.

Ранее [17] нами были получены эффективные нанесенные адсорбенты на карбид кремния, который практически не взаимодействует с адсорбционным слоем при температурах до 600–800°С.

Карбид кремния не имеет поверхностных функциональных групп типа гидроксильных или льюисовских центров, что создает предпосылки к формированию на поверхности карбидов высокоэффективных в адсорбции фаз стабильных цирконатов или силикатов лития и кальция, а также окислов магния и лития.

Целью данной работы было изучение структурных и адсорбционных свойств керамических адсорбентов, нанесенных на карбид кремния, который отличается высокой термической и механической стабильностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованные реактивы. В качестве исходных носителей для получения сорбентов CO₂ для высоких рабочих температур использовали:

1. Карбид кремния (SiC) марки F120 и F180 производства "Лит.Пром.Абразив" (Украина) с размером частиц 10-60 мкм, содержание SiC не менее 97%.

2. Пенокерамический материал из карбида кремния (ПК МКК), производства фирмы "Русский катализатор" (Россия) был изготовлен из ретикулированного пенополиуретана пористостью 10–20 ррі. Образующийся пенокерамический материал содержит более 95% SiC и имеет темно-серый цвет, плотность 0.3–0.5 г/см³ и пористость 80–90%. ПКМКК измельчали и для

приготовления сорбентов CO₂ использовали гранулы носителя (фракцию 0.25–0.5 мм).

3. Наноразмерный карбид кремния (ООО "ИнХимСинтез", нано-SiC 10–120 нм, площадь поверхности 59.3 м²/г) получен вакуумной термообработкой высокодисперсного состава "С + + SiO₂" с использованием силикагеля, приготовленного золь-гель-методом. Исходными веществами для получения геля-полупродукта служили водорастворимые органические вещества и эфиры кремниевой кислоты.

6. Газы CO₂ квалификации по ГОСТ 8050-85 и N₂ по ГОСТ 9293-74.

7. Активную фазу, наносимую на носители, синтезировали из нитратов, ацетатов и гидроксидов Li, Zr, Mg, Ca и SiO₂ (Aerosil), а также использовали карбонаты K и Na фирмы "Acros organics".

Кислотное травление поверхности карбида кремния. Образцы исходных карбидных носителей помещали в раствор, содержащий дистиллированную воду, этиловый спирт и 40% плавиковую кислоту в соотношении 5:1:1, и перемешивали в течение 1 ч при комнатной температуре. Далее протравленные кислотой образцы фильтровали, промывали дистиллированной водой до рН 7.0 и сушили 2 ч при 110°С. Такая процедура позволяет удалить с поверхности карбида кремния тонкую пленку оксида кремния, которая образуется при высокотемпературном (1900-2000°С) синтезе карбида кремния в атмосфере воздуха. Для приготовления адсорбентов СО₂ использовали протравленные кислотой образцы карбидов кремния.

Нанесение сорбирующих агентов. Сорбирующие агенты Li_2ZrO_3 и Li_4SiO_4 осаждали на носители по аналогии с традиционными методиками, в частности, цитратным методом [18], цитратным золь-гель-методом [19].

а) Синтез нанесенного 30%Li₂ZrO₃/SiC. В раствор Zr(NO₃)₄, приготовленный взаимодействием ZrO(NO₃)₂ · H₂O и стехиометрического количества 65%-ной азотной кислоты, при интенсивном перемешивании и 20°C загрузили карбид кремния и добавили по каплям раствор LiNO₃ из расчета Zr : Li = 1 : (0.8–2), нагрели до 80°C и упарили смесь наполовину. Далее при интенсивном перемешивании в реакционную смесь малыми порциями внесли безводную лимонную кислоту из расчета Zr : C₆H₈O₇ = 1 : (2–3) и упарили до сухого твердого остатка горчичного цвета. После сушки предшественника адсорбента при 110°C 3 ч и прокаливания 6 ч при 650° был получен адсорбент Li₂ZrO₃/SiC белого цвета.

б) Синтез нанесенного 30% Li₄SiO₄/SiC. Для приготовления цитратного комплекса лития (мольное отношение C₆H₈O₇ : Li = 1.4–3.0) навес-

ку LiOH · H₂O растворили в воде и добавили безводную лимонную кислоту (C₆H₈O₇). В полученный раствор внесли носитель — SiC и перемешивали 1 ч при 20°С. Затем в реактор прилили стехиометрическое количество раствора Аэросила-380 в воде (содержание SiO₂ в воде 20 мас. %) и при интенсивном перемешивании нагрели полученную суспензию до 80°С. Реакционную смесь упарили до сухого остатка горчичного цвета. После сушки предшественника при 110°С 3 ч и прокаливания 4 ч при 650 или 850°С был получен адсорбент Li₄SiO₄/SiC белого цвета.

Аналогичным образом из CaO и SiO₂ получали адсорбент 30%CaSiO₃/SiC.

в) Синтез нанесенных металлоксидных сорбентов на основе MgO или Li₂O цитратным способом. К суспензии носителя — SiC, прилили раствор нитрата Li (Mg) и перемешивали при нагревании от 20 до 80°C, упаривали реакционную смесь наполовину. Далее при интенсивном перемешивании в течение 20 мин в реакционную смесь маленькими порциями вносили безводную лимонную кислоту и упаривали содержимое до сухого остатка горчичного цвета. После сушки предшественника при 110°C 3 ч и прокаливании 5 ч при 400 или 650°C был получен адсорбент MgO (или Li₂O)/SiC.

Допирование полученных адсорбентов. Адсорбенты допировали двумя способами:

- допирование карбонатами калия или натрия (20% от массы адсорбирующего материала) проводили в процессе синтеза совместно с нанесением прекурсоров на носитель, сушили и прокаливали при соответствующих температурах,

- готовый прокаленный адсорбент пропитывали раствором карбоната калия или натрия (20% от массы адсорбирующего материала), влажную массу встряхивали 1 ч на вибраторе ВП 30 с частотой 1500 колебаний/мин, сушили при 110°С 2 ч и повторно прокаливали при 400°С 4 ч.

МЕТОДЫ ИССЛЕДОВАНИЙ

Сканирующая электронная микроскопия. Морфологию образцов изучали методом электронной микроскопии (FE-SEM) на электронном микроскопе Hitachi SU8000. Съемку изображений вели в режиме регистрации вторичных электронов при ускоряющем напряжении 2 кВ и рабочем расстоянии 4—5 мм. Образцы исследовались с учетом поправки на поверхностные эффекты напыления проводящего слоя. При изучении образцов методом рентгеновского микроанализа (EDS-SEM) использовали энергодисперсионный рентгеновский спектрометр Oxford Instruments X-max 80 при ускоряющем напряжении 10 кВ и рабочем расстоянии 15 мм [20].

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

Рентгенофазовый анализ. Рентгенофазовый анализ проводили на дифрактометре ДРОН-2 в следующем режиме: Си K_a -излучение (30 кВ, 30 мА), Ni-фильтр, сканирование в области 10— 60° (20) со скоростью 1 град(20)/мин.

ИК-спектроскопия. ИК-спектры образцов нанесенных адсорбентов измеряли на ИК-фурьеспектрометре Nicolet iS50 с приставкой НПВО (кристалл—алмаз). Условия измерения спектров – разрешение 4 см⁻¹, число сканирований 128.

Измерение адсорбционной емкости полученных адсорбентов по CO₂. Экспериментальное измерение адсорбционной емкости адсорбентов включало следующие этапы:

 прокаливание образцов сорбентов в муфельной печи в атмосфере воздуха при соответствующих температурах,

– декарбоксилирование образцов адсорбентов при температурах, близких к температурам разложения их карбонатов в проточном кварцевом реакторе с внутренним диаметром 7 мм. Реактор помещали в печь с электрообогревом и нагревали адсорбент 2 часа в токе азота (40 мл/мин.),

– через образец адсорбента, нагретого до соответствующей температуры, в течение 1 ч со скоростью 40 мл/мин. пропускали CO₂.

Адсорбционную емкость образцов в пересчете на массу адсорбирующего материала определяли по разнице веса реактора с загруженным образцом адсорбента до и после пропускания CO₂.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Принцип действия и морфологические особенности нанесенных адсорбентов

В основе процесса поглощения углекислого газа адсорбентами лежат обратимые реакции образования карбонатов соответствующих металлов, которые обычно протекают в тонком слое адсорбента, нанесенного на носитель, по следующим схемам:

$$Li_2ZrO_3 + CO_2 \leftrightarrow Li_2CO_3 + ZrO_2,$$
 (1)

$$Li_4SiO_4 + CO_2 \leftrightarrow Li_2CO_3 + Li_2SiO_3,$$
 (2)

$$CaSiO_3 + CO_2 \leftrightarrow CaCO_3 + SiO_2, \qquad (3)$$

$$MgO + CO_2 \leftrightarrow MgCO_3,$$
 (4)

$$Li_2O + CO_2 \leftrightarrow Li_2CO_3.$$
 (5)

Несмотря на близость этих схем, степень поглощения оксида углерода зависит от доступности катионов металла в процессе сорбции, которая определяется не только реакционной способностью катионов, но и особенностями диффузии на поверхности адсорбента. Поглощение углекислого газа адсорбирующим материалом происходит благодаря диффузии ионов металла на по-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

верхность частицы, где при высоких температурах образуется твердый непроницаемый слой карбоната металла, диффузия CO₂ в массу частицы становится затруднительной, и реакция характеризуется чрезвычайно медленной кинетикой поглощения. В результате значительная часть адсорбента в ядре частицы не вовлекается в процесс адсорбции.

На рис. 1 приведены изображения карбида кремния и адсорбента $30\% \text{ Li}_2 \text{ZrO}_3/\text{SiC}$, зарегистрированные на электронном микроскопе. Видно, что карбид кремния образован игольчатыми кристаллами различной длины с преобладающей толщиной игл 0.1–0.2 мкм, а нанесенный адсорбент $30\% \text{Li}_2 \text{ZrO}_3/\text{SiC}$ представлен частицами цирконата лития со средним размером 0.05–0.1 мкм.

Полученные адсорбенты представляют собой гранулы, построенные по типу ядро-оболочка, где ядром являются нано- и микроразмерные частицы карбидов металлов, а оболочкой – активная фаза поглотителя CO₂, равномерно распределенная по поверхности носителя.

ФАЗОВЫЙ СОСТАВ НАНЕСЕННЫХ АДСОРБЕНТОВ

Адсорбционный слой, закрепленный на носителе, при комнатной температуре находится в рентгеноаморфном состоянии. Однако перед адсорбционными измерениями образцы адсорбентов проходят высокотемпературную обработку. Поэтому данные рентгенографического анализа образцов, предварительно прогретых при высоких температурах, могут указать на особенности формирования и фазовый состав нанесенных систем, участвующих в процессе адсорбции. Соответствующие данные приведены на рис. 2 и в табл. 1.

На рентгенограмме образца 30% CaSiO₃/SiC, прогретого при 650°С, наблюдаются интенсивные дифракционные максимумы при $2\Theta = 34.06$, 35.63 и 38.16°, характерные для карбида кремния. Дифрактограмма содержит также отражения при 25.35, 26.90 и 29.96°, указывающие на присутствие волластонита (триклинной модификации CaSiO₃). Прогревание системы при 820°С не влияет на положение и интенсивность дифракционных максимумов, что указывает на стабильность адсорбционной фазы. Максимум при 21.76° вместе с небольшим пиком при 36.4° можно отнести к кристобалиту, кубической модификации SiO₂. Присутствие кристобалита можно объяснить разрушением небольшой части карбида кремния или CaSiO₃. Таким образом, адсорбционная фаза этого образца представляет собой кристаллический силикат кальция.

Рис. 1. Изображения микроструктуры образцов а) SiC-F180, б) 30%Li₂ZrO₃/SiC-F180, полученные на электронном микроскопе.

На дифрактограмме образца 30% Li₂ZrO₃/SiC, прогретого при 650°C, видны максимумы, связанные с присутствием носителя, и несколько слабых отражений, которые можно отнести к нестехиометрическим оксидам циркония. Можно предположить, что активная фаза в этом образце представлена рентгеноаморфным цирконатом лития. Прогревание системы при 820°C не изменяет дифракционную картину.

Дифрактограмма образца 30% Li₄SiO₄/SiC, прогретого при 820°C, содержит отражения, характерные для карбида кремния, а также максимумы при $2\Theta = 18.84$, 26.92, 33.00 и 38.6°, указывающие на присутствие ромбической модификации Li₂SiO₃. В небольших количествах присутствует также кристобалит (21.73°). Очевидно, активная

Рис. 2. Рентгенограммы адсорбентов: CaSiO₃/SiC (1), Li₂ZrO₃/SiC (2), Li₄SiO₄/SiC (3), Li₂O/SiC (4) и MgO/SiC (5).

адсорбционная фаза этой системы ассоциирована с кристаллическим силикатом лития.

В образце 30% Li₂O/SiC после прокаливания при 820°C появляются отражения, соответствующие присутствию двух фаз силиката лития. Ромбическую фазу Li₂SiO₃ можно идентифицировать по отражениям при 2 Θ = 18.91, 27.00, 33.05 и 38.52°, а моноклинную модификацию Li₄SiO₄ по отражениям при 22.47, 24.20, 34.78 и 49.38°(2 Θ). Очевидно, кристаллические фазы силиката лития являются активными компонентами адсорбционной системы.

На рентгенограмме образца MgO/SiC, прогретого при 670°С, наблюдаются максимумы, связанные с присутствием носителя SiC, и двух фаз оксида кремния — кристобалита (21.91°) и кварца (26.61°), а также кубической модификации оксида магния (42.86° 2Θ). Можно предположить, что при высокотемпературной обработке часть носителя разрушается, но оксиды кремния не взаимодействуют с оксидом магния и образуют самостоятельные фазы. Оксиды кремния являются в данной системе балластными компонентами, а активность в сорбции проявляет оксид магния.

СОРБЦИОННЫЕ СВОЙСТВА АДСОРБЕНТОВ

Система Li₂ZrO₃/SiC является одним из эффективных и перспективных адсорбирующих соединений, способным поглощать CO₂ в температурном интервале (450–550°C) и выдерживать много циклов сорбции/десорбции CO₂ [3, 4, 21– 23]. Согласно рентгенографическим данным, цирконат лития скорее всего присутствует на поверхности носителя в виде рентгеноаморфных соединений, благодаря которым ионы лития обладают большой подвижностью. Поглощение углекислого газа цирконатом лития с образованием Li_2CO_3 происходит благодаря диффузии подвижных ионов лития на поверхность частицы, где при высоких температурах образуется твердый непроницаемый слой Li_2CO_3 , диффузия CO_2 в массу частицы становится затруднительной, и реакция характеризуется чрезвычайно медленной скоростью поглощения. В результате, значительная часть адсорбента не вовлекается в процесс адсорбции [1, 22–24]. Аналогичное явление характерно для всех применяемых массивных сорбирующих материалов.

В табл. 2 собраны данные по адсорбции СО₂ цирконатом лития, нанесенным на карбид кремния. Полученные нами адсорбенты 30% Li₂ZrO₃/SiC демонстрирует сорбционную активность на уровне лучших известных из литературы образцов сорбентов – 23.5–27.0%. Так, при теоретической емкости 28 мас. % наблюдаемое поглощение составляет, как правило, 11-13% при 500-700°С за 1 ч [1]. Лучший результат достигает 27% для нанодиспергированного образца Li₂ZrO₃/SiC [3, 24, 25]. В настоящей работе высокую эффективность поглощения CO₂ цирконатом лития можно объяснить тем, что адсорбирующий материал равномерно распределен на большой поверхности носителя и в высокотемпературных условиях не поддается значительному спеканию.

Для уменьшения экранирующего влияния непроницаемого слоя карбоната лития на процесс адсорбции предложено вводить в адсорбенты легирующие добавки окислов или карбонатов металлов [2, 4, 26–31]. Литературные данные указывают на значительное увеличение сорбции СО₂ при допировании цирконата лития, например, карбонатами калия, натрия, иттрия, но механизм допирующего действия остается до конца невыясненным. Предполагается, что в процессе сорбции при температуре 500° C Li₂CO₃ и K₂CO₃ образуют эвтектическую смесь (расплав солей), которая облегчает диффузию СО₂ к глубинным слоям сорбента [1, 23, 30]. Кроме того, если сорбция СО₂ осуществляется в присутствии водяного пара, то из карбоната натрия может образовываться бикарбонат натрия, который поглощает в 2 раза больше CO_2 по сравнению с Na_2CO_3 [2]. Но и в этом случае в адсорбции СО₂ участвует только поверхность частицы сорбента, а внутренние слои адсорбционной фазы остаются недоступными для реагентов.

 Li_4SiO_4 — эффективный высокотемпературный адсорбент, работающий в интервале температур 450—700°С, но высокая температура, необходимая для его регенерации (>800°С), способствует спеканию адсорбирующего материала в наружном слое. Теоретическая емкость (36.7 мас. %) и наблюдаемая способность к поглощению CO₂ этого

Таблица 1.	Состав адо	сорбционного	о слоя, нан	есенного
в количеств	е 30 мас. 9	% на карбид к	ремния	

Состав адсорбентов	T, °C	Состав
CaSiO ₃ /SiC	650 820	Волластонит (CaSiO ₃)
Li ₂ ZrO ₃ /SiC	650 820	Следы ZrO ₂
Li ₄ SiO ₄ /SiC	820	Li ₂ SiO ₃
Li ₂ O/SiC	820	Li ₄ SiO ₄ , Li ₂ SiO ₃
MgO/SiC	650	MgO,

Обозначения: *Т* – температура прокаливания, состав – состав адсорбционной фазы по данным рентгенографического анализа.

Таблица 2. Сорбционные свойства цирконата лития, нанесенного на носители (прокаливание – 650° C, 6 ч, десорбция CO₂ – 550° C, 2 ч)

Адсорбент	$T_{\rm сорбц}, °C$	$ au_{CO_2},$ ч	$E_{\mathrm{CO}_2}, \%$
30%Li ₂ ZrO ₃ /SiC F120	550	1	23.5
	400	0.5	7.2
	400	1	9.4
	400	1.5	12.4
30% Li ₂ ZrO ₃ /SiC-	550	1	24.6
наноразмерный	400	1	9.2
30%Li ₂ ZrO ₃ /SiC-	550	1	24.6
пористый	550	1	26.1*
	550	1	27.0**
	550	0.5	11.6
	400	0.5	7.8
	300	0.5	5.4

Обозначения: $T_{\rm сорбц}$ – температура сорбции CO₂, $\tau_{\rm CO_2}$ – время сорбции CO₂, $E_{\rm CO_2}$ – сорбционная емкость по CO₂, * – допирован 20% K₂CO₃, ** – допирован 20% K₂CO₃ + пары H₂O 22%.

сорбента (27–28 мас. % [1]) достаточно велики. Работы по улучшению сорбционного поведения силиката лития направлены на синтез нанодисперсных частиц Li₄SiO₄ [7, 8, 32–35], а также легированию адсорбента натрием, калием, алюминием и железом [36, 37]. Нам удалось приблизить поглотительную эффективность сорбента 30% Li₄SiO₄/SiC к лучшим нанодисперсным образцам (23.5–26.7 мас. %), известным из литературы.

В табл. 3 приведены данные, позволяющие проследить, как температура прокаливания и условия десорбции влияют на эффективность ад-

Таблица 3. Сорбционные свойства силиката лития, нанесенного на карбид кремния (время прокаливания – 6 ч, время десорбции $CO_2 - 2$ ч, сорбция $CO_2 - 550^{\circ}$ С, 1 ч)

Адсорбент	<i>T</i> , °C	$T_{\text{десорбц}}, ^{\circ}\text{C}$	$E_{\mathrm{CO}_2}, \%$
30%Li ₄ SiO ₄ /SiC-пори-	675	550	23.2
стый			26.6*
	850	550	20.4
			21.6*
	850	750	28.4
30%Li ₄ SiO ₄ /SiC-нано-			21.8
размерный			
	675	550	24.5*
			26.7**

Обозначения: T – температура прокаливания, $T_{\text{десорбц}}$ – температура десорбции CO₂,* –допирован 20% K₂CO₃, ** – допирован 20% K₂CO₃ + пары H₂O 22%.

Таблица 4. Сорбционные свойства силиката кальция, нанесенного на карбид кремния (время прокаливания — 6 ч, время десорбции $CO_2 - 2$ ч, сорбция $CO_2 - 400^{\circ}$ С, 1 ч)

Адсорбент	T, °C	<i>Т</i> _{десорбц} , °С	$E_{\mathrm{CO}_2}, \%$
30%CaSiO ₃ /SiC- пористый	700 850 900 850	550 850	12.4 15.5 17.3 22.9 — первый цикл, 20.9 — второй 18.7 — третий 16.2 — четвертый 13.3 — пятый 24.8* 26.4**

* Допирован 20% К₂СО₃

** Допирован 20% К₂СО₃ + пары Н₂О 22%

сорбции CO₂. Повышение температуры десорбции от 550 до 750°C увеличивает сорбционную емкость благодаря более полному освобождению адсорбционных центров. Температура прокаливания 675°C оказалась достаточной для формирования оптимальной морфологии поверхности.

Не очень высокая сорбционная емкость $CaSiO_3$ (табл. 4) значительно возрастает при увеличении температуры прокаливания. Известно, что полное разложение $CaCO_3$ возможно только при температурах около 1000°С и, очевидно, использование более низких температур десорбции (800°С) недостаточно для полного разложения карбоната кальция. Согласно данным, приведенным в табл. 4, сорбционная емкость образцов 30%Са-

SiO₃/SiC, регенерируемых при 850°С, падает от 22.9 до 13.3% к пятому циклу. Аналогичная зависимость, связанная со снижением сорбционной емкости при увеличении числа циклов при проведении сорбции из потока газа, состоящего из 15% CO₂ и 85% N₂, описана в литературе [38]. К достоинствам силиката кальция можно отнести небольшую стоимость и высокую эффективность сорбции при температурах от 400 до 800°С. Потеря поглотительной способности, вероятно, связана с процессами спекания и не полным разложением карбоната кальция.

Данные табл. 5 показывают, что $\text{Li}_2\text{O}/\text{SiC}$, прокаленный при 820°С, имеет высокую емкость адсорбции CO₂ (65–66%). На его поверхности наблюдается образование двух модификаций силиката лития Li₄SiO₄ и Li₂SiO₃, которые сами являются хорошими адсорбентами.

Температура сорбции 720°С обеспечивает максимальную степень поглощения углекислого газа. Это согласуется с данными термогравиметрического исследования поглощения СО2 массивным коммерческим оксидом лития [39], которое показало, что в интервале температур 190-400°С поглощение СО₂ массивными частицами Li₂O составляет около 14 мас. %, а начиная с 600°С оно резко возрастает до 109 мас.% за 2 ч. Скачок адсорбционного поглощения СО₂ объясняется мощным ускорением при 530-700°С миграции лития на поверхность частицы с образованием карбоната лития. Поверхностный слой значительно разрыхляется и образует глубокие трещины на поверхности частицы, меняя ее морфологию, благодаря чему также увеличиваются возможности для физической сорбции СО₂ и его доступа к более глубоким слоям частицы.

Допирование K₂CO₃ и парами воды существенно повышает сорбционные мощности оксида лития (табл. 5).

В табл. 6 представлены данные, полученные при адсорбции CO_2 на MgO, нанесенном на пористый и наноразмерный образцы карбида кремния. Адсорбция CO_2 проведенная при 150 и 400°С, показала, что этот адсорбент поглощает CO_2 , в количествах до 65 мас. %. Согласно рентгенографическим данным, на поверхности карбида кремния, прокаленного при 650°С, присутствуют тонко диспергированные оксиды магния с размером кристаллитов около 150 Å.

Образцы 30% MgO/SiC показали высокую сорбционную емкость (до ~66%) и стабильность, поскольку при циклическом использовании образца снижение сорбционной емкости к 5–6 циклу составило около 5% (табл. 6.). Допирование MgO/SiC карбонатом калия и парами воды повышает его сорбционную способность.

Наиболее близкий к нашим исследованиям вариант — нанесенный адсорбент 31.7 и 33.8% MgO/Al₂O₃ [40] имеет крайне низкую сорбционную емкость (0.5 ммоль CO₂/г Al₂O₃), а массивный коммерческий пористый MgO [12] с размером частиц <44 мкм при 300°С и давлении CO₂ 20–40 бар в присутствии паров воды прореагировал до MgCO₃ на 70–80%. Авторы [12, 41] считают, что регулированием парциального давления воды можно даже контролировать процесс карбонизации MgO. В отсутствие водяного пара [40] образуется структура MgO · 2MgCO₃, снижающая поглощение CO₂, но при >350°С в присутствии паров воды она разлагается до MgO.

Поверхностные свойства MgO (площадь поверхности, пористость) также играют важную роль в процессе адсорбции СО2. Так, мезопористый MgO, полученный гидротермальным синтезом [42] с использованием мочевины и NaNO₃/NaNO₂ в качестве промотора, имел адсорбционную емкость по СО₂ 60-88 мас. % при 325°С. Его удельная поверхность составляла 180- $230 \text{ м}^2/\Gamma$, объем пор 0.39–0.49 см³/г и размер мезопор 5-7 нм. Эффективное поглощение таким адсорбентом достигается, очевидно, за счет развития системы мезопор в текстуре оксида магния, тогда как в наших нанесенных адсорбентах высокая емкость по СО₂ (до ≈66 мас. %) получена благодаря тонкослойному распределению микроразмерного MgO на поверхности карбида кремния.

Представленные в табл. 1—6 результаты свидетельствуют о получении нового класса эффективных нанесенных на карбид кремния высокотемпературных адсорбентов CO_2 . Высокая адсорбционная емкость образцов является косвенным подтверждением формирования на поверхности носителей высокоэффективных в хемосорбции CO_2 фаз сорбирующих материалов.

Формирование карбонатов при адсорбции CO₂ подтверждается ИК-спектроскопическими наблюдениями за процессом адсорбции CO₂.

Важным вопросом практического использования адсорбентов является их способность выдерживать несколько циклов адсорбции, чередующейся с регенерацией. В ИК-спектре образца 30% Li₂ZrO₃ (рис. 3, кривая 1) наблюдаются интенсивные полосы поглощения при 1493 и 1434 см⁻¹, характерные для карбонат-иона. Интенсивности этих полос поглощения существенно уменьшаются после обработки в токе азота при 650°С в течение 0.5 ч (кривая 2). Это свидетельствует о быстрой частичной регенерации адсорбента уже при 650°С, температуре, которая всего на 100°С выше температуры адсорбции СО₂. Если дополнительно выдержать образец в токе азота при 700°C в течение еще 0.5 ч, то эти полосы поглощения исчезают из спектра. Повторная ад-

Таблица 5. Сорбционные свойства Li ₂ O, нанесенного
карбид кремния (время прокаливания – 5 ч, темпера-
гура прокаливания — 820°С, время десорбции – 2 ч,
время сорбции — 1 ч)

Адсорбент	<i>Т</i> _{десорбц} , °С	$T_{\rm сорбц}, ^{\circ}{ m C}$	$E_{\mathrm{CO}_2}, \%$
30%Li ₂ O/SiC-нанораз-			40.8
мерный	400	400	49.4*
			53.6**
	720	720	65.8
0%Li ₂ O/SiC-пористый	550	400 (0.5 ч)	28.6
	550	400	39.8
	650	650	40.2
			66.1*
	720	720	69.4*
			73.3**
20%Li ₂ O/SiC-пористый	650	650	39.4
10%Li ₂ O/SiC-пористый	650	650	41.1

* Допирован 20% K₂CO₃.

** Допирован 20% K₂CO₃ + пары H₂O.

Таблица 6. Сорбционные свойства MgO, нанесенного на SiC (время прокаливания – 5 ч, время десорбции – 2 ч, время сорбции – 1 ч)

Адсорбент	<i>Т</i> , °С	<i>Т</i> _{десорбц} , °С	<i>Т</i> _{сорбц} , °С	$E_{\mathrm{CO}_2},\%$
0%MgO/SiC-	670	700	150	57.9*
пористый	670	650	150	36.1
30%MgO/SiC-	670	400	400	65.8
F120	650	400	400	48.9*
	400	400	400	51.4** 29 8
30%MgO/SiC-	670	400	400	25.8 658—1-й шикл
наноразмерный	070	100		60.5 — 6-й цикл

* Допирован 20% К₂СО₃.

** Допирован 20% К₂СО₃ + пары H₂O 22%.

сорбция CO₂ приводит к практически полному воспроизведению результатов.

Таким образом, впервые синтезированы адсорбенты CO_2 (Li₂ZrO₃, Li₄SiO₄, CaSiO₃, MgO, Li₂O), нанесенные на карбид кремния (нано-, микроразмерный и гранулированный пористый). Адсорбенты обладают высокой динамической адсорбционной емкостью по CO_2 , повышенной

Рис. 3. ИК-спектры образца 30%Li₂ZrO₃/SiC адсорбента: после адсорбции CO₂ при 550°C в течение 1 ч (*1*); после регенерации в токе азота при 650°C в течение 0.5 ч (*2*).

скоростью адсорбции. Адсорбенты представляют собой гранулы, построенные по типу ядро-оболочка, где ядром являются частицы карбида кремния, а оболочкой микроразмерная активная фаза поглотителя CO₂, равномерно распределенная по поверхности носителя.

Преимуществом полученных в настоящей работе нанесенных на карбид кремния высоко-(450–750°С) и среднетемпературных (300–400°С) адсорбентов, по сравнению с традиционными массивными цирконатами и силикатами лития и кальция, а также оксидами лития и магния, является экономическая целесообразность и возможность их полной регенерации в токе инертного газа при температурах, превышающих температуру адсорбции на 100–150°С.

СПИСОК ЛИТЕРАТУРЫ

- Kumar S., Saxena S.K. // Mater. Renew. Sustain. Energy. 2014. V. 3. P. 30.
 - https://doi.org/10.1007/s40243-014-0030-9
- Ramírez-Moreno M.J., Romero-Ibarra I.C., Ortiz-Landeros J., Pfeiffer H. // Alkaline and Alkaline-Earth Ceramic Oxides for CO₂ Capture, Separation and Subsequent Catalytic Chemical Conversion. Additional information is available at the end of the chapter 14. https://doi.org/10.5772/574446
- Ochoa-Fernández E., Ronning M., Grande T., Chen D. // Chem. Mater. 2006. V. 18 (6). P. 1383. https://doi.org/10.1021/cm052075d
- Xiao Q., Tang X., Liu Y. et al. // Front. Chem. Sci. Eng. 2013. V. 7 (3). P. 297. https://doi.org/10.1007/s11705-013-1346-1
- 5. *Radfarnia H.R.* // High-Temperature CO2 Sorbents and Application in the Sorption Enhanced Steam Re-

forming for Hydrogen Production. Universite LAVAL, Quebec, Canada, 2013. P. 70.

- Yi K.B., Eriksen D.O. // Separ. Sci.Technol., 2006. V. 41. № 2. P. 283. https://doi.org/10.1080/01496390500496884
- 7. Xiao Q, Liu Y., Zhong Y., Zhu W. // J. Mater. Chem.
- 2011. V. 41. № 21. P. 3838–3842. https://doi.org/10.1039/C0JM03243C
- Venegas M.J., Fregoso-Israel E., Eskamilla R., Pfeiffer H. // Ing. Eng. Chem. Res. 2007. V. 41. 46 (8). P. 2407– 2412.
 - https://doi.org/10.1021/ie061259e
- Kato M., Nakagawa K., Essaki K. et al. // Int. J. Appl. Ceram. Technol. 2005. V. 2. P.467. https://doi.org/10.1111/j.1744-7402.2005.02047.x
- 10. Kishor B.K., Reshma Y.R., Vilash H.R., Abaji G.G. // Adsorption Sci. Technol. 2012. V. 30. № 10. P. 817.
- Hassanzadeh A., Abbasian J. // Fuel. 2010. V. 89. P. 1287–1297. https://doi.org/10.1016/j.fuel.2009.11.017
- Fagerlund J., Highfield J., Zevenhoven R. // RSC Adv. 2012. V. 2. P. 10380–10393. https://doi.org/10.1039/C2RA21428H
- Duan Y., Sorescu D.C. // Phys. Rev. B. 2009. V. 79. № 1.014301.
- https://doi.org/10.1103/PhysRevB.79.014301 14. Лавренченко Г.К., Копытин А.В., Пятничко А.И., Иванов Ю.В. // Технические газы, 2011. № 1. С. 31.
- Xiao M., Liu H., Gao H., Liang Z. // J. Chem. Thermodyn. 2018. V. 122. P. 170. https://doi.org/10.1016/j.jct.2018.03.020
- Lang P., Denes F., Hegely L. // Chem. Eng. Transaction. 2017. V. 61. P. 1105. https://doi.org/10.3303/CET1761182
- Игнатов А.В., Тарасов А.Л., Кустов Л.М., Портякова И.С. Способ получения высокотемпературных адсорбентов СО₂, патент РФ № 2659256// Б.И. 2018. № 16.
- 18. Денисова Е.А., Бакланова Я.Б., Максимова Л.Г. Способ получения порошка цирконата лития, патент РФ № 2440298 // Б.И. 2012. № 2.
- Xiao Q., Liu Y., Zhong Y., Zhu W. // J. Mater. Chem. 2011. V. 21. P. 3838. https://doi.org/10.1039/C0JM03243C
- Качала В.В., Хемчян Л.Л., Кашин А.С. и др. // Успехи химии. 2013. Вып. 82. С. 648. https://doi.org/10.1070/RC2013v082n07ABEH004413
- Nakagawa K., Ohashi T. // J. Electrochem. Soc. 1998. 145. V. 4. P. 1344. https://doi.org/10.1149/1.1838462
- 22. Nakagawa K., Ohashi T. // Electrochemistry. 1999. V. 67 (6). P. 618.
- 23. Ida J., Xiong R, Lin Y.S. // Sep. Purif. Technol. 2004.
 V. 36. P. 41–51. https://doi.org/10.1016/S1383-5866(03)00151-5
- 24. *Nair B.N., Yamaguchi T., Kawamura H. et al.* // J. Amer. Ceram. Soc. 2008. V. 87 (1). P. 68–74. https://doi.org/10.1111/j.1551-2916.2004.00068.x
- 25. Ochoa-Fernandes E., Ronning M., Grande T., Chen D. // Chem. Mater. 2006. V. 18. P. 6037. https://doi.org/10.1021/cm061515d

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 94 № 7 2020

- 26. *Xiao Q., Tang X., Liu Y. et al.* // Chem. Eng. Journal. 2011. V. 174. № 1. P. 231.
- 27. Wang C., Dou B, Song Y. et al. // Ind. Eng. Chem. Res. 2014. V. 53 (32). P. 12744. https://doi.org/10.1021/ie502042p
- Pannocchia G., Puccini M., Seggiani M., Vitolo S. // Ind. Eng. Chem. Res. 2007. V. 46 (21). P. 6696. https://doi.org/10.1021/ie0616949
- Veliz-Enriquez M.Y., Gonzalez G., Pfeiffer H. // J. Solid. State Chem. 2007. V. 180 (9). P. 2485. https://doi.org/10.1016/j.jssc.2007.06.023
- Ida, J., Lin, Y.S. // Environ. Sci. Technol. 2003. V. 37. № 9. P. 1999. https://doi.org/10.1021/es0259032
- Khokhani M., Khomane R., Kulkarni B.D. // J. Sol-Gel Sci. Technol. 2012. V. 61 (2). P. 316. https://doi.org/10.1007/s10971-011-2629-y
- 32. *Khomane R.B., Sharma B.K., Saha S., Kulkarni B.D.* // Chem. Eng. Sci. 2006. V. 61. P. 3415–3418.
- Wu X., Wen Z., Xu X., Wang X., Lin J. // J. Nucl. Mater. 2009. V. 392. № 3. P. 471–475. https://doi.org/10.1016/j.jnucmat.2009.04.010
- 34. Venegas M.J., Fregoso-Israel E., Escamilla R., Pfeiffer H. // Ind. Eng. Chem. Res. 2007. V. 46. P. 2407–2412. https://doi.org/10.1021/ie061259e

- Xu H., Cheng W., Jin X. et al. // Ind. Eng. Chem. Res. 2013. V. 52. P. 1886. https://doi.org/10.1021/ie301178p
- 36. *Gauer C., Heschel W.* // J. Mater. Sci. 2006. V. 41. P. 2405.
- Korake P.V., Gaikwad A.G. // Front. Chem. Sci. Eng. 2011. V. 5. № 2. P. 215. https://doi.org/10.1007/s11705-010-1012-9
- Wang M., Lee C.G. // Energy Convers. Manage. 2009.
 V. 50. № 3. P. 636. https://doi.org/10.1016/j.enconman.2008.10.006
- 39. Mosqueda H.A., Vazquez C., Bosch P., Pfeiffer H. // Chem. Mater. 2006. V. 18. № 9. P. 2307. https://doi.org/10.1021/cm060122b
- Lee S.C., Choi B.Y., Lee T.J., Ryu C.K. // Catal. Today. 2006. V. 111 (3). P. 385–390. https://doi.org/10.1016/j.cattod.2005.10.051
- Churakov S.V., Ianuzzi M., Parrinello M. // J. Phys. Chem. B. 2004. V. 108. P. 31. P. 11567. https://doi.org/10.1021/jp037935x
- 42. Zhao X., Ji G., Liu W. et al. // Chem. Eng. J. 2018. V. 332. P. 216. https://doi.org/10.1016/j.cej.2017.09.068