_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 544.3

ИССЛЕДОВАНИЕ РАСПЛАВОВ СИСТЕМЫ СаО-ТіО₂ МАСС-СПЕКТРОМЕТРИЧЕСКИМ ЭФФУЗИОННЫМ МЕТОДОМ КНУДСЕНА

© 2020 г. С. И. Шорников^{а,*}

^а Российская академия наук, Институт геохимии и аналитической химии им. В.И. Вернадского, Москва, Россия

*e-mail: sergey.shornikov@gmail.com Поступила в редакцию 07.11.2019 г. После доработки 07.11.2019 г. Принята к публикации 12.11.2019 г.

Масс-спектрометрическим эффузионным методом Кнудсена определены активности оксидов в расплавах системы CaO–TiO₂ в области температур 2241–2441 К. На основании экспериментальных данных рассчитаны термодинамические свойства кальциево-титанатных расплавов – химические потенциалы оксидов и энергия смешения расплавов, а также парциальные и интегральные энтальпии и энтропии их образования. Полученные данные сопоставлены с имеющимися в литературе.

Ключевые слова: масс-спектрометрический эффузионный метод Кнудсена, термодинамические свойства расплавов, система CaO–TiO₂

DOI: 10.31857/S0044453720070274

Физико-химические свойства расплавов системы CaO-TiO₂ и ее соединений представляют значительный интерес для петрологии титаносодержащих пород и металлургии титана и его сплавов, а также для производства керамики и огнеупорных материалов. Особый интерес вызывают специфические свойства, которые начинают находить широкое применение в солнечной энергетике, что обусловлено высокой эффективностью и низкой ценой перовскитовых фотоэлементов [1].

Одна из первых диаграмм состояния кальциево-титанатной системы, построенная на основании визуальных наблюдений Умезу и Какиучи [2], содержала единственное соединение – перовскит СаТіО₃ с температурой плавления 2013 \pm 10 К. Позднее Парга Пондал и Бергт [3] при спекании оксидов наблюдали образование еще двух титанатов кальция – Ca₂Ti₃O₈ и Ca₃Ti₂O₇, существование последнего было подтверждено Ершовым [4] при наблюдении каплеобразования в пламени. Вартенберг и др. [5] обнаружили новые титанаты кальция Ca₂TiO₄ и Ca₃TiO₅ с температурами плавления 2073 \pm 20 К и 2148 \pm 20 К соответственно.

Однако Танака [6] не обнаружил никаких соединений в системе CaO—TiO₂ кроме перовскита. Мамыкин и Лошкарев [7] и Куханор и др. [8] установили отсутствие твердых растворов в системе и подтвердили существование только CaTiO₃ и Ca₃Ti₂O₇. Бережной [9] модифицировал диаграмму состояния, предложенную Вартенберг и др. [5], предполагая конгруэнтное плавление Ca₃Ti₂O₇ и разложение Ca₂TiO₄. ДеВриз и др. [10] провели систематические исследования методом закалки в сочетании с рентгеноструктурными исследованиями, результаты которых позволили в значительной степени прояснить запутанную ситуацию с обнаруженными титанатами кальция.

Вместе с тем, Рот [11] обнаружил еще одно новое соединение — $Ca_4Ti_3O_{10}$, которое разлагается на перовскит и жидкость при температуре 2028 ± 10 К. Позднее Жонгежан и Вилкинс [12] на основании данных, полученных методом высокотемпературной микроскопии, сообщили о более высокой температуре разложения соединения $Ca_4Ti_3O_{10}$ — 2143 ± 10 К. Однако Имлах и Глассер [13] в рентгенографических исследованиях не подтвердили существования соединения $Ca_4Ti_3O_{10}$, что, возможно, связано с условиями отжига образцов.

Предположения Кимура и Муан [14] и Шульц [15] о наличии области твердых растворов Ca₃Ti₂O₇–Ca₄Ti₃O₁₀ было опровергнуто результатами рентгенофазовых исследований, выполненных Тулгар [16], обнаружившего еще одно новое соединение – Ca₅Ti₄O₁₃, разлагающегося при температуре 2113 \pm 20 К. Лимарь и Кисель [17, 18] и Пфаф [19] синтезировали и изучили метастабильные соединения CaTi₄O₉ и CaTi₂O₅, которые разлагаются при температурах 993 \pm 20 К и 1123 \pm 20 К соответственно на рутил и другие титанаты кальция. Савенко и Сахаров [20] в продуктах термолиза обнаружили соединение Ca₂Ti₅O₁₂,

Рис. 1. Диаграмма состояния системы CaO-TiO₂ [10, 11, 37]: 1 - CaO +жидкость, $2 - CaO + Ca_3Ti_2O_7$, $3 - Ca_3Ti_2O_7 +$ жидкость, $4 - Ca_4Ti_3O_{10} +$ жидкость, $5 - Ca_3Ti_2O_7 + Ca_4Ti_3O_{10}$, $6 - Ca_4Ti_3O_{10} + CaTiO_3$, $7 \text{ и } 8 - CaTiO_3 +$ жидкость, $9 - CaTiO_3 + TiO_2$, $10 - TiO_2 +$ жидкость, 11 -жидкость.

устойчивое в области температур 1023–1273 К и разлагающееся на рутил и перовскит.

Возможные трудности синтеза и идентификации соединений в системе CaO–TiO₂ могут быть связаны с наличием восстановительных условий, которые могут приводить, в частности, к образованию соединений Ca₃Ti₂O₆ [21] или же CaTi₂O₄ [22–25]. При исследовании методом электронной микроскопии включений CaO в перовските Цех и Колар [26] обнаружили в разломах решетки CaTiO₃ образование гомологичных оксидов Ca₆Ti₅O₁₆, Ca₈Ti₇O₂₂ и Ca₉Ti₈O₂₅, срастающихся с CaTiO₃.

Гребенщиков и Торопов [27] рассчитали из параметров кристаллических решеток энтальпии образования (ΔH_T) титанатов кальция, рассматривая распад решетки соединения Ca₃Ti₂O₇, характеризующий его инконгруэнтное плавление. Значения ΔH_T для соединений Ca₂TiO₄ и CaTi₂O₅ были близки к рассчитанным Резницким и Филипповой [28], однако значительно отличались от оценок, сделанных в работах [29–32], из которых следовала их термодинамическая неустойчивость. Титанаты кальция Ca₄TiO₆, Ca₈Ti₃O₁₄ и CaTi₃O₇, свойства которых рассчитаны в рамках различных квантово-химических моделей в работах [33–35], по-видимому, также неустойчивы, что не исключает их возможного существования [36].

Скомпилированная в настоящей работе на основании данных [10, 11], а также результатов недавних исследований Гонг и др. [37], выполненных методом рентгеновской дифракции, диаграмма состояния системы CaO–TiO₂ в области высоких температур приведена на рис. 1. Сводка данных по соединениям в системе CaO–TiO₂, включая индивидуальные оксиды [5, 9, 38–40], приведена в табл. 1.

Процессы испарения и термодинамические свойства наиболее изученного титаната кальция – перовскита в области высоких температур были рассмотрены в предыдущих публикациях [41, 42]. Заметим, что исследования термодинамических свойств других титанатов кальция – $Ca_3Ti_2O_7$ и $Ca_4Ti_3O_{10}$ – ограничиваются результатами нескольких работ [37, 43–45], выполненных при температурах, не превышающих 1250 К. Настоящая работа – продолжение исследования высокотемпературных физико-химических свойств системы CaO–TiO₂ и ее соединений с акцентом внимания на термодинамических свойствах расплавов этой системы.

Термодинамическая информация о свойствах системы $CaO-TiO_2$ в области температур, превышающих 1700 К, — довольно скудна и ограничивается результатами всего нескольких экспериментальных исследований (рис. 2). Кратко рассмотрим их.

Суито и др. [46, 47] изучали равновесия в шлаках CaO–TiO_x (или CaO–TiO_x–Al₂O₃) с жидким никелем по отношению к кислороду, азоту и сере в зависимости от содержания Ti (или A1) в металле с использованием тиглей из CaO или Al₂O₃ при температуре 1873 К. Значения активности TiO₂ (a_{TiO_2}) оценивали либо по содержанию A1, Ti и O₂, используя данные об энергии Гиббса образования оксида титана и соответствующих параметров взаимодействия, либо по найденным значениям нитридной и сульфидной емкости в шлаках (табл. 2).

Рассчитанные Суито и др. [46, 47] величины *а*_{тіО2} коррелировали с полученными Банон и др. [48] масс-спектрометрическим эффузионным методом Кнудсена в интервале температур 1900-2200 К (табл. 2). Приведенные на рис. 3 данные были получены Банон и др. при исследовании испарения 24 составов системы $CaTiO_3 - Ti_2O_3 - TiO_2$ из молибденовых контейнеров. Синтезированные составы содержали до 90.2 мол. % Ti₂O₃ и до 42 мол. % TiO₂, а также соединение CaTiO₃. На основании экспериментально найденных значений парциальных давлений пара (Ca), (TiO) и (TiO₂) над расплавами при температуре 2150 К (здесь и далее круглыми скобками обозначена газовая фаза, квадратными – конденсированная) авторы рассчитали величины активностей Ti, TiO, Ti₂O₃, TiO_2 и CaTiO₃, а также энергии смешения в расплавах. В случае системы CaTiO₃-TiO₂ значения активностей TiO₂ и CaTiO₃ рассчитывались путем экстраполяции из данных, относящихся к тройной системе CaTiO₃–Ti₂O₃–TiO₂, и, таким образом, имели, по мнению самих авторов, низкую

ИССЛЕДОВАНИЕ РАСПЛАВОВ СИСТЕМЫ

Соединение	<i>x</i> _{TiO2} , мол. %	<i>Т</i> _п , К	Фазы	Ссылка
CaO	0.00	2853 ± 20	жидкость	[5]
*	»	2900 ± 150	»	[39]
*	»	3222 ± 25	»	[40]
Ca ₄ TiO ₆	20.00	_	_	[33]
Ca ₃ TiO ₅	25.00	2148 ± 20	жидкость	[5]
Ca ₈ Ti ₃ O ₁₄	27.27	_	-	[33, 34]
Ca ₂ TiO ₄	33.33	2073 ± 20	жидкость	[5]
»	»	2043 ± 20	Са ₃ Ti ₂ O ₇ + жидкость	[9]
$Ca_3Ti_2O_7$	40.00	2023 ± 10	СаТіО ₃ + жидкость	[8]
*	»	2073 ± 20	жидкость	[9]
»	»	2013 ± 10	Са ₄ Ті ₃ О ₁₀ + жидкость	[11]
*	»	2023 ± 20	Са ₅ Ті ₄ О ₁₃ + жидкость	[16]
$Ca_4Ti_3O_{10}$	42.86	2028 ± 10	СаТіО ₃ + жидкость	[11]
*	»	2143 ± 10	»	[12]
Ca ₅ Ti ₄ O ₁₃	44.44	2113 ± 20	СаТіО ₃ + жидкость	[16]
CaTiO ₃	50.00	2013 ± 10	жидкость	[2]
»	»	2253 ± 20	»	[5]
»	»	2188 ± 10	»	[8, 11]
»	»	2233 ± 20	»	[16]
»	»	2241 ± 10	»	[42]
Ca ₂ Ti ₃ O ₈	60.00	_	-	[3]
CaTi ₂ O ₅	66.67	1123 ± 20	$CaTiO_3 + Ca_2Ti_5O_{12}$	[18, 19]
CaTi ₃ O ₇	75.00	_	-	[35]
Ca ₂ Ti ₅ O ₁₂	77.78	1273 ± 20	$CaTiO_3 + TiO_2$	[19, 20]
CaTi ₄ O ₉	80.00	993 ± 20	$Ca_2Ti_5O_{12} + TiO_2$	[17, 19]
TiO ₂	100.00	2128 ± 20	жидкость	[5]
»	»	2103 ± 20	»	[9]
»	»	2185 ± 10	»	[39]
»	»	2143 ± 15	»	[38]

Таблица 1. Соединения в системе CaO–TiO₂ (T_{π} – температура фазового перехода)

Примечание. Жирным шрифтом выделены принятые соединения.

точность, что, по-видимому, и обусловливало их несоответствие различным вариантам диаграммы состояния системы CaO–TiO₂ [5, 10, 12, 16]. Тем не менее, Банон и др. [48], интерпретируя полученные высокие величины a_{TiO_2} в области концентраций, близких к диоксиду титана (рис. 3), предполагали наличие несмешиваемости расплава системы CaO–TiO₂ в области, близкой к TiO₂.

Шорников и др. [49–51] также масс-спектрометрическим эффузионным методом Кнудсена исследовали испарение 17 составов расплавов системы CaO–TiO₂–SiO₂ из молибденовых контейнеров в интервале температур 1582–2529 К. Синтезированные составы содержали от 25.60 до 50.00 мол. % CaO, до 60.67 мол. % SiO₂, и от 5.05 до 50.00 мол. % TiO₂, включая соединение CaTiO₃. Установленный состав газовой фазы над изученными расплавами системы CaO–TiO₂–SiO₂ позволял предположить протекание реакций, типичных для индивидуальных оксидов [52]:

$$(CaO) = (Ca) + (O),$$
 (1)

$$(TiO_2) = (TiO) + (O),$$
 (2)

$$(TiO_2) = (Ti) + (O_2),$$
 (3)

$$(SiO_2) = (SiO) + (O),$$
 (4)

$$(O_2) = 2(O).$$
 (5)

Рис. 2. Составы системы CaO–TiO₂, исследованные: *1* – методом обменных равновесий в шлаках [46, 47]; *2* – при испарении перовскита (по Ленгмюру) [55]; *3*–7 – масс-спектрометрическим эффузионным методом Кнудсена [42, 48, 51, 54] и в настоящей работе соответственно. Диаграмма состояния системы CaO–TiO₂ изображена сплошной линией по данным [10, 11, 37] и пунктиром – по данным [16].

Как следует из табл. 2, рассчитанные в работах [50, 51] для случая псевдодвойных систем $CaTiO_3-CaSiO_3$ и $CaTiO_3-SiO_2$, соответственно, по методу Белтона-Фруехана [53] значения активностей оксидов в перовските при температуре 2100 К были близки к полученным Банон и др. [48].

Столярова и др. [54] исследовали свойства газовой фазы над 14 составами системы CaO–TiO₂– SiO₂, а также определяли величины активности оксидов и энергии смешения расплавов методом высокотемпературной масс-спектрометрии при испарении расплавов из вольфрамовых эффузионных контейнеров в интервале температур 1800-2200 К. Синтезированные составы содержали до 70 мол. % CaO, до 69 мол. % SiO₂, и до 40 мол. % TiO₂. Как следует из рис. 2, при 2057 К один из двух исследованных составов системы CaO-TiO₂ находился в области "CaO + жидкость", и, таким образом, его значение a_{CaO} долж-

<i>х</i> _{TiO2} , мол. %	<i>Т</i> , К	a _{CaO}	$a_{\mathrm{TiO}_2} \times 10$	Ссылка, год
30	2057	$(6.11 \pm 3.06) \times 10^{-1}$	_	[54], 2004
40	2057	$(5.56 \pm 2.78) \times 10^{-1}$	—	[54], 2004
50	1791	$(2.06 \pm 0.08) \times 10^{-2}$	1.09 ± 0.06	[42], 2019
50	1873	—	1.05 ± 0.35	[46], 1994
50	1873	—	1.80 ± 0.25	[47], 1994
50	1873	—	1.50 ± 0.35	[47], 1994
50	1873	—	1.50 ± 0.30	[47], 1994
50	1875	$(2.19 \pm 0.08) \times 10^{-2}$	1.26 ± 0.06	[42], 2019
50	2100	$(2.63 \pm 0.22) \times 10^{-2}$	2.46 ± 0.25	[50], 2000
50	2100	$(2.54 \pm 0.12) \times 10^{-2}$	2.21 ± 0.10	[51], 2003
50	2150	$(2.39 \pm 0.36) \times 10^{-2}$	2.10 ± 0.32	[48], 1981
50	2182	$(2.59 \pm 0.08) \times 10^{-2}$	2.29 ± 0.07	[42], 2019
50	2278	$(2.60 \pm 0.08) \times 10^{-2}$	2.39 ± 0.08	данная работа
50	2291	$(2.61 \pm 0.25) \times 10^{-2}$	2.43 ± 0.22	[42], 2019
50	2315	$(2.62 \pm 0.25) \times 10^{-2}$	2.44 ± 0.22	[42], 2019

Таблица 2. Активности оксидов в системе CaO-TiO₂

но быть близко к единице. Второй состав находился в области "Ca₄Ti₃O₁₀ + жидкость", согласно информации, представленной в работах [10, 11], или же в области "Ca₃Ti₂O₇ + жидкость", как следует из данных, представленных Тулгар [16]. Однако рассчитанные значения a_{CaO} довольно близки (табл. 2), что противоречит данным о диаграмме состояния системы CaO-TiO₂ (рис. 2). Возможной причиной рассмотренных расхождений, по-видимому, является значительная погрешность в измерениях активностей CaO в расплаве, которая может составлять, по нашему мнению, более 50%.

В табл. 2 также приведены некоторые данные, полученные Шорниковым [42] при исследовании испарения перовскита масс-спектрометрическим эффузионным методом Кнудсена в области температур 1791–2398 К. Можно заметить согласованность термодинамической информации, полученной в работах [42, 46–51], однако только для одного состава, отвечающего перовскиту.

Недавно Жанг и др. [55] изучали изотопное фракционирование кальция и титана при испарении расплава перовскита, подвешенного на иридиевой проволоке в вакуумной печи, при 2278 К (по Ленгмюру). Изменение состава остаточного расплава перовскита в процессе испарения свидетельствовало о преимущественном испарении из расплава кальциевой составляющей расплава. Хотя оценка величины общего давления пара над расплавом перовскита и соответствовала нашим данным [41], однако остальная термодинамическая информация, полученная Жанг и др. [55], экспериментально не подтверждена.

Таким образом, имеющая информация о термодинамических свойствах расплавов системы CaO-TiO₂ довольно незначительна. Информация о диаграмме состояния кальциево-титанатной системы противоречива (рис. 1 и 2) и нуждается в уточнениях о наличии/отсутствии титанатов кальция и положениях инвариантных точек, включая температуры плавления индивидуальных оксидов (табл. 1). Разрозненные определения величин активностей оксидов в системе CaO-TiO₂ при различных температурах и составах (преимущественно в твердой фазе) не дают полного представления о физико-химических свойствах расплавов системы (табл. 2), что необходимо для их теоретического описания.

Цель настоящей работы заключалась в изучении термодинамических свойств расплавов системы CaO-TiO₂ на основании данных, полученных масс-спектрометрическим эффузионным методом Кнудсена в области температур 2241– 2441 К.

Рис. 3. Активности CaO (1, 2), TiO₂ (3, 4) и CaTiO₃ (5, 6) в расплавах системы CaO–TiO₂, определенные масс-спектрометрическим эффузионным методом Кнудсена: 1 - при 2057 К [54]; 3 и 5 - при 2150 К [48]; 2, 4 и 6 – при 2250 К в настоящей работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты были выполнены с помощью серийного масс-спектрометра МИ-1201, оснащенного модифицированным ионным источником для проведения высокотемпературных исследований (до температуры 3000 К). Молибденовый эффузионный контейнер нагревался переменным электрическим током, протекающим через его корпус, температура нагрева определялась оптическим пирометром ЭОП-66 с погрешностью, не превышающей 10 К при 2400 К. Общее давление остаточных газов в масс-спектрометре в области эффузионного контейнера не превышало 10⁻¹⁰ атм во всем температурном интервале. Высокая чувствительность аппаратуры была достигнута близостью положения эффузионного контейнера к области ионизации источника при соосности молекулярного и ионного пучков. Конструкция разработанного ионного источника и методические особенности проведения масс-спектрометрического эксперимента детально описаны ранее [56].

Синтез исходных составов системы CaO– TiO₂–SiO₂, был выполнен по керамической технологии с последующим рентгенофазовым и химическим анализом образцов. Для приготовления требуемого состава в качестве исходных материалов были использованы CaCO₃ (марка "ос. ч."), TiO₂ (марка "ос. ч.") и порошок горного хрусталя с содержанием 99.90 мас. % SiO₂, которые смешивались в шаровой яшмовой мельнице в ацетоне в течение 24 ч. После просушки полученные смеси кальцинировались в силитовых печах на воздухе при температуре до 1300 K в течение 24 ч. После вторичного перетирания производился высокотемпературный обжиг образцов при 1530 К в течение 24 ч.

Исследуемые составы представляли собой остаточные расплавы системы $CaO-TiO_2-SiO_2$, содержащие до 1 мол. % SiO_2 , потерянного в процессе высокотемпературного испарения. Таким образом было получено более 200 композиций системы $CaO-TiO_2$, содержащих от 38 до 95 мол. % TiO_2 в области температур 2241–2441 K, некоторые из них изображены на рис. 2.

Как показано ранее [49], первая стадия процесса испарения кальциево-титано-силикатных расплавов характеризовалась преобладающим испарением содержащегося в расплаве диоксида кремния при постоянной концентрации кальциево-титанатной составляющей расплава. На второй стадии испарения расплавов системы СаО-TiO₂-SiO₂, обедненных диоксидом кремния до концентраций, близких к полю оксида кальция (от ~70 до 80 мол. % CaO), происходило испарение кальциево-силикатной составляющей расплава вплоть до практически полного испарения SiO₂. Дальнейшее испарение остаточного расплава системы CaO-TiO₂ протекало с преимущественным испарением оксида кальция из расплава до области концентраций, близких к полю рутила ТіО₂.

Наблюдаемое изменение количества *i*-го оксида (m_t) в расплаве системы CaO–TiO₂–SiO₂ за время *t* рассчитывалось согласно подходу, предложенному в [57], исходя из соотношения интегральных выражений для временных зависимостей *i*-х полных ионных токов (I_{ij}), образованных от *j*-х молекулярных форм газовой фазы над расплавом:

$$\left(\frac{m_t}{m_0}\right)_i = \frac{\int\limits_0^T I_{ij}dt}{\int\limits_0^{t_0} I_{ij}dt},$$
(6)

где t_0 — время полного испарения исходного количества (m_0) *i*-го оксида из расплава. Погрешность определения состава расплава не превышала 0.15 мол. %.

В масс-спектрах пара над полученными таким образом расплавами системы $CaO-TiO_2$ при энергии ионизирующих электронов, равной 25 эВ, преобладали молекулярные ионы TiO_2^+ , Ca^+ , TiO^+ и O^+ [49, 51]. Содержание остальных молекулярных ионов, характерных как для масс-спектров пара над индивидуальными оксидами (CaO^+ , Ti^+ , O_2^+), так и для молекулярного иона $CaTiO_3^+$, обнаруженного ранее над перовскитом

[41], было незначительным. В этой связи значения интенсивностей полных ионных токов в соотношении (6) были рассчитаны в пренебрежении последних.

Энергии появления ионов в масс-спектрах пара над расплавами системы CaO–TiO₂ были определены методом Уоррена [58] и соответствовали принятым в [59] значениям энергиям ионизации атомов и молекул, типичных для простых окси-

дов. Энергия появления иона CaTiO₃⁺ в массспектрах пара над расплавами соответствовала определенной нами ранее для перовскита [41]. Соотношение интенсивностей ионных токов в масс-спектрах пара над расплавом системы CaO– TiO₂, содержащим 57.81 ± 0.15 мол. % TiO₂, при температуре 2278 ± 10 К было следующим: I_{Ca} : I_{CaO} : I_{Ti} : I_{TiO} : I_{TiO_2} : I_{CaTiO_3} : I_O : I_{O_2} = 25 : 0.02 : 0.1 : 56 : 100 : 0.13 : 0.44 : 0.012, что несколько отличается от полученного для перовскита [41]. При определении интенсивности ионного тока молекулярного иона CaTiO₃⁺, как и ранее [41], учитывалась его фрагментация на ионы CaTi⁺, CaTiO⁺ и CaTiO₂⁺.

В масс-спектрах пара над кальциево-титанатным расплавом наблюдали также ионы MoO_i^+ (i = 0-3), количество которых было невелико: $I_{\text{TiO}_2}: I_{\text{Mo}}: I_{\text{MoO}_2}: I_{\text{MoO}_3} = 100: 0.35: 1.6: 1.8:$ 5.4. Их происхождение вызвано собственным испарением молибденового контейнера при высокой температуре:

$$[Mo] = (Mo) \tag{7}$$

и взаимодействием расплава с материалом контейнера с образованием газообразных оксидов молибдена, находящихся в следующих равновесиях:

$$(Mo) + (O) = (MoO),$$
 (8)

$$(MoO) + (O) = (MoO_2),$$
 (9)

$$(MoO_2) + (O) = (MoO_3).$$
 (10)

На основании установленного состава газовой фазы над расплавом системы $CaO-TiO_2$ были рассчитаны парциальные давления молекулярных форм пара по уравнению Герца-Кнудсена, записанному в следующем виде [60]:

$$p_i = K_{\alpha} \frac{m_i}{s_{or} C_{or} t} \sqrt{\frac{2\pi RT}{M_i}},\tag{11}$$

где m_i — количество компонента вещества с молекулярный массой M_i , испарившегося из эффузионного контейнера за время t при температуре Tчерез эффузионное отверстие, характеризующееся коэффициентом Клаузинга C_{or} и площадью отверстия s_{or} . Коэффициент Клаузинга связан с со-

1 11										
x _{TiO2} , мол. %	<i>P</i> _{Ca}	<i>p</i> _{CaO}	p _{Ti}	p _{TiO}	$p_{\rm TiO_2}$	$p_{ m O} \times \times 10^7$	$p_{O_2} \times \times 10^9$	$P_{CaTiO_3} \times 10^9$	$p_{\rm MoO_2} \times \times 10^7$	$p_{MoO_3} \times \times 10^8$
37.91	2.33×10^{-5}	3.07×10^{-8}	3.19×10^{-10}	2.88×10^{-7}	6.62×10^{-7}	4.62	12.40	8.42	11.1	16.50
40.02	1.66×10^{-5}	1.80×10^{-8}	8.23×10^{-10}	6.23×10^{-7}	1.23×10^{-6}	3.92	8.25	9.46	7.85	9.80
43.15	1.03×10^{-5}	9.68×10^{-9}	2.18×10^{-9}	1.30×10^{-6}	2.41×10^{-6}	3.29	5.88	9.63	5.64	5.72
46.66	6.37×10^{-6}	5.41×10^{-9}	4.86×10^{-9}	2.46×10^{-6}	3.95×10^{-6}	2.89	4.34	8.56	4.23	3.91
50.00	4.19×10^{-6}	3.02×10^{-9}	7.51×10^{-9}	3.86×10^{-6}	5.41×10^{-6}	2.72	3.99	7.27	3.84	3.17
53.75	2.75×10^{-6}	2.03×10^{-9}	9.98×10^{-9}	4.72×10^{-6}	6.91×10^{-6}	2.66	3.94	5.98	3.88	3.08
57.81	1.83×10^{-6}	1.32×10^{-9}	1.17×10^{-8}	5.45×10^{-6}	8.43×10^{-6}	2.72	3.88	4.96	3.88	3.28
62.38	1.26×10^{-6}	9.50×10^{-10}	1.34×10^{-8}	6.62×10^{-6}	1.01×10^{-5}	2.77	4.18	4.14	3.99	3.57
65.18	1.01×10^{-6}	8.20×10^{-10}	1.42×10^{-8}	7.56×10^{-6}	1.11×10^{-5}	2.83	4.37	3.74	4.26	3.68
69.28	7.39×10^{-7}	6.02×10^{-10}	1.53×10^{-8}	8.40×10^{-6}	1.26×10^{-5}	2.91	4.79	3.21	4.41	4.06
75.18	4.48×10^{-7}	3.78×10^{-10}	1.64×10^{-8}	9.89×10^{-6}	1.50×10^{-5}	3.06	5.13	2.43	4.73	4.67
79.64	2.84×10^{-7}	2.55×10^{-10}	1.73×10^{-8}	1.06×10^{-5}	1.68×10^{-5}	3.16	5.52	1.78	5.17	5.12
83.14	1.84×10^{-7}	1.65×10^{-10}	1.77×10^{-8}	1.10×10^{-5}	1.79×10^{-5}	3.22	5.57	1.25	5.38	5.43
87.16	1.00×10^{-7}	9.62×10^{-11}	1.91×10^{-8}	1.11×10^{-5}	1.90×10^{-5}	3.28	5.56	0.74	5.60	5.61
93.15	3.04×10^{-8}	2.78×10^{-11}	2.07×10^{-8}	1.24×10^{-5}	2.09×10^{-5}	3.38	5.82	0.25	5.74×	6.30

Таблица 3. Парциальные давления (атм)компонентов газовой фазы над расплавами системы CaO–TiO₂ при температуре 2278 К

ударением компонентов газовой фазы внутри канала эффузионного отверстия (эффузионного контейнера) и их обратным отражением от стенок канала, его величина не превышает единицы и зависит от соотношения диаметра эффузионного отверстия к его толщине. Величины *m_i* рассчитывались исходя из пропорциональных им интегральных выражений $\int I_{ij} dt$. Коэффициенты пропорциональности были определены с учетом преобладающих в масс-спектрах пара над расплавом полных ионных токов I_{Ca} и I_{TiO_2} , связанных с количеством простых оксидов в расплаве. Величиной коэффициентов испарения оксидов, связанных с изменением структуры молекул при их переходе в газовую фазу с поверхности расплава, можно было пренебречь ($K_{\alpha} = 1$) в соответствии с рекомендациями работы [61].

Рассчитанные парциальные давления компонентов газовой фазы над расплавом системы CaO-TiO₂ для случая температуры 2278 ± 10 К с погрешностью, не превышающей 10%, приведены в табл. 3. Парциальные давления атомарного кислорода (табл. 4), определенные по соотношению (11), удовлетворительно соответствовали рассчитанным из термохимических данных [39] о константах равновесия $K_r(T)$ возможных реакций (1), (2), (3), (5) и (10), протекающих в газовой фазе над расплавом по следующим соотношениям:

$$p_{\rm O} = \frac{p_{\rm CaO}}{p_{\rm Ca}} K_{\rm I}(T),$$
 (12)

$$p_{\rm O} = \frac{p_{\rm TiO_2}}{p_{\rm TiO}} K_2(T),$$
(13)

$$p_{\rm O} = \frac{p_{\rm TiO}}{p_{\rm Ti}} K_3(T), \qquad (14)$$

$$p_{\rm O} = \sqrt{\frac{p_{\rm O_2}^2}{K_5(T)}},\tag{15}$$

$$p_{\rm O} = \frac{p_{\rm MoO_3}}{p_{\rm MoO_2}} K_{10}(T), \tag{16}$$

что подтверждало предположение о молекулярном происхождении идентифицированных ионов в масс-спектрах пара над расплавами системы CaO–TiO₂.

Значения активностей оксидов в расплавах системы $CaO-TiO_2$ были рассчитаны на основании соотношений Льюиса [62]:

$$a_{\rm CaO} = \frac{p_{\rm CaO}}{p_{\rm CaO}^{\circ}} = \frac{p_{\rm Ca}p_{\rm O}}{p_{\rm Ca}^{\circ}p_{\rm O}^{\circ}},$$
(17)

$$a_{\mathrm{TiO}_2} = \frac{p_{\mathrm{TiO}_2}}{p_{\mathrm{TiO}_2}^{\circ}} = \frac{p_{\mathrm{TiO}}p_{\mathrm{O}}}{p_{\mathrm{TiO}}^{\circ}p_{\mathrm{O}}^{\circ}},\tag{18}$$

где p_i и p_i° — величины парциальных давлений компонентов газовой фазы над расплавом и ин-

Таблица 4. Парциальные давления пара атомарного кислорода ($p_0 \times 10^7$) над расплавами системы CaO-TiO₂ при температуре 2278 K, рассчитанные по соотношениям (11) –(16)

x _{TiO2} , мол. %	(11)	(12)	(13)	(14)	(15)	(16)
37.91	4.62	4.70	4.42	4.83	4.82	4.76
40.02	3.92	3.88	3.80	4.05	3.93	3.99
43.15	3.29	3.37	3.55	3.20	3.32	3.24
46.66	2.89	3.04 ⁷	3.07	2.71	2.85	2.95
50.00	2.72	2.58	2.69	2.75	2.73	2.64
53.75	2.66	2.63	2.81	2.53	2.72	2.54
57.81	2.72	2.57	2.96	2.49	2.69	2.70
62.38	2.77	2.70×	2.91	2.64	2.80	2.85
65.18	2.83	2.90×	2.81	2.85	2.86	2.76
69.28	2.91	2.91	2.88	2.94	3.00	2.94
75.18	3.06	3.01	2.92	3.22	3.10	3.16
79.64	3.16	3.21	3.05	3.27	3.21	3.16
83.14	3.22	3.21	3.13	3.31	3.23	3.22
87.16	3.28	3.43	3.28	3.11	3.23	3.20
93.15	3.38	3.27	3.24	3.19	3.30	3.50

дивидуальных оксидом (чистым компонентом), соответственно. Однако более предпочтительным представлялось рассчитать значения a_{CaO} и a_{TiO_2} , как и в [50, 51], по методу Белтона–Фруехана [53] по следующему соотношению:

$$\ln a_i = -\int x_j d \ln \frac{a_j}{a_i},\tag{19}$$

в котором соотношение величин активностей оксидов в расплаве с учетом соотношений (17) и (18) можно было легко преобразовать к соотношению величин парциальных давлений:

$$\ln a_{\text{TiO}_{2}} = -\int x_{\text{CaO}} d \ln \frac{p_{\text{CaO}}}{p_{\text{TiO}_{2}}}.$$
 (20)

На основании протекания газофазных реакций (1) и (2) соотношение (20) можно было преобразовать к следующему виду:

$$\ln a_{\text{TiO}_2} = -\int x_{\text{CaO}} d \ln \frac{p_{\text{Ca}} p_{\text{O}}}{p_{\text{TiO}} p_{\text{O}}} = -\int x_{\text{CaO}} d \ln \frac{p_{\text{Ca}}}{p_{\text{TiO}}}, \quad (21)$$

которое, в свою очередь, легко упростить, учитывая пропорциональность значений парциальных давлений p_i величинам ионных токов I_i [63], минимизируя тем самым величину несистематической погрешности эксперимента:

$$\ln a_{\mathrm{TiO}_2} = -\int x_{\mathrm{CaO}} d \ln \frac{I_{\mathrm{Ca}}}{I_{\mathrm{TiO}}}$$
(22)

и избежать тем самым потребности в дополнительных термохимических данных [39], используемых в соотношениях (17) и (18), а также исключить несистематические погрешности эксперимента при расчете величин парциальных давлений компонентов газовой фазы по уравнению Герца–Кнудсена (11). Согласованность рассчитанных по соотношению (22) значений a_{TiO_2} была проверена с использованием уравнения Гиббса–Дюгема [64]:

$$\ln a_{\rm CaO} = -\int \frac{x_{\rm TiO_2}}{x_{\rm CaO}} d \ln a_{\rm TiO_2}.$$
 (23)

Определенные по соотношениям (22) и (23) значения активностей оксидов в расплавах системы CaO-TiO₂ для случая температуры 2278 К сопоставлены в табл. 5, из которой можно заметить их удовлетворительное совпадение с найденными независимым способом по соотношениям (17) и (18).

Значения химических потенциалов ($\Delta \mu_i$), парциальных энтальпий (ΔH_i) и энтропий (ΔS_i) оксидов в расплавах системы CaO–TiO₂ были рассчитаны по известным соотношениям [64]:

 $(\Lambda \dots)$

$$\Delta \mu_i = RT \ln a_i, \tag{24}$$

$$\Delta \mu_i = \Delta H_i - T \Delta S_i, \qquad (25)$$

$$\Delta H_i = \frac{d\left(\frac{\Delta \mu_i}{T}\right)}{d\left(\frac{1}{T}\right)} = R \frac{d\ln a_i}{d\left(\frac{1}{T}\right)},$$
(26)

$$\Delta S_i = -\frac{d\Delta\mu_i}{dT},\tag{27}$$

которые связаны с соответствующими интегральными термодинамическими функциями смешения (ΔG_T , ΔH_T и ΔS_T):

$$\Delta G_T = \sum_i x_i \Delta \mu_i, \qquad (28)$$

$$\Delta H_T = \sum_i x_i \Delta H_i, \qquad (29)$$

$$\Delta S_T = \sum_i x_i \Delta S_i, \tag{30}$$

$$\Delta G_T = \Delta H_T - T \Delta S_T \tag{31}$$

и представлены на рис. 4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Определенные значения активностей CaO, TiO₂ и CaTiO₃ в расплавах системы CaO–TiO₂ при температуре 2250 К сопоставлены на рис. 3 с полученными Столяровой и др. [54] и Банон и др. [48] для гетерогенных областей системы CaO– TiO₂ при близких температурах – 2057 и 2150 К соответственно. Результаты [48] коррелируют с

<i>x</i> _{TiO2} , мол. %	<i>a</i> _{CaO} , (17)	<i>a</i> _{CaO} , (23)	$a_{\rm TiO_2}$, (18)	$a_{\rm TiO_2},$ (22)
37.91	2.46×10^{-1}	2.27×10^{-1}	2.92×10^{-2}	3.34×10^{-2}
40.02	1.49×10^{-1}	1.51×10^{-1}	5.45×10^{-2}	5.34×10^{-2}
43.15	7.73×10^{-1}	7.87×10^{-2}	1.07×10^{-1}	1.04×10^{-1}
46.66	4.20×10^{-2}	4.15×10^{-2}	1.74×10^{-1}	1.77×10^{-1}
50.00	2.60×10^{-2}	$2.60 \times 10^{-2*}$	2.39×10^{-1}	2.38×10^{-1}
53.75	1.69×10^{-2}	1.68×10^{-2}	3.04×10^{-1}	3.05×10^{-1}
57.81	1.14×10^{-2}	1.12×10^{-2}	3.72×10^{-1}	3.77×10^{-1}
62.38	7.96×10^{-3}	7.66×10^{-3}	4.45×10^{-1}	4.55×10^{-1}
65.18	6.53×10^{-3}	6.24×10^{-3}	4.90×10^{-1}	5.02×10^{-1}
69.28	4.92×10^{-3}	4.71×10^{-3}	5.58×10^{-1}	5.69×10^{-1}
75.18	3.13×10^{-3}	3.14×10^{-3}	6.65×10^{-1}	6.62×10^{-1}
79.64	2.05×10^{-3}	2.19×10^{-3}	7.42×10^{-1}	7.29×10^{-1}
83.14	1.45×10^{-4}	1.55×10^{-3}	7.91×10^{-1}	7.80×10^{-1}
87.16	8.92×10^{-4}	9.27×10^{-4}	8.41×10^{-1}	8.37×10^{-1}
93.15	2.55×10^{-4}	2.75×10^{-4}	9.22×10^{-1}	9.17×10^{-1}
100.00	—	—	—	1.00*

Таблица 5. Активности оксидов в расплавах системы CaO–TiO₂ при температуре 2278 К, рассчитанные по соотношениям (17), (18), (22) и (23)

* принятое значение.

данными настоящей работы. Некоторое различие в величинах a_{TiO_2} , как уже упоминалось выше, вероятно, обусловлено процедурами экстраполяции информации [48] для составов тройной системы $CaTiO_3 - Ti_2O_3 - TiO_2$, что могло снизить их точность. Наблюдаемое в [48] поведение активности TiO₂ в расплавах в области концентраций, близкой к рутилу, возможно, и свидетельствует о некоторой несмешиваемости расплава, что следует из наблюдаемого перегиба концентрационной зависимости *а*_{тю,} (рис. 3, линия *3*) и близости к постоянным величинам концентрационных зависимостей p_{Ti} , p_{TiO} , p_{TiO_2} , p_{O} и p_{O_2} (табл. 3), полученных в настоящей работе. Однако, на наш взгляд, поведение активностей TiO₂ и CaTiO₃ (рис. 3, линии 4 и 6) более близко к идеальному. Максимальное значение a_{CaTiO_3} соответствует области составов, близких к перовскиту (рис. 3, линии 5 и 6). Различия со значениями а_{СаО} из [54] (рис. 3, точки 1) вызваны, по-видимому, их низкой точностью.

Представленные на рис. 4 парциальные и интегральные термодинамические зависимости, характеризующие расплавы системы CaO–TiO₂, показывают их симбатность. Энтальпии и энтропии образования расплавов положительны. Экстремальные величины интегральных термодинамических свойств расплавов находятся в концентрационной области, близкой к составу перовскита, что подтверждает его устойчивость в расплаве. Некоторое смещение экстремума интегральных термодинамических функций в расплавах системы CaO–TiO₂, подобное таковому для расплавов системы CaO–SiO₂ [65], может быть вызвано наличием в расплаве оксидных соединений с большим количеством CaO по сравнению с перовскитом CaTiO₃.

Сопоставление энергии смешения в расплавах системы $CaO-TiO_2$ при температуре 2300 K с таковыми для систем $CaO-SiO_2$ [65] и $CaO-Al_2O_3$ [66], представленное на рис. 5, свидетельствует о более сильном химическом взаимодействии в расплаве системы $CaO-TiO_2$ по сравнению с расплавом системы $CaO-Al_2O_3$, однако меньшую, чем в расплаве системы $CaO-Al_2O_3$, однако меньшую, чем в расплаве системы $CaO-SiO_2$, что проявляется в более положительных величинах энергии смешения расплава.

Таким образом, в настоящей работе высокотемпературным масс-спектрометрическим эффузионным методом Кнудсена двумя независимыми подходами определены активности оксидов в расплавах системы CaO–TiO₂ в области температур 2241–2441 К. На основании полученных данных рассчитаны термодинамические свойства кальциево-титанатных расплавов – химические потенциалы оксидов и энергии смешения в расплавах, а также парциальные и интегральные энтальпии и энтропии образования расплавов из

Рис. 4. Химические потенциалы оксидов и энергия смешения (а), парциальные энтальпии оксидов и энтальпия образования (б) и парциальные энтропии оксидов и энтропия образования (в) расплавов в системе CaO–TiO₂ при 2278 K; 1 - CaO, $2 - \text{TiO}_2$, 3 - интегральная термодинамическая характеристика (энергия смешения, энтальпия и энтропия образования расплавов). Вертикальной пунктирной линией обозначена граница области "CaO + жидкость" и расплава.

индивидуальных оксидов. Полученная экспериментальная информация свидетельствует о симбатности поведения найденных термодинамических функций, характеризующих расплавы си-

Рис. 5. Энергии смешения в расплавах систем CaO– TiO₂ (I), CaO–SiO₂ (2) и CaO–Al₂O₃ (3), определенные масс-спектрометрическим эффузионным методом Кнудсена при температуре 2300 К в настоящей работе и в [65, 66] соответственно. Пунктирные линии соответствуют гетерогенным областям.

стемы, а также о возможной несмешиваемости расплавов системы $CaO-TiO_2$ в области, близкой к TiO_2 , что уже было отмечено ранее. Экстремальные величины интегральных термодинамических свойств расплавов находятся в концентрационной области, близкой к составу перовскита, что подтверждает его устойчивость в расплаве. Смещение экстремума интегральных термодинамических функций в расплавах системы $CaO-TiO_2$ может быть вызвано наличием в расплаве оксидных соединений с большим количеством CaO по сравнению с перовскитом $CaTiO_3$.

Автор искренне благодарен О.И. Яковлеву (Институт геохимии и аналитической химии им. В.И. Вернадского РАН) за постоянное внимание и полезное обсуждение при написании настоящей публикации и М.А. Назарову (Институт геохимии и аналитической химии им. В.И. Вернадского РАН) за поддержку, оказанную автору при выполнении настоящей работы.

Работа выполнена при финансовой поддержке Программы № 7 Президиума РАН "Экспериментальные и теоретические исследования объектов Солнечной системы и планетных систем звезд. Переходные процессы в астрофизике" и Российского фонда фундаментальных исследований (код проекта № 19-05-00801А).

СПИСОК ЛИТЕРАТУРЫ

- 1. Coontz R. // Sci. 2013. V. 342. № 6165. P. 1438.
- Umezu S., Kakiuchi F. // Nippon Kogyo Kwaisi. 1930. V. 46. № 546. P. 866.

- 3. *Parga Pondal I., Bergt K.* // Anal. Soc. Espan. Fis. Quim. 1933. V. 31. P. 623.
- 4. *Ершов Л.Д.* Изучение состава и свойств титанатов кальция и получение титанистого цемента // Тр. Гипроцемента. 1940. № 1. С. 5–31.
- Wartenberg H.V., Reusch H.J., Saran E. // Z. Anorg. Allg. Chem. 1937. V. 230. № 3. P. 257.
- 6. *Tanaka Y.* // J. Chem. Soc. Japan. 1940. V. 61. № 4. P. 345.
- Мамыкин П.С., Лошкарев Б.А. // Огнеупоры. 1950. Т. 15. № 5. С. 215–221.
- Coughanour L.W., Roth R.S., DeProsse V.A. // J. Res. NBS. 1954. V. 52. № 1. P. 37.
- 9. Бережной А.С. // Огнеупоры. 1950. Т. 15. № 8. С. 350.
- DeVries R.C., Roy R., Osborn E.F. // J. Phys. Chem. 1954. V. 58. № 12. P. 1069.
- 11. Roth R.S. // J. Res. NBS. 1958. V. 61. № 5. P. 437.
- Jongejan A., Wilkins A.L. // J. Less-Comm. Met. 1970. V. 20. № 4. P. 273.
- Imlach J.A., Glasser F.P. // Trans. Brit. Ceram. Soc. 1968. V. 67. № 3. P. 581.
- Kimura S., Muan A. // Amer. Miner. 1971. V. 56. № 7– 8. P. 1332.
- Shultz R.L. // J. Amer. Ceram. Soc. 1973. V. 56. № 1. P. 33.
- *Tulgar H.E.* // Istanbul Tek. Univ. Bull. 1976. V. 29. № 1. P. 111.
- 17. Лимарь Т.Ф., Кисель Н.Г., Чередниченко И.Ф., Савоськина А.И. // Журн. неорган. химии. 1972. Т. 17. № 2. С. 559.
- 18. *Кисель Н.Г., Лимарь Т.Ф., Чередниченко И.Ф.* // Там же. 1972. Т. 8. № 10. С. 1782.
- 19. Pfaff G. // J. Eur. Ceram. Soc. 1992. V. 9. № 4. P. 293.
- Савенко В.Г., Сахаров В.В. // Журн. неорган. химии. 1979. Т. 24. № 5. С. 138.
- 21. *Борисенко А.И., Широкова П.В.* // Там же. 1956. Т. 1. № 4. С. 615.
- 22. Bright N.F.H., Rowland J.F., Wurm J.G. // Can. J. Chem. 1958. V. 36. № 3. P. 492.
- Dring K. Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride / Thesis. L.: University of London, 2005. 190 p.
- Jacob K.T., Gupta S. // Bull. Mater. Sci. 2009. V. 32. № 6. P. 611.
- Suzuki R.O., Noguchi H., Hada H., Natsui S., Kikuchi T. // Mater. Trans. 2017. V. 58. № 3. P. 341.
- 26. Ceh M., Kolar D. // J. Mater. Sci. 1994. V. 29. № 23. P. 6295.
- Гребенщиков Р.Г., Торопов Н.А. // Докл. АН СССР. 1964. Т. 158. № 3. С. 710.
- Reznitskii L.A., Filippova S.E. // Russ. J. Phys. Chem. 2002. V. 76. № 9. P. 1389.
- Yokokawa H., Kawada T., Dokiya M. // J. Amer. Ceram. Soc. 1989. V. 72. № 1. P. 152.
- Udayakumar K.R., Cormack A.N. // J. Phys. Chem. Solids. 1989. V. 50. № 1. P. 55.

- Ramadan A.H.H., Hesselmann L., De Souza R.A. // J. Phys. Chem. Solids. 2015. V. 86. P. 90.
- 32. Glasser L. // Inorg. Chem. 2017. V. 56. № 15. P. 8920.
- Lazaro S.R. Estudo teorico-experimental do titanato de calcio – CaTiO₃ / Thesis. Sao Carlos: Universidade Estadual Paulista, Intituto de Quimica, 2002. 57 p.
- 34. *Pontes F.M., Pinheiro C.D., Longo E. et al.* // Mater. Chem. & Phys. 2003. V. 78. № 1. P. 227.
- 35. Seko A., Hayashi H., Kashima H., Tanaka I. // Phys. Rev. Mater. 2018. V. 2. № 1. P. 13805-1.
- Oganov A.R., Ma Y., Lyakhov A.O. et al. // Rev. Miner. Geochem. 2010. V. 71. P. 271.
- Gong W., Wu L., Navrotsky A. // J. Amer. Ceram. Soc. 2018. V. 101. № 3. P. 1361.
- Brauer G., Littke W. // J. Inorg. Nucl. Chem. 1960. V. 16. № 1. P. 67.
- Глушко В.П., Гурвич Л.В., Бергман Г.А. и др. Термодинамические свойства индивидуальных веществ. Справочник / Под ред. В.П. Глушко. М.: Наука, 1978–1982.
- 40. *Manara D., Bohler R., Capriotti L. et al.* // J. Eur. Ceram. Soc. 2014. V. 34. № 6. P. 1623.
- 41. *Shornikov S.I.* // Russ. J. Phys. Chem. A. 2019. V. 93. № 6. P. 866.
- 42. Shornikov S.I. //Ibid. 2019. V. 93. № 8. P. 1428.
- 43. *King E.G.* // J. Amer. Chem. Soc. 1955. V. 77. № 4. P. 2150.
- 44. *Todd S.S., Kelley K.K.* // U. S. Bur. Min. Repts. 1956. № 5193. 13 p.
- 45. *Jacob K.T., Abraham K.P.* // J. Chem. Thermodyn. 2009. V. 41. № 6. P. 816.
- 46. *Cho S.-W., Suito H. //* Met. Mater. Trans. A. 1994. V. 25. № 2. P. 5.
- 47. Kishi M., Suito H. // Steel Res. 1994. V. 65. № 7. P. 261.
- 48. Banon S., Chatillon C., Allibert M. // Can. Met. Q. 1981. V. 20. № 1. P. 79.
- Archakov I.Yu., Shornikov S.I., Tchemekova T.Yu., Shultz M.M. // Proc. 9th World Conf. on Titanium. Ed. by I.V. Gorynin and S.S. Ushkov. Saint-Petersburg: CRISM "Prometey", 2000. V. 3. P. 1464.
- Shornikov S.I., Archakov I.Yu., Shultz M.M. // Ibid. 2000. V. 3. P. 1469.
- Shornikov S.I., Archakov I.Yu. // Proc. II Intern. Symp. on High Temperature Mass Spectrometry. Ed. by L. Kudin, M. Butman, A. Smirnov. Ivanovo: ISUCST, 2003. P. 112–116.
- 52. *Казенас Е.К., Цветков Ю.В.* Испарение оксидов. М.: Наука, 1997. 543 с.
- 53. *Belton G.R., Fruehan R.J.* // Met. Trans. B. 1971. V. 2. Nº 1. P. 291.
- 54. *Stolyarova V.L., Zhegalin D.O., Stolyar S.V.* // Russ. Glass Phys. Chem. 2004. V. 30. № 2. P. 142.
- Zhang J., Huang S., Davis A.M. et al. // Geochim. Cosmochim. Acta. 2014. V. 140. P. 365.
- 56. Shornikov S.I., Archakov I.Yu., Chemekova T.Yu. // Russ. J. Phys. Chem. 2000. V. 74. № 5. P. 677.

- 57. Сидоров Л.Н., Коробов М.В., Журавлева Л.В. Массспектральные термодинамические исследования. М.: Изд-во МГУ, 1985. 208 с.
- 58. Warren J.W. // Nature. 1950. V. 165. № 4203. P. 810.
- 59. Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н. и др. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. 351 с.
- 60. *Shornikov S.I.* // Geochem. Int. 2002. V. 40. Suppl. 1. P. S46.
- 61. *Shornikov S.I.* // Geochem. Int. 2015. V. 53. № 12. P. 1080.

- 62. *Lewis G.N., Randall M.* Thermodynamics and The Free Energy of chemical Substances. N. Y. and L.: Mc-Grow-Hill book comp., 1923. 676 p.
- 63. Семенов Г.А., Николаев Е.Н., Францева К.Е. Применение масс-спектрометрии в неорганической химии . Л.: Химия, 1976. 152 с.
- 64. *Prigogine I., Defay R.* Chemical Thermodynamics. L.: Longman, 1954. 543 p.
- 65. *Shornikov S.I., Archakov I.Yu.* // Glastech. Ber. Glass. Sci. Technol. 2000. V. 73C2. P. 51.
- 66. *Shornikov S.I., Stolyarova V.L., Shultz M.M.* // Russ. J. Phys. Chem. 1997. V. 71. № 1. P. 19.