= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 541.8;537.226

СВЧ-ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И РЕЛАКСАЦИЯ ВОДНЫХ РАСТВОРОВ 2,2-ДИМЕТИЛ-1,3-ДИОКСОЛАНА

© 2021 г. А. К. Лященко^{*a*,*}, И. В. Балакаева^{*a*,**}, Н. А. Смирнова^{*b*}, Е. А. Сафонова^{*b*}

^а Российская академия наук, Институт общей и неорганической химии им. Н.С. Курнакова, Москва, Россия ^b Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

> *e-mail: aklyas@mail.ru **e-mail: balak11@mail.ru Поступила в редакцию 20.01.2021 г. После доработки 20.01.2021 г. Принята к публикации 29.01.2021 г.

Представлены результаты измерения СВЧ-диэлектрических свойств водных растворов 2,2-диметил-1,3-диоксолана на семи частотах в интервале 5–25 ГГц при температурах 288, 298, 308 К. Рассчитаны статические диэлектрические константы, времена и активационные параметры процесса диэлектрической релаксации. Выделено влияние неполярной группы молекул на воду.

Ключевые слова: гидратация, структура воды, 2,2-диметил-1,3-диоксолан, релаксация, диэлектрические свойства

DOI: 10.31857/S0044453721090132

Гидратационный процесс в растворах неэлектролитов рассматривается по изменению динамики молекул воды в гидратных оболочках. определяемой методом СВЧ-диэлектрической спектроскопии в области максимума дисперсии воды. При этом в разных случаях возможно как увеличение, так и уменьшение степени связанности и структурированности воды при переходе от воды к раствору. Это следует из анализа температурной зависимости времени диэлектрической релаксации растворов [1-6]. В работе [7] было начато изучение указанных свойств водных растворов диолов, которые в последнее время приобретают повышенный теоретический и практический интерес (см., например, [7], и др.). В настоящей работе рассматривается переход от растворов 1,3-диоксалана (ДО) к растворам 2,2-диметил-1,3-диоксолана (ДМД), где увеличивается доля неполярных групп в соответствии со схемой на рис. 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследована высокочастотная диэлектрическая проницаемость є' и потери є" водных растворов 2,2-диметил-1,3-диоксолана (ДМД) (моляльность m = 0.5, 0.99, 1.49, 2.00, моль/кг воды) на частотах f = 7.5, 13, 16, 18.9, 22, 25 ГГц при температурах 288, 298, 308 К. Для измерений

комплексной диэлектрической проницаемости водных растворов в сантиметровом диапазоне длин волн использован метод "цилиндрического стерженька" в волноводе [8]. Аппаратура и методика измерений представлена в [9, 10]. Значения относительной погрешности є' и є" составляют $\pm 1.5 - 2$ и $\pm 2 - 2.5\%$ соответственно. Так как рассматриваемые водные растворы не являются проводящими жидкостями, то их диэлектрические потери не имеют дипольную и ионную составляющие. Поэтому для определения дипольных потерь, связанных только с гидратацией молекул, не следует учитывать потери, вносимые электропроводностью. Растворы для исследований готовились весовым методом на основе билистиллята.

Рис. 1. Структурная формулы 1,3-диоксолана (а) и 2,2-диметил-1,3-диоксолана (б).

т,	7.5 ГГц		10 ГГц		13 ГГц		16 ГГц		18.9 ГГц		22 ГГц		25 ГГц	
моль/кг	ε'	εď	ε'	ε''	ε'	$\epsilon_d^{\prime\prime}$	ε'	εď	ε'	ε''	ε'	$\epsilon_d^{\prime\prime}$	ε'	$\epsilon_d^{\prime\prime}$
288 K														
0.00	65.8	31.5	57.2	36.1	47.7	38.3	39.7	38.4	33.5	37.2	28.3	35.4	24.3	33.4
0.50	60.3	31.1	51.4	36.1	42.2	37.7	37.6	35.6	29.2	34.4	24.8	32.6	20.8	29.5
0.99	55.5	31.6	46.2	35.0	34.5	30.5	31.2	33.1	25.8	32.2	21.7	29.7	18.6	27.0
1.49	50.1	30.7	42.5	35.1	31.8	30.8	27.2	32.2	23.1	30.0	19.0	27.3	16.7	25.0
2.00	46.3	30.5	38.5	33.9	30.6	31.5	26.0	30.5	21.1	28.2	17.7	25.2	15.0	22.8
298 K														
вода	68.7	24.8	62.8	30.0	55.4	34.0	48.5	36.1	42.3	36.7	36.9	36.4	32.4	35.5
0.50	62.6	25.2	58.5	31.4	50.4	34.4	44.3	35.3	37.6	35.6	33.4	34.3	28.2	32.9
0.99	58.3	25.8	54.9	32.1	45.9	36.6	40.8	33.6	34.2	33.5	29.7	32.4	25.3	30.3
1.49	53.6	25.5	50.1	31.3	42.1	33.0	36.7	31.0	30.0	31.6	26.5	30.4	22.5	28.3
2.00	50.3	25.4	47.0	31.9	39.2	32.5	35.3	32.2	27.3	30.2	24.2	30.1	20.7	26.2
308 K														
0.00	69.0	19.5	65.0	24.3	59.7	28.8	54.2	31.9	49.0	33.8	43.9	34.7	39.5	35.0
0.50	64.8	20.4	61.5	25.7	55.6	29.6	48.1	31.3	44.7	32.8	39.7	33.7	36.4	33.6
0.99	62.1	20.9	59.1	26.0	52.5	30.1	45.8	31.9	41.1	31.8	36.0	32.7	31.0	31.1
1.49	59.1	21.6	55.4	26.6	50.4	30.6	48.6	30.2	37.8	30.8	32.7	31.0	28.4	28.4
2.00	55.5	21.9	52.2	27.0	45.8	29.9	39.0	30.7	35.0	29.6	30.0	29.7	25.7	25.7

Таблица 1. Диэлектрическая проницаемость и дипольные потери водных растворов 2,2-диметил-1,3-диоксолана

МЕТОДИКА РАСЧЕТОВ

Комплексную диэлектрическую проницаемость (є*) определяли [11, 12] по уравнению:

$$e^* = \varepsilon' - i\varepsilon'',\tag{1}$$

где є' — высокочастотная диэлектрическая проницаемость; є" — полные потери на определенной частоте. Дипольные потери в данном случае равны полным потерям. Частотная зависимость комплексной диэлектрической проницаемости растворов при всех изученных температурах и концентрациях соли описывается уравнением Коула–Коула:

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\tau \omega^{1-\alpha}},$$
(2)

где ε_s — низкочастотный предел области дисперсии, который в отсутствие добавочных низкочастотных релаксационных процессов является

Рис. 2. Диаграммы Коула–Коула водных растворов 2,2-диметил-1,3-диоксолана при 298 К. Цифры на диаграммах – частоты, на которых проведены измерения є' и є'.

СВЧ-ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

<i>т,</i> моль/кг	288 K			298 K				308 K		$\Delta H_{\varepsilon}^{++},$	$\Delta G_{\varepsilon}^{++}$,	$T\Delta S_{\varepsilon}^{++}$,
	$\epsilon_{\rm s}$	τ, пс	α	ε _s	τ, пс	α	ε _s	τ, пс	α	кДж/моль	кДж/моль	кДж/моль
0.00	82.1	11.0	0.00	78.4	8.3	0.00	74.9	6.5	0.00	17.2	9.8	7.5
0.50	79.5	12.2	0.01	75.6	9.0	0.00	72.4	7.1	0.00	18.0	10.0	8.0
0.99	76.5	13.4	0.02	73.5	9.9	0.01	71.7	7.9	0.03	17.4	10.2	7.2
1.49	72.0	14.3	0.00	69.2	10.5	0.00	70.0	8.5	0.04	16.7	10.4	6.3
2.00	71.8	15.7	0.02	68.3	11.4	0.00	67.5	9.0	0.03	17.8	10.6	7.3

Таблица 2. Диэлектрические свойства водных растворов 2,2-диметил-1,3-диоксолана

статической диэлектрической константой, τ – наиболее вероятное время диэлектрической релаксации, α – параметр распределения времен релаксации, ϵ_{∞} – высокочастотный предел для рассматриваемой области дисперсии. Так же, как и в других работах, для растворов было принято $\epsilon_{\infty} = 5$, так как было показано [10], что эта величина не сильно меняется с концентрацией.

Значения є' и є'' представлены в табл. 1. На рис. 2 приведены диаграммы Коула–Коула для водных растворов ДМД при 298 К. Частотные зависимости є'' от є' хорошо описываются полуокружностями. Небольшие значения параметра времен релаксации α в табл. 2 указывают на применимость модели Коула–Коула для расчета параметров диэлектрической релаксации растворов.

Время диэлектрической релаксации т находили графически (рис. 3) с использованием метода, в котором анализируется частотная зависимость функции:

$$f = [(\varepsilon_{\rm s} - \varepsilon')^2 + (\varepsilon_{\rm d}'')^2] / [(\varepsilon' - \varepsilon_{\infty})^2 + (\varepsilon_{\rm d}'')^2] = V/U.$$
(3)

Данная функция в логарифмическом масштабе соответствует прямой линии, а точка пересечения

функции *f* с осью абсцисс отвечает частоте максимума дипольных потерь ω_0 . При этом $\tau = 1/\omega_0$. Изменение угла наклона для данной зависимости определяется величиной α .

Так как в первом приближении зависимость Int от обратной температуры линейна в указанном интервале температур, для вычисления активационных параметров процесса релаксации (энтальпии $\Delta H_{\varepsilon}^{++}$, энергии Гиббса $\Delta G_{\varepsilon}^{++}$ и энтропии $\Delta S_{\varepsilon}^{++}$) были применены соотношения теории абсолютных скоростей реакций. Рассчитанные параметры ε_{s} , τ , α , $\Delta H_{\varepsilon}^{++}$, $\Delta G_{\varepsilon}^{++}$ и $T\Delta S_{\varepsilon}^{++}$ представлены в табл. 2. Значения τ не зависят от частоты в пределах погрешности эксперимента (±5%).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные характеристики, определяющие рассматриваемую релаксационную модель, представлены в табл. 2 и на рис. 4. В случае раствора 2,2-диметил-1,3-диоксолана наблюдается уменьшение статической диэлектрической проницаемости ε_s при переходе от воды к раствору. Это яв-

Рис. 3. Графическое определение наиболее вероятного времени дипольной релаксации в растворах 2-диметил-1,3-диоксолана ($\tau = 1/\omega_0$) при 298 K и различных значениях *m* (моль/кг H₂O): I - 0, 2 - 0.50, 3 - 0.99, 4 - 1.49, 5 - 2.00.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 10 2021

Рис. 4. Концентрационные зависимости времени τ , статической диэлектрической константы ε_s и энтальпии активации $\Delta H_{\varepsilon}^{++}$ диэлектрической релаксации водных растворов 1,3-диоксолана (пунктир) и 2,2-диметил-1,3-диоксолана (сплошная линия).

ляется достаточно общим для водно-неэлектросистем. Показан рост времени литных лиэлектрической релаксании τ так же. как и в случае исходной молекулы 1,3-диоксолана [7]. Здесь он выражен в большей степени. Это свидетельствует о наличии подвижности молекул воды в растворах (при этом сами молекулы неэлектролитов релаксируют на других частотах). В то же время механизм, определяющий увеличение т здесь другой, чем в случае молекулы ДО. Для растворов ДО рост т определяется уменьшением энтальпии и энтропии активации диэлектрической релаксации при переходе от воды к раствору. Это соответствует случаю преобладания влияния полярных групп молекулы, определяющих гидрофильную гидратацию. Как и в других водных растворах, такие изменения реализуются при появляющихся структурных несоответствиях структуры исходной воды и гидратной оболочки молекулы. Изменения при переходе от ДО к ДМД связаны с ростом неполярной части молекулы. Как и в других подобных системах это обусловливает увеличение степени связанности и структурированности сетки Н-связей. Такой эффект наблюдается при гидрофобной гид-

ратации. Он определяет рост ΔH_{ϵ}^{++} и ΔS_{ϵ}^{++} . Аналогичный эффект ранее наблюдался при переходе от ДО к ДМДМ (при минимальном влиянии добавочной ОН⁻ группы [7]. В то же время рассматриваемое изменение невелико. Это видно из рис. 4.

Таким образом, появление в молекуле ДО добавочных неполярных групп приводит к изменению вида превалирующих гидратационных изменений. Для растворов ДМД характерно преобладание слабовыраженной гидрофобной гидратации.

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований и поддержана РФФИ, (код проекта № 19-03-00033).

СПИСОК ЛИТЕРАТУРЫ

- Lyashchenko A.K. // Adv. Chem. Phys. 1994. V. 87. P. 379.
- 2. Lyashchenko A.K., Novskova T.A., Lileev A.S., Kharkin V.S. // J. Mol. Liq. 2001. V. 93. P. 29.
- 3. Loginova D.V., Lileev A.S., Lyashchenko A.K., Kharkin V.S. // Mendeleev Comm. 2003. № 2. P. 68.
- Логинова Д.В., Лилеев А.С., Лященко А.К., Иванова К.С. и др. // Журн. неорган. химии. 2003. Т. 48. № 10. С. 1686.
- 5. Loginova D.V., Lileev A.S., Lyashchenko A.K., Kharkin V.S. // Mendeleev Comm. 2003. № 2. P. 68.
- Lyashchenko A.K., Lileev A.S. // J. Chem. Eng. Data. 2010. V. 55. P. 2008.
- 7. Балакаева И.В., Лященко А.К., Смирнова Н.А., Сафонова Е.А. // Журн. физ. химии. 2021. Т. 95. № 1.
- Брандт А.А. Исследование диэлектриков на сверхвысоких частотах, М.: Изд-во физ.-мат. лит., 1963. 402 с.
- 9. Лященко А.К., Лилеев А.С., Каратаева И.М. "Современные проблемы общей и неорганической химии". М, 2009. С. 316.
- Lyashchenko A.K., Zasetsky A.Yu. // J. Mol. Liquids. 1998. V. 77. P. 61.
- Hasted J.B. Aqueous Dielectrics. Chapman and Hall. London. 1973. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах, М.: Изд-во физико-матем. литер. 1963. 402 с.
- 12. Barthel J., Buchner R., Munsterer M. Electrolyte Data Collection. Part 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions. Chemistry Data Ser. Dechema. Frankfurt am Main. 1995. V. 12. Part