СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.726.3

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ФОСФОРНОКИСЛЫХ КАТИОНИТОВ И ОСОБЕННОСТИ ИХ ВЗАИМОДЕЙСТВИЯ С КАТИОНАМИ ИНДИЯ И ГАЛЛИЯ

© 2020 г. Б. К. Радионов^{*a*}, Ю. А. Лейкин^{*b*}, А. Л. Смирнов^{*a*}, И. А. Свирский^{*a*,*}

^аУральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ^bРоссийский химико-технологический университет им. Д.И. Менделеева, Москва, Россия *e-mail: svirskill.171993@email.com

Поступила в редакцию 26.08.2019 г. После доработки 26.08.2019 г. Принята к публикации 15.10.2019 г.

С привлечением теоретического анализа проведена интерпретация колебательных спектров фосфорнокислых катионитов, выполненная на основе модельного расчета активных фрагментов ионитов и их комплексных форм с катионами металлов. Варьирование типа заместителя у атома фосфора в комплексите при спектроскопических исследованиях позволило выявить характерные особенности сорбции рассеянных элементов и определить наиболее вероятные координационные структуры формирующихся комплексов в ряду фосфорсодержащих сорбентов на полистирольной основе.

Ключевые слова: колебательные спектры, фосфорнокислые катиониты, сорбция рассеянных элементов

DOI: 10.31857/S0044453720070249

Фосфиновокислотные катиониты, как и фосфоновокислотные, представляют практический и теоретический интерес как сорбенты с высокой комплексообразующей способностью и специфичностью сорбции поливалентных металлов [1]. В первом приближении о характере координационного взаимодействия ионов индия(III) и галлия(III) с функциональными группами ионитов данного класса можно судить на основании результатов ИК-спектроскопии.

ЭКСПЕРИМЕНТАЛЬАЯ ЧАСТЬ

В качестве объектов исследования служили катиониты с фенилфосфоновыми и фенилфосфиновыми центрами, последние в фосфиновом остатке содержат алкильные и алкоксильные радикалы, в том числе с гидроксильными группами. Образцы катионитов в H- и Na-формах предельно насыщали катионами индия и галлия из сернокислых растворов их солей с равновесным значением кислотности в интервале 10^{-3} –0.5 N H₂SO₄, степень заполнения катионитов составляла 40–80% от полной обменной емкости. ИК-спектры образцов в виде суспензий в вазелиновом масле регистрировались на спектрофотометре в волновой области 4000–400 см⁻¹. На рис. 1 представлен диапазон 1800—400 см⁻¹, поскольку в дальней области спектры подобны.

В основу интерпретации ИК-спектров исследуемых катионитов положен расчет фосфиновокислотного ионогенного фрагмента

$$\frac{O}{Res - R - OH}$$

(**Res** – полистирольная матрица, R = H, OCH₃, CH₂OH, CH₂–CH(OH)–CH₂OH) аналогичный модельному расчету, ранее выполненному в валентно-силовом поле по той же программе, что и для близкой по строению фосфоновокислотной группировки [2]. Модель является в значительной степени упрощенной, так как в ходе вычислений фенильный радикал **Res** и алкильный или алкоксильный заместитель R заменен утяжеленными массами атома углерода.

Общая цель расчета — приближенная оценка изменений, возникающих в колебательных спектрах полистирольных фосфоновокислотных катионитов типа КФ-11, КФП-12 (R = OH), вызванных заменой одной кислотной группы алифатическим радикалом и нарушением характера водородных связей в резинате. Эти результаты должны также выявить на этапе изучения ком-

Рис. 1. ИК-спектры катионитов с фосфоновыми и фосфиновыми группами, насыщенных ионами Ga(III), In(III) и Cu(II); $1 - CM\Phi$ Ga-форма; $2 - C\Phi$ -3 Ga-форма; $3 - K\Phi$ -11 Ga-форма; $4 - CM\Phi$ (R'=OCH₃) In-форма; $5 - C\PhiM$ (R'=CH₂OH) In-форма; $6 - C\Phi\Gamma$ In-форма; $7 - K\Phi$ -11 (R=OH) In-форма; $8 - C\Phi$ -3 (R=H) In-форма; $9 - C\Phi$ 3 Cu-форма; $10 - CM\Phi$ Cu-форма.

плексообразования корректность переноса соответствующих выводов о природе взаимодействия рассеянных элементов при смене фосфоновокислотной группы [3] на фосфиновокислотную. Силовое поле модельного фрагмента варьировалось до удовлетворительного совпадения расчетных и экспериментальных частот.

Так как в указанных условиях сорбционного насыщения предполагается протекание сорбции с участием различных атомов активных центров и вероятностью формирования двух типов полимерных комплексов: ионного типа, образованного за счет кислотных гидроксилов в ходе ионообменного замещения протонов (тип I), и координационно-ионного ("хелатного"), реализуемого путем взаимодействия по кислотному и фосфорильному кислородам (тип II), то в основу этого расчета положены обе модели, которые отражают наиболее реальные типы координации целевых ионов металлов с ионогенными группами катионитов. В отличие от предыдущих исследований координационный вариант взаимодействия (тип III) из-за малой возможности её существования при данном уровне кислотности к анализу не привлекался. Рассматривалась половина симметричного комплекса, принимая во внимание [4]

состав соединений ионов металлов(III) с мономерной формой этилфосфоновой кислотой $(Me^{(III)}: ЭФК = 1:2)$, а влияние 2–4 молекул воды, координированных с катионом металла, как и ранее [3]. учитывалось в значениях силовых констант связей и деформации межсвязевых углов. Геометрические параметры и силовые постоянные взяты из сходных молекул фрагментов катионитов [2, 5] и некоторых известных комплексов [6]. Силовые постоянные для рассматриваемых моделей выбраны с учетом симметрии и соображений химического характера. Так, например, значения силовых констант связей различаются: $P = O(I) \gg P = O(III) > P \cdots O(II); P \cdots (II) > PO^{-}(I)$ > PO (III); PO (I) \approx PO (III) < PO (II), и кроме того, MeO (I) \approx MeO (III) < MeO (II) [7]. Силовые константы углов выбраны с учетом тех же закономерностей, принято, что $K_{OH}^{\delta}(III) > K_{OH}^{\delta}(I) \gg K_{OH}^{\delta}(II)$. Силовые постоянные растяжения связи "Me–O" для ионов In³⁺ и Ga³⁺ равны соответственно: 2.5 × $\times 10^{6}$ и 1.85×10^{6} см⁻². Последующая вариация силовых постоянных до удовлетворительного совпадения расчетных частот с экспериментальными проводилась в рамках вышеприведенных различий:

$$\operatorname{Res} - \overset{R}{\operatorname{P=O}} \underset{O-\operatorname{Me} (\operatorname{Tun} \mathbf{I}),}{\operatorname{Res}} - \overset{R}{\operatorname{P:Res}} \overset{O}{\operatorname{Res}} \underset{O}{\operatorname{He}} \underset{(\operatorname{Tun} \mathbf{II}),}{\operatorname{Res}} \overset{R}{\operatorname{Res}} - \overset{R}{\operatorname{P=O}} \overset{R}{\operatorname{Me}} \underset{OH}{\operatorname{He}} \underset{(\operatorname{Tun} \mathbf{III}).}{\operatorname{Res}}$$

Полосы поглощения колебаний фенильного кольца **Res** и валентные колебания CH_2 -групп не приведены. Ошибка расчета по приближенной модели составляет в этой области спектра v = 20-50 см⁻¹, что можно считать удовлетворительным результатом на первом этапе изучения характера изменений в фосфорильной системе при взаимодействии с ионами металлов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из сопоставления волновых чисел максимумов поглощения колебаний катионитов с фосфоновыми и фосфиновой группой (табл. 1) следует, что все колебания фосфорной составляющей перемешиваются с деформационными и неплоскими колебаниями гидроксильных групп, а положение характеристических частот существенно зависит от природы и геометрии фосфо-центра. Главным образом расхождение форм колебаний основных частот проявляется в различии интенсивностей соответствующих полос поглощения. При этом в ИК-спектрах катионитов в области деформационных колебаний СС-, СР-, РО-связей (~700–400 см⁻¹) имеется сильный фон поглощения связанный с наличием большого числа водородных связей между фосфорсодержащими и гидроксильными группами.

Результаты модельного расчета указывают на заметную близость частот колебательных спектров и форм колебаний P=O- и P–O(H)-групп у катионитов с фосфоново-(КФП-12, R = OH) и фосфиновокислотными (СМФ, R = OCH₃) центрами (табл. 1 и 2). Различие в форме и симметрии колебаний наблюдается в области 1110–900 см⁻¹. Здесь проявляется разница в интенсивности соответствующих полос поглощения и общем характере спектрального контура. Волновая область 2000–3600 см⁻¹ во всех случаях трудно интерпретируема вследствие общего широкого поглощения OH-групп и молекул вод.

Учитывая близость частот полос поглощения колебательных спектров и форм колебаний фосфоновокислотной и фосфиновокислотных групп, выводы о природе взаимодействия индия с последними сделан по аналогии с соответствующими изменениями в ИК-спектрах катионита КФП-12 и его комплексных форм [3]. Для фосфоновокислотных катионитов ($\mathbf{R} = \mathbf{OH}$) различие между колебательными спектрами ионной формы комплекса (тип I) и "хелатной" структурой

РАДИОНОВ и др.

Эксперимент		Deerrom	0	Эксперимент Расчет		0
КФП-12	КФ-11	Расчет	Отнесение	СМФ (R –РО(ОН) R')		Отнесение
1	2	3	4	5	6	7
2990 cp.	3040 3010 2990 cp.	3011 2992 2873	колебания СН-групп бензольного кольца	3040 сл. 3010 сл. 2980 ш.ср.	_	колебания СН-групп бензольного кольца колебания СН ₂ -, СН ₃ -
2800 ср. 2830 пл.	2079 Cp.	$\frac{2873}{2840}$	Q CII(CII ₂)	2830 ш.ср. ∫		ipyiii
2880 ср.ш. 2600 ср.ш.	2730 сл. 2660 сл.	2740	Q OH с H-связью коле- бания бензольного кольца	1740 1620	_	колебания воды, раз- личным образом свя- занной с матрицей катионита
1446 c.	1520 сл. 1465 ср.	1448	α CH ₂ (HCH)	1605 1485	1602 1500 1477	колебания бензольного кольца
1376 сл.	1375 cp.	1366	$\phi \operatorname{CH}_2(\operatorname{CCH})$	1420 1345	1413 1352	
1315 сл.	1310 сл.	1317	QCC, CP + ψ CH ₂ (CCH)	1310	1298 ^J	
1260 ш.ср.	1240 ш.ср.	1257	δas(OH)	~1220 пл.	1230	δОН
1220 ш.ср.	_	1240	δs(OH)	_	_	
_	_	1235	χCH ₂ (CCH)	_	_	
1165 ш.с.	1180 c.	ן 1177	Q P=O с H-связью +	~1170 ш.пл.	ן 1162	Q CC, CR(P=O)
1130 ш.с.	1155 c.	1144 J	$+\delta OH$	1135 c.o.	1152 J	<i>Q</i> Р=О с Н-связью
~1100 пл.	1135	1098	Q CC, P=O, CP	~1035 пл.	1046	Q CP, P=O
—	—	1096	Q CC, P=O, CP + ρ_S , OH	1000 ш.с	1007	$\rho OH + Q PO(H)$
~1050 пл.	~1080 c.	1042 }	$Q \operatorname{CC} + \chi \operatorname{H}_2(\operatorname{CCH})$	—	987	<i>Q</i> PO(<i>R</i> '), CP
1005 o.c.	~1015 пл.	1015	ρ _{<i>S</i>} , OH	—	—	
—	980 c.	1003 J	$Q_S PO(H) + Q CC$	—	—	
950 o.c.	955 c.	926	$Qas PO(H) + \rho as, OH$	950 c.	936	$QPO(H) + \rho OH$
845 ср.ш.	770 сл.	846	ψ CH ₂ (CCH) + \varkappa (P=O)	835 cp.	862	QCP, γ (CPO)
785 сл.	835 cp.	794	$Q CP, \gamma CCP, CPO$	800 сл.	776	<i>Q</i> C <i>R</i> ', γ (PO <i>R</i> ')
715 cp.	707	—	колебания замещенного	775	—	δCH,CC
640 сл.	650 сл.	622	бензольного кольца δ CH ₂ (CCC, CCH)	657 635	_	δ CH ₂ , CH ₃ алифатиче- ские группы ионита
575 сл.	572 cp.	552	γ (CPO, CCP, OPO)	570 пл	567	γ (OPO, PO R')
515 сл.	545 cp.	507	$\rho_{as} OH + \varkappa P = O$	550 ср.ш.	518	$\rho OH + \varkappa P=O$
475 сл.	~495 пл	481	γΟΡΟ, CPO	485 сл.	474	γ CPO, PO R '
425 сл.	443 ш.сл.	410	γ СРО, ОРО, ССР	420	416	γ СРО, РОР

Таблица 1. Волновые числа максимумов полос поглощения колебаний фосфоновых и фосфиновой групп катионитов КФП-12, КФ-11 и СМФ (см⁻¹)

Примечание: Обозначение колебаний принято в соответствии с [8].

(тип II) состоит прежде всего в более "сжатом" интервале частот колебаний P=O- и PO⁻-связей фосфоновой группы модели II ($\Delta v = 1111-1047 = 64 \text{ см}^{-1}$) по отношению к модели I ($\Delta v = 1128-1020 = 108 \text{ см}^{-1}$), а также более интенсивной полосе поглощения валентных симметричных коле-

баний Р.-О-связей (1047 см⁻¹) по сравнению с ассиметричными (1111 см⁻¹). В ИК-спектрах ионной формы (I) следует ожидать более интенсивных полос валентных Р=О-, РО⁻-колебаний (1128–1020 см⁻¹), чем полос Р–О(Н) колебаний ($\nu \sim 960$ см⁻¹), сильно уширяющихся

Эксперимент	Расчет, модель (I)	Отнесение	Эксперимент	Расчет, модель (II)	Отнесение
2985 с. 2926 с. 2850 ср.	2989 2936 2919 2875	<i>Q</i> CH ₂ , CH ₃	2985 c. 2926 c. 2850 cp.	2989 2936 2919 2875	QCH ₂ ,CH ₃
2740 сл. 2630 сл. }	2650	<i>Q</i> ОН с Н-связью	2740 сл. 2630 сл.	2650	<i>Q</i> ОН с Н-связью
1640 ср. 1620 ср.	_	<i>Q</i> H ₂ O	$\left. \begin{array}{c} 1640 \\ 1620 \end{array} \right\}$		Q H₂O
1465 cp.	1467	χ CH ₂ , CH ₃ (HCH)	1465 cp.	1467	χCH ₂ , CH ₃ (HCH)
1380 cp.	1413	φCH ₂ ,CH ₃ (CCH)	1385 ср.	1413	φCH ₂ , CH ₃ (CCH)
1320 сл.	1324	χ CH ₃ (HCH, CCH)	1285 сл.	1314	χ CH ₃ (HCH, CCH)
1255 ш.ср.	1247	$\delta OH + \phi CH_2$	1230 ср.	1234	$\delta OH + \phi CH_2$
~1155 пл.	1175	$\chi CH_2 + Q CC$	1135 c.	1136	$Q CC, PO(H) + \varphi CH_2$
1130 c.	1138	$Q P=O, PO^-$	1115 c.	1127	$Q_{asP\cdots O,CP} + \varphi CH_2, CH_3$
1110 пл.	1123	Q P=O	1070 пл.	1070	ψ CH, <i>Q</i> CC
1070 c.	1053	$Q \text{ PO}^-$, CP, CC	1025 c.	1037	$Q_s PO$
1020 ср. 1005 ср.	1020	<i>Q</i> CC, PO ⁻	~990 пл.	_	ρОН
950 с.ш.	964	Q PO(H)	950 c.	948	<i>Q</i> PO(H), CP
~910 пл.	—	φ CH ₂	870 сл.	873	$Q \operatorname{CP} + \operatorname{\psi} \operatorname{CH}_2$
847 cp.	832		847 сл.		
765 сл.	755	<i>Q</i> CP	767 сл.	774	ψ CH ₂ , CH ₃ + Q CP
735 сл.	—		735 сл.		
520 ш. сл.	527	Q Me–O + ρ OH	525 сл.	508	$\psi CH_2 + Q Me - O$
485 cp	482	γ(CPO, POM, OPO)	465 сл.	465	$QasMe-O + \gamma POM, OPO$
425 сл.	417	γ(OPO, POM)	425	413	γ CPO + ϰ PO, CC

Таблица 2. Экспериментальные и расчетные частоты комплексов $Me_nRes_{2n} \cdot mH_2O(cm^{-1})$

вследствие "перемешивания" с не плоскостными колебаниями ОН-групп. Если воспользоваться этими отличительными признаками в различии спектральных контуров комплексов I и II (а именно, для комплексов "хелатного" типа II наблюдается ряд узких интенсивных полос поглощения в более узком интервале частот, чем в случае комплекса I), то следует сгруппировать катиониты СФ-3 (R = H) с КФ-11 (R = OH) и СФМ $(R = CH_2OH)$ c $C\Phi\Gamma$ $(R = CH_2-CH(OH)-$ СН₂ОН) (рис. 1). При этом ИК-спектр катионита $CM\Phi$ (R = OCH₃), насыщенного ионами индия, представляет собой совокупность полос поглощения, характерных для этих двух групп комплекситов, что позволяет сделать предположение о наличии действительно обеих форм координации индия, сосуществующих примерно в равных соотношениях в рассматриваемых условиях сорбции. Присутствие спиртовой группы в составе алкильного заместителя *R* фосфиновокислотного центра (СФМ, СФГ) приводит к возможности преимущественного образования хелатной фор-

мы координации ионов индия при тех же условиях насыщения металлом, на что указывает наличие ряда очень сильных полос 1140, 1070, 1020, 850, 565, 505, 460 и 420 см⁻¹. Следует отметить, что увеличение длины алкильной цепи R с CH₂OH до CH₂–CH(OH)–CH₂OH не способствует соразмерному увеличению хелатного эффекта, т.е. в катионите СФГ, насыщенном ионами индия, неожиданно в значительной мере также присутствует ионный тип соединения. Это обстоятельство, по-видимому, связано с образованием достаточно прочной внутримолекулярной водородной связи спиртовой группы с Р=О-центром ионогенной системы, что затрудняет координацию иона металла с атомом фосфорильного кислорода:

$$\begin{array}{c} \text{Res} - P - OH \quad OH \quad CH_2 \\ CH_2 - CH \end{array}$$

Преимущественное образование ионной формы предполагается для катионитов КФ-11 и СФ-3,

что подтверждается более широким интервалом проявления колебаний Р=О- и РО⁻-групп (1220– 970 см⁻¹).

Предварительные спектроскопические результаты расчета колебательных спектров ионитных фосфиновокислотных комплексов галлия дают основание предполагать, что доминируюшей формой связывания является ионная. Дело в том, что, как показали расчеты, значения частот колебаний во всем интервале 4000-400 см⁻¹ достаточно близки, а колебания связей металлкислород проявляются в области 550-450 см⁻¹. сильно перемешиваясь с неплоскими колебаниями гидроксильных групп. Однако существенное различие форм колебаний основных частот проявляется в различии интенсивностей соответствующих полос поглощения. В этой связи, например, различаются полосы симметричных и ассиметричных Р=О- и Р-О(Н)-, а также МеОколебаний. При этом вклад колебаний групп ОН приводит к уширению интенсивности полос колебаний Р-О. Все это требует более детальной экспериментально-теоретической проработки полученных данных.

При ИК-спектроскопическом изучении характера взаимодействия ионов меди(II) с этилфосфоновой кислотой в интервале pH 1.0–4.0 в виде твердых осадков, выделенных при pH ≤ 2 и pH ≥ 2 , путем сравнения с теоретически рассчитанными колебательными спектрами медных комплексов хелатного и ионного типов установлено, что кислой среде имеет место образование комплексов хелатного типа, а с понижением уровня кислотности – ионного [9].

В случае фосфорсодержащих катионитов, насыщенных ионами Cu²⁺ при pH 3, признаки, относимые к хелатообразованию, в большей степени можно обнаружить в спектрах катионита СМФ, чем в КФ-11. При всем этом общий тип координации ионов меди, вероятнее всего, следует трактовать как ионный.

В спектральных сигналах от сорбируемых комплексов по сравнению с водородной формой катионитов наблюдаются изменения спектрального профиля в области колебания молекул воды (1670—1610 см⁻¹), проявляющиеся в сужении этой полосы и росте ее интенсивности. Последнее обстоятельство отражает тип координации молекул воды к металлу в ионитных комплексах. Поскольку характер изменения этой полосы в спектрах одинаков, то и тип их координационного взаимодействия во всех рассматриваемых случаях, по всей видимости, весьма подобен.

Таким образом, введение в функциональный фрагмент фосфиновокислотного катионита алкильного радикала вместо кислотной группы приводит к увеличению его способности к хелатообразованию. Степень такого увеличения определить трудно без привлечения полного теоретического анализа колебательных спектров ионогенных групп, которые позволяют дать количественную оценку изменений интенсивности полос фосфинного центра по отношению к фосфорнокислому при вариации заместителя. Такого рода исследования необходимы для достоверного установления кислотных и координационных свойств фрагментов фосфиновокислотных катионитов. Все это позволит сформулировать спектроскопические критерии определения различных типов комплексов, образованных с помощью ионных, ионнокоординационных и координационных связей.

Если толкование ИК-спектроскопических результатов форм фосфорнокислых катионитов. насыщенных ионами металлов, имеющих вакантные орбитали – UO_2^{2+} , Fe³⁺, включая In³⁺, по существу однозначно и не вызывает сомнений, что при этом идет хелатообразование с участием кислотной и фосфорильной групп [3, 4, 10–17], то в случае двухвалентных переходных *d*-элементов $(Cu^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, Zn^{2+}, Fe^{2+}, Mn^{2+}, Pb^{2+})$ мнения в ряде принципиальных моментов разделились. Считается, что сорбционное взаимодействие в слабокислотном катионите, происходящее в нейтральных и слабокислых растворах, обусловлено возникновением электростатических сил между диссоциированными фосфорнокислыми группами и катионом металла (II) [11, 13, 15, 17, 18], однако помимо образования соединений ионного типа допускается и наличие в них координационных связей [13, 14, 18-20]. По изменению интенсивности полос их инфракрасных спектров можно заключить, что прочность сорбционных связей, по-видимому, падает в ряду: $UO_2^{2^+}>Ag^+>Cd^{2^+}>Zn^{2^+}\gg Cu^{2^+}>Ni^{2^+}>Co^{2^+},$ $Ni^{2^+}>Mn^{2^+}\geq Ca^{2^+}\geq Na^+$ [13]. Крайние позиции в указанной последовательности занимают ионы с более ярко выраженными координационными и ионными типами связей соответственно. К уранил-иону, по праву, расположенному в начале ряда, следует добавить ионы железа(III) и, видимо, индия(III), которые также хорошо сорбируются фосфорнокислыми катионитами и склонны к донорно-акцепторному взаимодействию. Катионы галлия(III) должны занимать (и занимают [21]) промежуточное положение, опережая все переходные элементы, за счет способности к образованию ионных связей и с немалой долей ковалентности, а более короткая ионноковалентная связь "О-Ga", чем у подобных ионных соединений с катионами цветных металлов, дает им определенное преимущество при сорбции из кислых сред. Сорбционное поведение алюминия на фосфорсодержащих катионитах и их спектроскопические характеристики близки к двухвалентным элементам [16]. Для катионов щелочноземельных

и особенно щелочных элементов типично "чисто" ионное присоединение к кислороду кислотного остатка [10].

Так или иначе, но природа селективности фосфорсодержащих катионитов предопределяется способностью ионов металла к реализации ионнокоординационных или ионных связей. Многозарядные катионы, валентные орбитали которых способны к электронному заполнению. сорбционно-активны в кислых и сильнокислых растворах именно за счет хелатообразования с фосфорнокислыми группами катионита. Усиление электронодонорной возможности фосфорильной системы путем введения соответствующих заместителей в реакционный центр ведет к увеличению сорбшионно-избирательных свойств фосфиновокислотных катионитов по отношению к рассеянным элементам. А ионы с преимущественно электровалентным типом взаимодействия поглощаются катионитами в слабокислых растворах только в условиях диссоциации фосфорнокислых групп и поэтому мало состоятельны в конкурентном противостоянии с катионами индия(II) и даже галлия(III).

Выявленные закономерности влияния природы заместителя фосфиновых групп позволяют регулировать электронодонорные свойства активных фрагментов катионитов и прогнозировать сорбционные показатели поглощения рассеянных элементов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Радионов Б.К., Лейкин Ю.А., Смирнов А.Л., Свирский И.М. // Журн. физ. химии. 2020. Т. 94. № 4. С. 595.
- 2. Носкова М.П., Радионов Б.К., Казанцев Е.И., Слабкая Л.Д. // Там же. 1980. Т. 54. № 10. С. 2504.
- 3. Носкова М.П., Радионов Б.К., Васянина Н.С. и др. // Там же. 1983. Т. 57. № 3. С. 707.
- 4. Носкова М.П., Ильичев С.А., Казанцев Е.И. и др. // Там же. 1983. Т. 57. № 12. С. 2986.

- 5. Носкова М.П., Кондратов О.И., Мустафин Д.И. // Журн. прикл. спектроскопия. 1977. Т. 26. № 5. С. 941.
- 6. *Грибов Л.А., Золотов Ю.А., Носкова М.П. //* Журн. структур. химии. 1968. Т. 9. № 3. С. 448.
- Современная химия координационных соединений / Под ред. Льюиса Дж., Уилкинса Р. М.: Издво иностр. лит. 1963. С. 62.
- 8. *Свердлов Л.М., Ковнер М.А., Крайнов Е.П.* Колебательные спектры многоатомных молекул. М.: Наука, 1970. С. 560.
- 9. Носкова М.П., Бойко Э.Т., Копылова В.Д., Кареман В.Б. Изучении характера взаимодействия ионов меди(II) с этилфосфоновой кислотой методом колебательной спектроскопии / Рукоп. депонирована ОНИИТЭХим. Черкассы. 05.02.88. № 136-хп 88.
- 10. Парамонова В.И., Никитина Г.П., Акопов Г.А. // Радиохимия. 1968. Т. 10. № 6. С. 638.
- Чувелева Э.А., Юфрякова Н.К., Назаров П.П., Чмутов К.В. // Журн. физ. химии. 1972. Т. 46. № 1. С. 93.
- 12. Чемерисова А.М., Константинов В.А., Смирнов Н.Н. // Журн. прикл. химии. 1980. Т. 53. № 8. С. 1872.
- Салдадзе К.М., Копылова В.Д., Меквабишвили Т.В., Мачхошвили Р.И. // Журн. физ. химии. 1971. Т. 45. № 5. С. 1200.
- 14. *Носкова М.П., Бойко Э.Т., Копылова В.Д., Жукова Т.А.* // Там же. 1982. Т. 56. № 7. С. 1787–1790.
- 15. Топалова О.В., Ганяев В.П., Пахолков В.С., Пимнева Л.А. // Журн. прикл. химии. 1981. Т. 54. № 6. С. 1421–1424.
- Кочерова Е.К., Поротникова Т.П., Деревянкин В.А., Дариенко Е.П. // Изв. вузов. Цветная металлургия. 1984. № 1. С. 119.
- 17. *Ермоленко И.Н., Гусев С.С., Люблинер И.П.* // Журн. прикл. химии. 1969. Т. 42. № 10. С. 2302–2306.
- Бойко Э.Т., Копылова В.Д., Салдадзе К.М., Носкова М.П. // Теория и практика сорбционных процессов. ВГУ. Воронеж, 1985. № 17. С. 26.
- 19. Колосова И.Ф., Тарасова Т.И., Лейкин Ю.А. и др. // Координац. химия. 1982. Т. 8. № 9. С. 1193.
- 20. Колосова И.Ф., Тарасова Т.И., Лейкин Ю.А. и др. // Там же. 1982. Т. 8. № 11. С. 1502.
- Marhol M., Beranová H., Cheng K.L. // J. Radioanalyt. Chem. 1974. V. 21. № 1. P. 177.