СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 539.193

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА УФ-СПЕКТРА ПОГЛОЩЕНИЯ ВЫСОКОГО РАЗРЕШЕНИЯ АЦЕТОФЕНОНА В ГАЗОВОЙ ФАЗЕ

© 2021 г. Л. А. Королева^{*a*,*}, К. С. Андриасов^{*a*}, А. В. Королева^{*b*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, 119991, Москва, Россия

^b Московский государственный университет имени М.В. Ломоносова, Физический факультет, 119991, Москва, Россия *e-mail: koroleva.msu@rambler.ru

> Поступила в редакцию 26.11.2020 г. После доработки 09.02.2021 г.

> Принята к публикации 10.02.2021 г.

Впервые получен УФ-спектр поглощения паров ацетофенона в области 26900–28700 см⁻¹. Проведено полное отнесение 54 полос поглощения разрешенной колебательной структуры этого спектра; значение волнового числа 0–0-полосы равно 27279.3 см⁻¹. Найдены фундаментальные частоты в S_0 и S_1 -состояниях: v'' = 219, v' = 326, v' = 438, v' = 728, v' = 1186 см⁻¹. С применением программы "NO-NIUS" построено несколько таблиц Деландра (ТД) для крутильного колебания исследуемой молекулы. Из ТД по программе v_{00} определены гармонические частоты ω_e , коэффициенты ангармоничности x_{11} и частоты 0–v-переходов крутильного колебания ацетофенона до высокого значения колебательного квантового числа v'' = 6 в S_0 - и v' = 2 в S_1 -состояниях. Частота крутильного колебания в S_0 -состоянии: v'' = 49.2 ± 0.4 см⁻¹; в S_1 -состоянии v' = 96.8 ± 0.3 см⁻¹.

Ключевые слова: заторможенное внутреннее вращение, крутильное колебание, таблица Деландра, частоты 0–v-переходов, основное (S_0) и возбужденное (S_1) электронные состояния **DOI:** 10.31857/S0044453721090090

Интерес к изучению заторможенного внутреннего вращения (ВВ) вокруг одинарной С-С-связи, находящейся в сопряжении с двойными С=Си С=О-связями, в α,β-ненасыщенных карбонильных соединениях (I): $R_1R_2C=CR_3-COR_4$, где $R_1 = R_2 = R_3 = H, CH_3; R_4 = H, CH_3, F, CI, Br и в$ бензойных соединениях (II): C_6H_5 -COR, где R = = H, CH₃, F, CI, Br наблюдается у различных групп исследователей в течение нескольких десятилетий [1–11]. Цель таких исследований, как и настоящей работы – определение частоты крутильного колебания и значений 0-v-переходов этого колебания для изучаемой молекулы. В наших работах для достижения поставленной цели, связанной с изучением (BB) соединений рядов I и II, используется метод анализа разрешенной колебательной структуры полос $n-\pi^*$ -перехода УФспектра поглощения высокого разрешения паров исследуемых соединений. Достоинство применяемого метода - его информативность, так как колебательная структура УФ-спектров паров многих исследуемых соединений содержит около сотни полос поглощения (акрилоилфторид [10] и метакрилоилфторид [12]). Большинство из этих

полос поглощения соответствуют определенному переходу между уровнями энергии крутильного колебания основного (S_0) и возбужденного (S_1) электронных состояний. Вероятно, это связано с высокой заселенностью уровней энергии крутильного колебания.

Таким образом, в применяемом нами методе, в отличие от ИК-фурье-спектроскопии в дальней ИК-области и микроволновой спектроскопии, можно определять значения частот 0–v-переходов крутильного колебания не только в основном (S_0) , но и в возбужденном (S_1) электронных состояниях до высоких значений колебательного квантового числа v. По полученным значениям частот 0–v-переходов крутильного колебания в S_0 - или в S_1 -состоянии можно построить потенциальные функции одномерного внутреннего вращения (ПФВВ) вида:

$$V(\varphi) = 1/2\Sigma V_n (1 - \cos n\varphi), \qquad (1)$$

где ϕ — угол поворота одной группы атомов ("волчка") относительно другой ("остова"). Для построения $V(\phi)$ необходимо также использовать

N*	Симмет- рия	Отнесе- ние [15]	Жидкость						Газ		УФ-спектр	
			ИК [15]	ИК [16]	KP [16]	ИК [17]	KP [17]	ИК [18]	ИК [19]	Микро- волнов. [13]	S_0	S_1
1	<i>a</i> ''	τ (torsion)						48	49.5	47.9	49	
2	<i>a'</i>	v_{30}	226	225		220		220	219		219	
3	<i>a'</i>	$\delta C_{Ar} - C - C$	368	368	365	368	365					326
4	<i>a</i> ''	γC=O	467	468	464	468	465					438
5	<i>a'</i>	v ₂₅	730	730	731	731	731					728
6	<i>a'</i>	ν_{18}	1181	1180	1178	1178	1179					1186

Таблица 1. Фундаментальные колебательные частоты ацетофенона в газовой фазе, найденные при анализе колебательной структуры УФ-спектра (см⁻¹)

 N^* — номер колебания.

вращательную постоянную $F(\phi)$ с разложением ее в ряд Фурье.

Настоящая работа посвящена изучению заторможенного внутреннего вращения паров ацетофенона: C_6H_5 -СОСН₃ (R = CH₃). Заторможенное внутреннее вращение рассматривается в рамках одномерной жесткой модели, когда при вращении вокруг С-С-связи одной части молекулы СОR (волчка) по отношению к оставшемуся остову (C_6H_5) изменяется только угол вращения φ . Частота крутильного колебания отделяется от других колебательных частот по симметрии и частоте: самая низкая частота симметрии a''.

Микроволновое исследование молекулы ацетофенона проведено в работе [13]. Авторы для основного состояния рассчитали врашательные постоянные (МГц): A = 3688.040(11), B = 1215.048(1), C == 919.919(1). Разностный дефект инерции, рассчитанный из дефекта инерции основного и крутильного возбужденного состояний, указывает на плоско-скелетное строение ацетофенона [13]. Все атомы молекулы, кроме двух атомов Н метильной группы, лежат в плоскости. Группа симметрии C_s. В метильной группе (CH₃) один атом Н находится в плоскости, второй — за плоскостью и третий впереди плоскости. В более поздней работе [14] проведено также микроволновое исследование ацетофенона с помощью импульсного струйного преобразования Фурье. Для ацетофенона использовано изотопозамещение, что позволило получить точное структурное описание углеродного скелета. Экспериментальные результаты этой работы находятся в хорошем согласии с данными [13], а квантово-механический расчет методом MP2/6-311++G(2dt,2pd), проведенный авторами [14], близок ко всем экпериментальным величинам работ [13] и [14].

Ацетофенон — сложный объект для спектральных исследований, так как имеет высокую температуру кипения (202°С) и низкое давление паров при комнатной температуре. Поэтому ИК- и КРспектры в [15-17] получены и изучены в основном для жидкого состояния ацетофенона (табл. 1). Авторам [15] удалось получить некоторые полосы поглощения ИК-спектра исследуемого соединения в газовой фазе, но не во всем спектральном диапозоне исследования (130-4000 см⁻¹). Частота крутильного колебания ацетофенона в газовой фазе найдена из ИК-спектров в дальней области: 48 ± 2 см⁻¹ [18]: близкое значение (49.5 см⁻¹) получено из ИК-фурье-спектров в [19]. Значения частот крутильного колебания в основном (S_0) электронном состоянии, найденные в работах [18, 19], как и полученное из микроволнового спектра [13], приведены в табл. 1. Наряду с экспериментальными значениями колебательных частот ацетофенона, в работе [20] определены нормальные координаты этой молекулы, и с использованием валентного силового поля рассчитаны колебательные частоты. В [21] проведен квантово-механический расчет колебательных частот ацетофена с применением теории Хартри-Фока. Частота крутильного колебания (49.15 см⁻¹ [21]) близка к ее экспериментальным значениям [13. 18, 19]; рассчитанные колебательные частоты [20, 21] близки к экспериментальным [15-17].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Перед съемкой УФ-спектра поглощения образец ацетофенона очищали от примесей путем обычной и холодной перегонки с замораживанием и вакуумной откачкой. УФ-спектры поглощения ацетофенона получали на приборе высокого разрешения ДФС-2. Снимали во втором порядке решетки 2400 штрихов/мм с обратной линейной дисперсией 8.3 Å/мм. В качестве источника сплошного излучения применяли лампу ДКСШ-1000. Использовали многоходовую (3 м) кварцевую кювету с рубашкой, по которой пропускали нагретое силиконовое масло. Давление паров из-

менялось от 50 до 400 мм рт. ст. Давление паров удавалось менять благодаря конструкции кюветы: от внутренней части кюветы отходил сборник вещества в виде небольшой пробирки. После откачивания кюветы до высокого вакуума с помощью замораживания сборника вещества жидким азотом собирали в него ацетофенон. Давление паров повышали при нагреве сборника ацетофенона силиконовым маслом. Время экспозиции меняли от нескольких минут до часов, так что в область нормального почернения попадали разные участки спектра. Спектры фотографировали на пленку КН-2. Спектры для ацетофенона удалось получить только из ампул "для спектроскопии", как и для бензоилхлорида. В области 26900-28700 см⁻¹ была получена хорошо разрешенная колебательная структура УФ-спектра паров ацетофенона с 54 полосами поглощения сильной и средней интенсивности. Для измерения волновых чисел полос поглощения паров ацетофенона снимали спектр железа.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

УФ-спектры поглощения ацетофенона изучались очень давно: в пятидесятые годы прошлого столетия [22–24]; спектры ацетофенона в газовой фазе были получены в длинноволновой области (9–13 полос поглощения). Как следует из обзорного спектра работы [23], наблюдаемый переход относится к π - π *-переходу ацетофенона; волновое число 0–0-перехода равно 35375 см⁻¹ [22, 24]. Колебательная структура УФ-спектра поглощения исследуемого соединения позднее не изучалась. Очевидно, это связано с высокой температурой кипения и низким давлением паров ацетофенона, что вызывает трудности в эксперименте.

Нами впервые получена разрешенная колебательная структура УФ-спектра поглощения паров ацетофенона в области 26900-28700 см⁻¹. Полосы поглощения УФ-спектра паров ацетофенона отнесены к электронному переходу $S_0 \rightarrow S_1$ симметрии ${}^{1}A' - {}^{1}A''$ и, судя по интенсивности, к $n - \pi^*$ -переходу по аналогии с молекулой бензальдегида и бензоилфторида [1, 5, 9, 25, 26]. Колебательная структура УФ-спектра ацетофенона, полученного в настоящей работе, состоит из широких полос C- и (A + B)-типов. Перпендикулярные полосы С-типа имеют максимум на своем контуре; параллельные полосы (A + B)-типа состоят из двух нешироких компонент, между которыми наблюдается провал. Начала полос обоих типов неизвестны. Однако, для определения частот колебаний в УФ-спектре поглощения используются разностные величины. Поэтому важно измерять полосы одного типа единообразно. Полосы С-типа измерялись нами по максимуму поглощения, (A + B)-типа — по провалу на контуре.

Выражение для волновых чисел всех возможных колебательных переходов данного электронного перехода (т.е. системы полос) имеет вид [27]:

$$\mathbf{v} = \mathbf{v}_{\rm e} + G'(v'_1, v'_2, v'_3, \dots) - G''(v''_1, v''_2, v''_3, \dots),$$

где $v_e = T'_e - T''_e$. Подставив выражения для колебательных термов, получим [27]:

$$\nu = \nu_{e} + \sum_{i} \omega'_{i}(v'_{i} + 1/2) + \sum_{i} \sum_{k \ge i} x'_{ik}(v'_{i} + 1/2) \times \times (v'_{k} + 1/2) - \sum_{i} \omega''_{i}(v''_{i} + 1/2) + + \sum_{i} \sum_{k \ge i} x''_{ik}(v''_{i} + 1/2)(v''_{k} + 1/2).$$
(2)

На практике бывает удобнее пользоваться энергиями уровней по отношению к энергии самого низкого колебательного уровня в каждом состоянии [27]:

$$\nu = \nu_{oo} + \sum_{i} \omega_{i}^{o'} v_{i}^{'} + \sum_{i} \sum_{k \ge i} x_{ik}^{o'} v_{i}^{'} v_{k}^{'} - \sum_{i} \omega_{i}^{o''} v_{i}^{''} + \sum_{i} \sum_{k \ge i} x_{ik}^{o''} v_{i}^{''} v_{k}^{''} - \dots,$$
(3)

где

$$\omega_{i}^{\circ} = \omega_{i} + x_{ii} + 1/2 \sum_{i \neq k} x_{ik},$$

$$\nu_{oo} = \nu_{e} + 1/2 \sum_{i} \omega_{i}' + 1/4 \sum_{i} \sum_{k \geq i} x_{ik}^{\circ'} - 1/2 \sum_{i} \omega_{i}'' - 1/4 \sum_{i} \sum_{k \geq i} x_{ik}''.$$

Здесь штрих соответствует возбужденному электронному состоянию, а два штриха — основному. Обычно крутильная частота ω_t намного меньше других и легко отделяется от них. В такой ситуации ее можно рассматривать в приближении ангармонического осциллятора:

$$\omega_{tv} = v\omega_{e} + v(v+1)x_{tt} + v\delta = v\omega_{to} + v(v+1)x_{tt}, \quad (4)$$

где $\delta = 1/2(x_{t1} + x_{t2} + ...), \omega_{te} + \delta = \omega_{to}$. Так как колебательная структура $n - \pi^*$ -перехода ацетофенона высокоинформативна, из ее анализа можем получить богатую информацию о значениях частот 0-v-переходов крутильного колебания в обоих электронных состояниях до высоких значений колебательных квантовых чисел v" и v'.

В результате анализа колебательной структуры УФ-спектра поглощения высокого разрешения паров ацетофенона в настоящей работе было определено волновое число 0–0-полосы, равное 27279.3 см⁻¹, близкое к полученным в работах [28–30] (27280, 27286, 27279 см⁻¹), в которых изучался $n-\pi^*$ -переход $S_0 \rightarrow S_1$ по спектрам возбуждения фосфоресценции ацетофенона в сверхзвуковой струе. Кроме того, полученное нами значе-

N⁰	ω _i Отнесение		N⁰	ω_i	Отнесение
1	26870.8	$2_1^0 1_4^0$	28	27 572.0	$4_0^1 1_3^0$
2	26923.3	$2_1^0 1_5^1$	29	27578.4	$4_0^1 1_5^1$
3	26963.2	$2_1^0 1_2^0$	30	27605.1	3_0^1
4	26998.4	1_{6}^{0}	31	27619.2	$4_0^1 1_2^0$
5	27011.2	$2_1^0 1_1^0$	32	27651.6	$3_0^1 1_1^1$
6	27017.4	$2_1^0 1_5^2$	33	27667.6	$4_0^1 1_1^0$
7	27042.8	1_{5}^{0}	34	27701.8	$3_0^1 1_0^1$
8	27060.4	2_{1}^{0}	35	27717.2	4_0^1
9	27088.1	1_{4}^{0}	36	27747.3	$3_0^1 1_1^2$
10	27095.2	1_{6}^{1}	37	27762.5	$4_0^1 1_3^2$
11	27 107.6	$2_1^0 1_3^2$	38	27771.7	$5_0^1 1_5^0$
12	27 134.4	1_{3}^{0}	39	27796.5	$3_0^1 1_0^2$
13	27 157.2	$2_1^0 1_0^1$	40	27809.8	$4_0^1 1_2^2$
14	27 181.7	1^{0}_{2}	41	27813.7	$4_0^1 1_0^1$
15	27230.0	1_{1}^{0}	42	27824.8	$5_0^1 1_6^1$
16	27279.3	0_{0}^{0}	43	27862.7	$5_0^1 1_3^0$
17	27326.8	1_{1}^{1}	44	27910.4	$5_0^1 1_2^0$
18	27370.6	$3_0^1 1_5^0$	45	27958.1	$5_0^1 1_1^0$
19	27376.1	1_{0}^{1}	46	28007.2	5_0^1
20	27415.1	$3_0^1 1_4^0$	47	28054.8	$5_0^1 1_1^1$
21	27421.0	1_1^2	48	28103.8	$5_0^1 1_0^1$
22	27460.8	$3_0^1 1_3^0$	49	28198.2	$5_0^1 1_0^2$
23	27471.1	1_0^2	50	28274.5	$6_0^1 1_4^0$
24	27 507.7	$3_0^1 1_2^0$	51	28416.1	$6_0^1 1_1^0$
25	27526.0	$4_0^1 1_4^0$	52	28465.3	6_0^1
26	27534.1	$4_0^1 1_6^1$	53	28562.4	$6_0^1 1_0^1$
27	27556.1	$3_0^1 1_1^0$	54	28657.3	$6_0^1 1_0^2$

Таблица 2. Волновые числа полос поглощения УФспектра паров ацетофенона (см⁻¹)

Примечание: $N_{v'}^{v'} - N$ соответствует номеру колебания в табл. 1; v'' – колебательное квантовое число основного (S_0) электронного состояния, v' – колебательное квантовое число возбужденного (S_1) электронного состояния.

ние волнового числа 0—0-полосы подтверждается фундаментальными колебательными частотами в ИК- и КР-спектрах основного (S_0) электронного состояния и фундаментальными частотами возбужденного (S_1) состояния, найденными в настоящей работе при анализе колебательной структуры УФ-спектра (табл. 1). Частоты возбужденного состояния ацетофенона нашей работы совпадают с определенными в [28, 30], а также подтверждаются нами построением от них таблиц Деландра (ТД) таких же, как от 0—0-полосы.

Для построения таблиц Деландра использовали программу NONIUS. По программе NONIUS находили прогрессии и секвенции по повторяющимся интервалам. Определили прогрессии и секвенции по частотам 49 и 97 см⁻¹. Частота крутильного колебания ацетофенона в основном (S_0) электронном состоянии, полученная в настоящей работе, составляет 49.2 \pm 0.4 см⁻¹, близка к полученной в работах [13, 18, 19] и несколько больше, чем в [29] (45 см⁻¹). Для возбужденного электронного состояния S₁ частота крутильного колебания неизвестна; полученное в настоящей работе значение составляет 96.8 \pm 0.3 см⁻¹. Поиск среди всех 54 волновых чисел УФ-спектра ацетофенона по программе "NONIUS" прогрессий, которые являются строками и столбцами (ТД). и секвенций – диагональных элементов этой таблицы, привел к построению надежных таблиц Деландра. В таблицах Деландра, которые строятся от 0-0-полосы и от фундаментальных частот, выполняется равенство значений частот одинаковых переходов крутильного колебания во всех строках (частоты переходов крутильного колебания в основном электронном S₀-состоянии). В столбцах ТД также выполняется равенство уже других значений частот одинаковых переходов крутильного колебания (частоты переходов крутильного колебания в возбужденном электронном состоянии S_1).

При анализе колебательной структуры УФспектров поглощения паров ацетофенона было установлено, что с такими же значениями частот 0-v"- и 0-v'-переходов крутильного колебания, как в ТД от 0-0-полосы, строятся информативные таблицы Деландра с началами, отстоящими от 0-0-полосы на величину ∆ω, равную -219, +326, +438, + 728 и +1186 см⁻¹. Полосы поглощения, отстоящие от 0-0-полосы ацетофенона на эти величины в сторону уменьшения волновых чисел (-219) относятся к фундаментальным частотам этой молекулы в S_0 -состоянии, а в сторону увеличения волновых чисел к фундаментальным частотам в S₁-состоянии (табл. 1). Для ацетофенона были построены ТД от 0–0-полосы, $v'' = 219 \text{ см}^{-1}$, $v' = 326 \text{ см}^{-1}$, $v' = 438 \text{ см}^{-1}$, $v' = 728 \text{ см}^{-1}$, v' = 1186 см⁻¹ (табл. 2). (ТД) от 0-0-полосы и v' = $= 326 \text{ см}^{-1}$ приведены табл. 3 и 4. Для определения значений частот 0-v-переходов крутильного колебания, гармонических частот ω и коэффициентов ангармоничности x₁₁ этого колебания в обоих электронных состояниях применялась разработанная нами программа v₀₀. Значения частот одинаковых переходов 0-v" крутильного колебания, гармонических частот ω_е и коэффициентов ангармоничности x₁₁ этого колебания в основном (S_0) электронном состоянии, полученные из таб-

Таблица 3. Таблица Деландра от 0–0-полосы ацетофенона

v '	v"									
v	0	1	2	3	4	5	6			
0	16	15	14	12	9	7	4			
1	19	17					10			
2	23	21								

Примечание. Номера полос поглощения в табл. 3, 4 соответствуют их номерам в табл. 2.

Таблица 4. Таблица Деландра от $v' = 326 \text{ см}^{-1}$ ацетофенона

v'	v''									
v	0	1	2	3	4	5	6			
0	30	27	24	22	20	18				
1	34	32								
2	39	36								

лиц Деландра от 0–0-полосы, $v'' = 219 \text{ см}^{-1} v' = 326 \text{ см}^{-1}$, $v' = 438 \text{ см}^{-1}$, $v' = 728 \text{ см}^{-1}$, $v' = 1186 \text{ см}^{-1}$ находятся в хорошем согласии (табл. 5). В трех таблицах Деландра: от 0–0-полосы, $v' = 438 \text{ см}^{-1}$ и $v' = 728 \text{ см}^{-1}$ близкие значения частот 0–v''-переходов крутильного колебания в основном (S_0)

электронном состоянии наблюдаются до высокого значения колебательного квантового числа v = = 6 (табл. 5). Многократность повторения значений частот одинаковых 0-у"-переходов крутильного колебания как внутри одной таблицы Деландра, так и в нескольких ТД обеспечивает надежность определения их значений 0-v" в S₀состоянии. Значения частот одинаковых 0-и'-переходов крутильного колебания, гармонических частот ω_{a} и коэффициентов ангармоничности x_{11} этого колебания в возбужденном (S1) электронном состоянии. полученные из шести таблиц Деландра: от 0-0-полосы, $v'' = 219 \text{ см}^{-1}$, $v' = 326 \text{ см}^{-1}$, $v' = 438 \text{ cm}^{-1}$, $v' = 728 \text{ cm}^{-1}$, $v' = 1186 \text{ cm}^{-1}$, находятся в хорошем согласии до колебательного квантового числа v = 2 (табл. 6). Многократность повторения значений частот одинаковых переходов в нескольких ТД до v = 2 также обеспечивает надежность их определения в S_1 -состоянии.

Информативность колебательной структуры полос $n-\pi^*$ -перехода УФ-спектра поглощения паров ацетофенона, полученного нами впервые, позволила определить 0-0-переход молекулы и фундаментальные частоты не только в S_0 -, но и в S_1 -состоянии. Вследствие высокой заселенности уровней энергии крутильного колебания исследуемой молекулы удалось построить таблицы Деландра, из которых определены значения частот 0-v-переходов крутильного колебания в элек-

0-v'' переход	v_{00}	v'' = 219	v' = 326	v' = 438	v' = 728	v' = 1186	Средние значения
0-1	49.3	49.2	49.0	49.6	49.1	49.2	49.2 ± 0.4
0-2	97.6	97.2	97.4	98.0	96.8	97.4	97.4 ± 0.6
0-3	144.9	144.0	144.3	145.2	144.3	144.6	144.6 ± 0.6
0—4	191.2	189.6	190.0	191.2	190.4	190.8	190.5 ± 0.9
0-5	236.5	234.5	234.8	235.4	235.5		235.3 ± 1.2
0-6	280.8			279.6	279.6		280.0 ± 0.8
ω _e	50.3	50.4	50.5	50.8	50.1	50.2	50.4 ± 0.4
$-x_{11}$	0.5	0.6	0.6	0.6	0.5	0.5	0.6 ± 0.1

Таблица 5. Частоты переходов крутильного колебания и значения ω_e , x_{11} для ацетофенона в основном (S_0) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра (см⁻¹)

Таблица 6. Частоты переходов крутильного колебания и значения ω_e , x_{11} для ацетофенона в возбужденном (S_1) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра (см⁻¹)

0-v' переход	v_{00}	v" = 219	v' = 326	v' = 438	v' = 728	v' = 1186	Средние значения
0-1	97.0	96.8	96.7	96.5	96.6	97.1	96.8 ± 0.3
0-2	191.6	191.2	191.4	190.6	191.0	192.0	191.3 ± 0.7
ω _e	99.4	99.2	98.7	98.9	98.8	99.3	99.1 ± 0.4
$-x_{11}$	1.2	1.2	1.0	1.2	1.1	1.1	1.1 ± 0.1

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95

5 № 10 2021

тронных S_0 - и S_1 -состояниях до высокого колебательного числа в S_0 -состоянии. Многократность повторения значений частот одинаковых 0—v-переходов крутильного колебания как внутри одной таблицы Деландра, так и в нескольких ТД обеспечивает надежность определения их значений в обоих электронных состояниях. Такая надежность в значениях 0—v-переходов крутильного колебания обеспечивает в дальнейшем точное построение ПФВВ и определение барьеров внутреннего вращения в обоих электронных состояниях молекулы ацетофенона.

СПИСОК ЛИТЕРАТУРЫ

- Hollas J.M., Gregorek E., Goodman L. // J. Chem. Phys. 1968. V. 49. № 4. P. 1745. https://doi.org/10.1063/1.1670302
- 2. Глебова Л.А., Марголин Л.Н., Пентин Ю.А., *Тюлин В.И.* // Журн. структур. химии. 1976. Т. 17. № 4. С. 703. https://doi.org/10.1007/BF00753447
- Глебова Л.А., Абраменков А.В., Марголин Л.Н. и др. // Там же. 1979. Т. 20. № 6. С. 1030. https://doi.org/10.1007/BF00753193
- 4. Durig J.R., Church J.S., Compton D.A.C. // J. Chem. Phys. 1979. V. 71. № 3. P. 1175. https://doi.org/10.1063/1.438463
- 5. Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Вестн. МГУ. Сер. 2. Химия. 1980. Т. 21. № 1. С. 22.
- 6. *Balfour W.* // J. Mol. Spectr. 1980. V. 84. № 1. P. 60. https://doi.org/10.1016/0022-2852(80)90238-6
- Durig J.R., Berry R.J., Groner P. // J. Chem. Phys. 1987. V. 87. P. 6303. https://doi.org/10.1063/1.453460
- Durig. J.R., Li Y., Jin Y. // Mol. Phys. 1997. V. 91. P. 421. https://doi.org/10.1080/002689797171319
- 9. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // Вестн. МГУ. Сер. 2. Химия. 2000. Т. 41. № 1. С. 16
- Koroleva L.A., Tyulin V.I., Matveev V.K., Pentin Yu.A. // Spectrochimica Acta A.: Mol. and Biomol., Spectros. 2014. V. 122. P. 609. https://doi.org/10.1016/j.saa.2013.11.038
- Koroleva L.A., Abramenkov A.V., Krasnoshchekov S.V. et al. // J. Mol. Struct. 2019. V. 1181. P. 228. https://doi.org/10.1016/j.molstruc.2018.12.065

- 12. Королева Л.А., Матвеев В.К., Королева А.В., Пентин Ю.А. // Журн. физ. химии. 2018. Т. 92. № 3. С. 415. https://doi.org/10.7868/S0044453718030111
- Onda M., Kohama Y., Suga K., Yamaguchi I. // J. Mol. Struct. 1998. V. 442. P. 19. https://doi.org/10.1016/S0022-2860(97)00067-7
- Lei J., Zhang J., Feng G. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 22888. https://doi.org/10.1039/c9cp03904j
- Gambi A., Giorgianni S., Passerini A. et al. // Spectrochimica. Acta A. 1980. V. 36. P. 871. https://doi.org/10.1016/0584-8539(80)80036-5
- 16. *Green J.H.S., Harrison D.J.* // Ibid. 1977. V. 33. P. 583. https://doi.org/10.1016/0584-8539(77)80051-2
- 17. *Mboss W.D., Zundel G. //* Ibid. 1970. V. 26A. P. 1097. https://doi.org/10.1016/0584-8539(70)80013-7
- Miller F, Fateley W.G., Witkowski R.E. // Ibid. 1967. V. 23A. P. 891. https://doi.org/10.1016/0584-8539(67)80016-3
- Durig J.R., Bist H.D., Furic K. et al. // J. Mol. Struct. 1985. V. 129. № 1–2. P. 45. https://doi.org/10.1016/0022-2860(85)80191-5
- 20. Sett P., Chattopadhyay S., Mallick P.K. // J. Raman Spect. 2000. V. 31. P. 177. https://doi.org/10.1002/(SICI)1097-4555(200003)31: 3<177::AID-JRS509>3.0.CO;2-K
- Tememee N.M.A.L. // J. Kerbala University. 2013. V. 11. № 3. Scientific. P. 315.
- 22. Imanishy B.S., Semba K., Ito M., Anno T. // Jap. Bull.Ch.Soc. Jap. 1952. V. 25. № 3. P. 150.
- Vanselow R.D., Duncan A.B.F // J. Am. Chem. Soc. 1953. V. 75. № 4. P. 829. https://doi.org/10.1021/ja01100a020
- 24. Bapat R.N. // Indian J. Phys. 1957. V. 32. № 5. P. 30.
- 25. Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Вестн. МГУ. Сер. 2. Химия. 1980. Т. 21. № 2. С. 125.
- 26. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // Там же. 1999. Т. 40. № 1. С. 9.
- 27. *Herzberg G.* Electronic Spectra and Structure of Polyatomic Molecules. M.: Mir, 1969.
- Kamei S., Okuyami K., Abe H. et al. // J. Phys. Chem. 1986. V. 90. P. 93. https://doi.org/10.1021/j100273a022
- Tomer J.L., Spangler L.H., Pratt D.W. // J. Am. Chem. Soc. 1988. V. 110. P. 1615. https://doi.org/10.1021/ja00213a041
- Ohmori N., Suzuki T., Jto M. // J. Phys. Chem. 1988.
 V. 92. P. 1086. https://doi.org/10.1021/j100316a019