_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 544.3.01

ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ И ЭНТАЛЬПИИ ИСПАРЕНИЯ СЛОЖНЫХ ДИЭФИРОВ НЕОПЕНТИЛГЛИКОЛЯ И ЛИНЕЙНЫХ КИСЛОТ С₂-С₆

© 2021 г. Е. Л. Красных^{а,*}, О. Д. Лукина^а, В. В. Емельянов^а, С. В. Портнова^а

^а Самарский государственный технический университет, Самара, Россия

**e-mail: kinterm@samgtu.ru* Поступила в редакцию 06.11.2020 г. После доработки 10.02.2021 г. Принята к публикации 28.02.2021 г.

Методом переноса определены температурные зависимости давления насыщенного пара сложных эфиров неопентилгликоля (2,2-диметил-1,3-пропандиола) и линейных монокарбоновых кислот C_2-C_6 . На основе экспериментально полученных данных определены значения энтальпий испарения исследованных соединений при средней температуре эксперимента и 298.2 К. Рассмотрены зависимости энтальпий испарения от числа углеродных атомов в молекуле кислоты и от логарифмических индексов удерживания эфиров. Оценена прогностическая способность авторского QSPR-метода расчета энтальпий испарения при 298.2 К для сложных эфиров неопентилгликоля; отклонение расчетных значений от экспериментальных составляет не более 4%.

Ключевые слова: сложные эфиры неопентилгликоля, температурные зависимости давления насыщенного пара, метод переноса, энтальпия испарения, QSPR-метод **DOI:** 10.31857/S0044453721100137

Неопентилгликоль (НПГ, 2,2-диметил-1,3пропандиола) — уникальный многоатомный спирт. Благодаря особенностям строения, а именно наличию в молекуле четвертичного углеродного атома, неопентилгликоль и его производные обладают повышенной термостойкостью [1]. Производные неопентилгликоля также характеризуются хорошей атмосферостойкостью, сопротивляемостью к действию кислот и окисляющих агентов. Значительная часть производимого в промышленности НПГ применяется для получения сложных эфиров различной структуры, которые используются для синтеза пластификаторов [1], синтетических масел [2-4], в косметической [5, 6] и полимерной [7, 8] промышленностях. Сложные эфиры неопентилгликоля и карбоновых кислот характеризуются отличными вязкостно-температурными свойствами, низкими температурами плавления и высокой термостабильностью [1]. Кроме того, они относятся к биоразлагаемым соединениям [9].

Развитие промышленных технологий получения сложных эфиров неопентилгликоля и определение эксплуатационных характеристик смазочных масел на их основе требует наличия обширной базы данных по свойствам, в том числе по температурным зависимостям давлений насыщенного пара (p-T) и энтальпиям испарения $\Delta_{\pi}^{r} H_{m}(298.2)$. Анализ существующей информации показал, что для сложных эфиров НПГ подобные данные отсутствуют. Настоящая работа посвящена определению давлений насыщенного пара и энтальпий испарения сложных эфиров неопентилгликоля и линейных монокарбоновых кислот C₂-C₆ (рис. 1). В данной работе продолжены исследования термодинамических характеристик фазового перехода жидкость—пар сложных эфиров полиолов [10].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Подготовка образцов сложных эфиров

Образцы сложных эфиров получали путем этерификации соответствующей карбоновой кислоты неопентилгликолем. Методика синтеза описа-

$$\begin{array}{c} O \\ H \\ R - C - O - CH_2 - C - CH_2 - O - C - R \\ CH_3 \end{array}$$

Рис. 1. Структурные формулы сложных эфиров неопентилгликоля и линейных монокарбоновых кислот, исследованных в данной работе ($R - CH_3$, C_2H_5 , C_3H_7 , C_4H_9 , C_5H_{11}).

ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ

Эфир НПГ	CAS RN	<i>Т</i> _{кип} , °С (остаточное давление 15 мм рт.ст.)	Чистота после очистки, масс. доля	Чистота после дополнительной очистки, масс. доля		
Диэтаноат	13431-57-7	100–102 105–108 [12]	0.992	0.997		
Дипропаноат	3711-13-5	134-136	0.992	0.995		
Дибутаноат	5333-63-1	167-168	0.985	0.991		
Дипентаноат	_	185-187	0.983	0.991		
Дигексаноат	_	208-210	0.975	0.990		

Таблица 1. Характеристики образцов полученных сложных эфиров НПГ

на в [11]. Эфиры очищали вакуумной перегонкой. Дополнительную очистку эфиров до чистоты более 99 мас. % проводили непосредственно на установке метода переноса.

Чистоту образцов определяли методом газожидкостной хроматографии с помощью хроматографа Кристалл-2000М. Прибор оснащен пламенно-ионизационным детектором, капиллярной колонкой размером 100 м × 0.2 мм × 0.5 мкм с привитой неподвижной жидкой фазой DB-1 (диметилполисилоксан). Условия анализа: температура испарителя 623.2 К, температура детектора 573.2 К, температура колонки 423.2–523.2 К. Газ-носитель – гелий, расход 0.7 мл/мин, деление потока 1/100. Объем вводимой пробы 0.2 мкл. Характеристики образцов полученных сложных эфиров НПГ представлены в табл. 1.

Определение давлений паров и энтальпий испарения

Давления насыщенного пара сложных эфиров НПГ определяли методом переноса. Схема установки представлена в предыдущей работе [13]. Исследуемый образец (~0.5 г) смешивали со стеклянными шариками диаметром 1 мм и помещали в термостатируемую U-образную трубку длиной 20 см и диаметром 0.5 см. Температуру поддерживали постоянной с помощью масляного термостата и определяли с помощью масляного термометра ЛТ-300 с точностью ±0.1 К. В качестве газа-носителя использовали гелий. Расход гелия регулировали игольчатым клапаном и определяли при температуре ловушки с помощью мыльнопленочного расходомера с точностью ±0.1%.

Поток гелия, проходя через U-образную трубку, переносил некоторое количество газообразного вещества, которое конденсировали в охлаждаемой ловушке при температуре 268.2–271.2 К. Температуру в ловушке определяли с помощью электронного термометра ЛТ-300 с точностью ±0.1 К.

Массу сконденсировавшегося вещества определяли методом ГЖХ с использованием внешнего стандарта (*н*-алкан). Для калибровки пламенно-ионизационного детектора использовали два

раствора: исследуемого вещества и стандарта. Для подготовки растворов использовали калиброванные пикнометры объемом 2 и 10 мл (±0.01 мл), соответственно. Массы исследованного вещества и стандарта, помещенные в пикнометры, измеряли с помощью лабораторных аналитических весов марки ВЛ-200 с точностью ±0.0001 г. Массы исследованных веществ при приготовлении калибровочных растворов составляли от 0.0125 г до 0.0259 г. Массы стандарта – от 0.0423 до 0.1013 г. В качестве растворителя использовали ацетонитрил. Калибровочные смеси готовили с помощью стеклянных шприцев Hamilton объемом 100 и 250 мкл. Калибровочные смеси анализировали методом ГЖХ с точностью ±1-2%. Для определения массы перенесенного вещества в ловушку добавляли 200 мкл раствора стандарта стеклянным шприцем и 0.2 мл растворителя с помощью дозатора.

Давление пара (*p_i*, Па) при каждой температуре рассчитывали по уравнению:

$$p_i = \frac{m_i R T_a}{V M_i}; \quad V = (n_{\rm He} + n_i) R T_a / P_a, \tag{1}$$

где $R = 8.31446 \, \text{Дж}/(\text{К моль}); m_i - \text{масса перене$ сенного вещества; M_i – молекулярная масса соединения, V- объем газовой фазы, состоящей из *n*_{He} молей газа-носителя и *n_i* молей исследуемого вещества в газовой фазе, определенного при атмосферном давлении (P_a) и температуре окружающей среды (T_a). Температуру T_a определяли электронным термометром ЛТ-300 с точностью ± 0.1 К. Атмосферное давление измеряли с помощью барометра с точностью ±2 кПа. Количество молей гелия (n_{He}) рассчитывали из расхода газаносителя и времени эксперимента, определенного с помощью секундомера. Количество молей исследуемого вещества (n_i) в газе-носителе оценивали с использованием уравнения состояния идеального газа для каждой температуры эксперимента.

В величину давления пара вносили поправку, учитывающую потери исследуемого вещества за время нахождения в охлаждаемой ловушке. Значение поправки определяли из линейной зависимости логарифма парциального давления насыщенного пара от обратной температуры. Зависимость давления насыщенных паров от температуры определяли по уравнению [10, 14]:

$$R\ln p_i = a + \frac{b}{T} + \Delta_{\mathscr{K}}^{\mathsf{r}} C_p \ln\left[\frac{T}{T_0}\right], \qquad (2)$$

где *а* и *b* – эмпирические коэффициенты, полученные обработкой *p*–*T*-данных методом наименьших квадратов; $\Delta_{*}^{r}C_{p}$ – изменение теплоем-кости перехода "жидкость–газ" при 298.2 К, Дж/(К моль); *T*₀ – выбранная эталонная температура (298.2 К). Изменение теплоемкости перехода "жидкость–газ" при 298.2 К рассчитывали QSPR-методом, предложенным в [15]. Экспериментально определенные давления насыщенных паров сложных эфиров НПГ, а также коэффициенты *a* и *b* представлены в табл. 2.

Значение энтальпии испарения при средней температуре эксперимента в кДж/моль оценивали из зависимости $\ln p_i$ от 1/T. Погрешность $\Delta_{\pi}^{r}H_m(T_{cp})$ определяется точностью измерения давления пара и температуры эксперимента, а также средним отклонением экспериментальных значений $\ln p_i$ от линейной аппроксимации. Процедура расчета погрешности измерения давления насыщенного пара методом переноса подробно описана в [16]. Погрешность определения давления пара не превышала 2.5%.

Энтальпию испарения при 298.2 К определяли по уравнению:

$$\Delta_{\mathbb{X}}^{r} H_{m}(298.2) = -b + \Delta_{\mathbb{X}}^{r} C_{p} \times 298.2.$$
(3)

Погрешность энтальпии испарения при температуре 298.2 К оценивали с учетом погрешности $\Delta_{\pi}^{r}H_{m}(T_{cp})$, вклада экстраполяции $\Delta_{\pi}^{r}H_{m}$ от средней температуры эксперимента до выбранной эталонной температуры (298.2 К) и погрешности расчета изменения теплоемкости перехода "жид-

кость—газ". Погрешность расчета $\Delta_{\pi}^{r}C_{p}$ QSPRметодом для сложных эфиров не превышает 10 Дж/(К моль) [17].

В табл. 3 представлены температурные интервалы исследования, полученные значения энтальпий испарения при средней температуре исследования и при 298.2 К.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Оценки энтальпий испарения, основанные на корреляции от числа углеродных атомов в молекуле заместителя (для линейных заместителей) и от индексов удерживания (для линейных и разветвленных заместителей) широко используют в литературе для проверки согласованности полученных данных и оценке величин энтальпий испарения в рамках гомологического ряда [14, 18, 19]. Корреляция между энтальпией сорбции и энтальпией испарения соединений позволяет оце-

нить $\Delta_{\pi}^{r} H_{m}(298.2)$ сложных органических соединений [20, 21] и изучить межмолекулярные взаимодействия в системе сорбат-сорбент в условиях газожидкостной хроматографии [22, 23].

Для проверки согласованности полученных данных были построены зависимости энтальпий испарения сложных эфиров НПГ от числа углеродных атомов в молекуле линейного заместителя (кислотного остатка, n(C)) и от индексов удерживания $(I_{493,2})$ [10, 13]. В случае корреляции $\Delta_{\pi}^{r} H_{m}(298.2)$ от числа углеродных атомов в молекуле линейного заместителя было получено уравнение:

$$\Delta_{\pi}^{r} H_{m}(298.2) = (7.02 \pm 0.40)n(C) + + (50.32 \pm 1.72) \qquad (R^{2} = 0.990),$$
(4)

а при корреляции $\Delta_{\pi}^{\Gamma} H_m$ (298.2) с индексами удерживания — уравнение:

$$\Delta_{x}^{\Gamma}H_{m}(298.2 \text{ K}) = (0.0388 \pm 0.0023)I_{493.2} + (20.17 \pm 3.02) \quad (R^{2} = 0.992),$$
(5)

в котором значения индексов удерживания на неполярной фазе DB-1 при температуре 493.2 К были взяты из работы [11].

Результаты расчета энтальпии испарения при 298.2 К по уравнениям (4) и (5) представлены в табл. 4. Также были оценены значения энтальпий испарения дигептаноата НПГ и значения $\Delta_{\pi}^{r}H_{m}(298.2)$ для трех разветвленных эфиров НПГ, для которых имеются данные по индексам удерживания. Возможность использования индексов удерживания для расчета значений энтальпий испарения с разветвленными заместителями показана в [10].

В работах [22, 23] было показано, что энтальпии сорбции на неполярной неподвижной фазе в условиях ГЖХ и энтальпия испарения связаны между собой через избыточную энтальпию смешения:

$$\Delta H^{E,\infty}(T) = \Delta_{\mathbb{X}}^{\Gamma} H_m(T) + \Delta_{\text{cop6}} H_m(T), \qquad (6)$$

где $\Delta H^{E,\infty}(T)$ – избыточная энтальпия смешения, $\Delta_{cop6}H_m(T)$ – энтальпия сорбции, полученная на неполярной неподвижной фазе в условиях ГЖХ [11]. С использованием экспериментальных зна-

чений $\Delta_{x}^{r}H_{m}(298.2)$ и данных по $\Delta_{cop6}H_{m}(298.2)$ из работы [11] было получено уравнение:

$$\Delta_{\pi}^{r} H_{m}(298.2 \text{ K}) = (0.825 \pm 0.053) \times$$
$$\times \Delta_{cop6} H_{m}(298.2 \text{ K}) + (11.55 \pm 4.37)$$
(7)
$$(R^{2} = 0.988).$$

ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ

<i>Т</i> , К	<i>т</i> , мг	<i>V</i> _(He) , л	<i>v</i> ,л/ч	<i>р</i> , Па	$\Delta(p), \Pi a$	Т, К	<i>т</i> , мг	<i>V</i> _(He) , л	<i>v</i> ,л/ч	<i>р</i> , Па	$\Delta(p), \Pi a$
Диэтаноат НПГ								Дибутан	оат НПГ	•	
$R \ln(p/ \Pi a) = 337.2 - \frac{94722.4}{-102.6 \ln(\frac{T, K}{L})}$				$R\ln(n)$	⊳/[∏a]) =	$3774 - \frac{11}{2}$	13802.4	122.91n	T, K		
K III (j	(T, K) (298.2)				(T, K) (T, K) (298.2)						
297.2	1.831	2.657	1.993	9.89	0.25	308.2	0.417	2.839	5.678	1.51	0.04
299.4	2.135	2.625	1.969	11.40	0.28	309.2	0.780	4.496	5.994	1.79	0.04
301.2	1.868	1.984	1.984	13.07	0.33	311.2	0.957	4.491	5.988	2.16	0.05
303.4	2.347	1.994	1.994	16.13	0.40	313.2	0.883	3.303	6.006	2.73	0.07
305.2	1.595	1.163	1.994	18.78	0.47	315.2	0.927	2.933	5.865	3.19	0.08
307.3	1.842	1.166	1.998	21.42	0.54	317.2	0.937	2.493	5.982	3.82	0.10
309.2	1.794	0.919	1.969	26.38	0.66	319.2	0.865	1.937	5.812	4.49	0.11
311.2	1.900	0.864	1.994	29.51	0.74	321.2	1.064	2.013	6.038	5.37	0.13
313.3	2.004	0.750	2.045	35.76	0.89	325.2	1.239	1.580	5.926	7.94	0.20
315.2	2.065	0.672	2.017	40.83	1.02	329.2	1.370	1.296	5.982	10.70	0.27
317.3	1.821	0.532	1.994	45.56	1.14	333.3	1.399	1.007	6.044	14.05	0.35
319.2	1.927	0.465	1.994	54.76	1.37			Дипентан	юат НПГ		
321.5	2.162	0.432	1.992	66.19	1.65	$R\ln(n$	/[∏a]) =	$396.6 - \frac{12}{3}$	24759.8	134.6 ln	T, K
323.2	1.838	0.350	1.998	69.36	1.73	n m(p	[/[[]]])	0,010	(<i>T</i> , K)		298.2)
325.2	2.347	0.350	2.102	88.29	2.21	313.7	0.337	7.924	6.792	0.38	0.01
327.2	1.923	0.269	2.020	93.92	2.35	319.4	0.386	5.094	6.792	0.68	0.02
329.2	3.040	0.349	2.093	114.62	2.87	321.6	0.510	5.660	6.792	0.80	0.02
331.5	1.780	0.183	1.998	126.46	3.16	323.8	0.503	4.415	6.792	1.02	0.03
333.3	6.453	0.549	2.195	154.32	3.86	325.8	0.471	3.410	6.018	1.24	0.03
Дипропаноат НПГ				327.6	0.626	3.962	6.792	1.42	0.04		
$R\ln(n$	$P\ln(n/(\Pi a)) = 363.7$ 106397.4 112.6 $\ln(T, K)$			T, K	329.8	0.475	2.308	6.022	1.84	0.05	
$\operatorname{Rin}(p)$	//[11 0] <i>)</i> =	505.1	(T, K)	112.0 m	298.2)	331.8	0.835	3.622	6.792	2.07	0.05
305.4	0.664	2.057	2.571	4.32	0.11	333.8	0.524	1.858	6.194	2.52	0.06
303.3	0.602	2.155	2.535	3.74	0.09	335.6	1.258	3.962	6.792	2.83	0.07
301.5	0.548	2.392	2.609	3.09	0.08	337.4	1.260	3.396	6.792	3.30	0.08
299.4	0.510	2.609	2.609	2.65	0.07	339.2	1.707	3.849	6.792	3.96	0.10
317.3	1.042	1.071	2.570	12.78	0.32	341.2	1.774	3.396	6.792	4.65	0.12
315.4	1.064	1.280	2.400	10.92	0.27	343.2	2.090	3.396	6.792	5.49	0.14
313.5	1.002	1.400	2.400	9.45	0.24			Дигексан	юат НПГ		
311.4	0.895	1.583	2.500	7.45	0.19	$R\ln(n$	o./[∏a]) =	$422.4 - \frac{13}{2}$	36826.0	146.11n	T, K
309.4	0.829	1.730	2.466	6.34	0.16	Λ III(p	<i>i</i> /[IIu] <i>)</i> =	122.1	(T, \mathbf{K})		298.2)
307.2	0.766	1.884	2.512	5.41	0.14	321.2	0.496	26.025	8.675	0.18	0.01
313.2	1.813	2.485	4.970	9.68	0.24	323.7	0.639	26.745	8.915	0.23	0.01
302.2	0.580	2.312	3.460	3.33	0.08	325.5	0.565	20.398	8.742	0.26	0.01
321.2	4.164	2.955	2.950	18.51	0.46	327.6	0.798	22.568	9.027	0.34	0.01
325.2	5.543	2.930	2.930	24.82	0.62	329.4	0.700	15.972	8.712	0.42	0.01
311.2	0.986	1.721	2.950	7.50	0.19	331.3	1.109	20.970	8.987	0.50	0.01
315.2	1.231	1.450	2.900	11.06	0.28	333.5	0.764	11.673	8.755	0.62	0.02
309.2	0.602	1.263	3.430	6.25	0.16	335.3	1.325	16.786	9.156	0.75	0.02
299.2	0.569	2.999	3.460	2.57	0.06	337.2	0.842	8.714	6.971	0.91	0.02

Таблица 2. Результаты измерения давлений насыщенных паров методом переноса

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 10

2021

(<i>p</i>), 11a	<i>Т</i> , К	<i>m</i> , мг	V _(He) , л	<i>v</i> ,л/ч	<i>р</i> , Па	$\Delta(p), \Pi a$
	339.4	1.032	9.217	9.217	1.07	0.03
K	341.2	0.861	6.463	7.051	1.26	0.03
8.2)	343.3	1.070	6.585	9.188	1.55	0.04
0.02	345.2	0.886	4.730	7.095	1.77	0.04
0.03	347.3	1.008	4.516	9.032	2.14	0.05
0.03	349.2	0.969	3.715	7.191	2.47	0.06
0.04	353.0	0.691	2.013	6.038	3.25	0.08
8	$\frac{K}{5.2}$ 0.02 0.03 0.03 0.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Таблица 2. Окончание

Обозначения: T – температура исследования, m – масса перенесенного вещества при температуре ловушки 228.2 К; $V_{(\text{He})}$ – объем гелия, затраченного на перенос m вещества, г; v – расход газа-носителя; p – давление насыщенных паров при температуре T, рассчитанное из массы m и скорректированное на остаточное давление вещества при температуре ловушки; $\Delta(p)$ – погрешность давления пара.

Таблица 3. Экспериментально определенные значения энтальпий испарения

Эфир НПГ	<i>Т</i> , К	$\Delta^{^{\Gamma}}_{{}_{\!$	$-\Delta^{^{r}}_{\!$	∆ _ж ^г <i>H_m</i> (298.2 К), кДж∕моль
Диэтаноат	297.2-333.3	62.4 ± 1.3	102.6	64.4 ± 1.5
Дипропаноат	299.2-325.2	71.4 ± 1.7	112.6	72.8 ± 1.9
Дибутаноат	301.2-333.3	74.9 ± 1.7	122.9	76.8 ± 1.8
Дипентаноат	313.7-343.2	80.5 ± 1.5	134.6	84.6 ± 1.7
Дигексаноат	321.2-353.0	87.7 ± 1.9	146.1	93.3 ± 2.1

Таблица 4. Сравнение экспериментальных значений $\Delta_{\mathbb{X}}^{\Gamma} H_m$ (298.2 K) и рассчитанных по уравнениям (4), (5), (7) и QSPR-методом (кДж/моль)

Эфир НПГ	$\Delta^{^{\Gamma}}_{\mathfrak{K}}H_m$ (эксп.)	n(C)	<i>I</i> _{493.2} [12]	$\begin{array}{c}\Delta^{\Gamma}_{\mathfrak{K}}H_{m}\\(4)\end{array}$	$\Delta\Delta H$	$\begin{array}{c}\Delta^{\Gamma}_{\mathfrak{K}}H_{m}\\(5)\end{array}$	$\Delta\Delta H$	$ \Delta_{\mathfrak{K}}^{\mathrm{r}}H_{m} $ (QSPR)	$\Delta\Delta H$	$-\Delta_{\mathrm{cop6}}H_m$ [12]	$\begin{array}{c}\Delta^{\Gamma}_{\mathfrak{K}}H_{m}\\(7)\end{array}$	$\Delta\Delta H$	$\Delta^{\Gamma}_{\mathfrak{K}}H_m$ (pek.)
Диэтаноат	64.4 ± 1.5	2	1141.7	64.4	-0.3	64.5	-0.4	66.1	-1.8	64.2	64.8	-0.7	64.4 ± 1.5
Дипропаноат	72.8 ± 1.9	3	1321.7	71.4	1.4	71.4	1.4	72.8	-0.3	71.9	71.0	1.8	72.8 ± 1.9
Дибутаноат	76.8 ± 1.8	4	1494.3	78.4	-1.2	78.1	-0.9	80.3	-3.5	80.9	78.3	-1.1	76.8 ± 1.8
Дипентаноат	84.6 ± 1.7	5	1680.6	85.4	-0.8	85.4	-0.8	88.2	-3.6	89.4	85.1	-0.5	84.6 ± 1.7
Дигексаноат	93.3 ± 2.1	6	1868.0	92.4	0.9	92.6	0.7	96.5	-2.4	98.9	92.8	0.5	93.3 ± 2.1
Дигептаноат	_	7	2057.0	99.5	_	100.0	_	105.0	_	105.2	97.9	_	99.1
Ди(2-метил- пропаноат)	_	4	1415.3	_	_	75.1	_	77.3	_	77.3	75.3	_	75.2
Ди(2-метилбу- таноат)	_	5	1593.8	—	_	82.0	_	85.6	_	86.1	82.4	_	82.2
Ди(2,2-диме- тилпропаноат)	_	5	1471.1	_	_	77.2	_	80.4	_	81.4	78.6	_	77.9

Обозначения: $\Delta \Delta H$ — разность между экспериментальными значениями энтальпий испарения и рассчитанными по соответствующему уравнению. Рекомендованное значение для четырех последних эфиров получено совместной обработкой расчетных данных по уравнениям (4), (5) и (7).

_

Рис. 2. Отклонения (%) экспериментальных значений энтальпий испарения эфиров НПГ от рассчитанных по уравнениям (4), (5), (7) и QSPR-методом в зависимости от числа углеродных атомов (n(C)) в кислотном заместителе.

Результаты расчета энтальпии испарения по уравнению (7) представлены в табл. 4.

Энтальпии испарения при 298.2 К для всех исследованных эфиров также были спрогнозированы с использованием QSPR-метода, описанного в работе [17] и хорошо зарекомендовавшего себя при прогнозировании энтальпий испарения сложных эфиров триметилолпропана [10]. Результаты расчета для линейных эфиров, представленные в табл. 4, показывают хорошую сходимость данных эксперимента и прогноза.

На рис. 2 приведены погрешности между экспериментальными значениями энтальпий испарения и расчетными величинами в зависимости от числа углеродных атомов в молекуле заместителя (n(C)). Из рис. 2 видно, что использование полученных уравнений и QSPR-метода дает погрешность, не превышающую 4%. Были рассчи-

таны средние значения $\Delta_{\mathbb{X}}^{r}H_{m}(298.2 \text{ K})$ для дигептаноата, ди(2-метилпропаноата), ди(2-метилбутаноата) и ди(2,2-диметилпропаноата) НПГ, которые могут быть рекомендованы для дальнейшего использования.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 19-08-00928 А).

СПИСОК ЛИТЕРАТУРЫ

- Gerhard Knothe, Robert O. Dunn, Michael W. Shockley, Marvin O. Bagby. // J. Amer. Oil Chem. Soc. 2000. V. 77. I. 8. P. 865. https://doi.org/10.1007/s11746-000-0138-x
- Ruzaimah Nik Mohamad Kamil, Suzana Yusup, Umer Rashid. // Fuel. 2011. V. 90. I. 6. P. 2343. https://doi.org/10.1016/j.fuel.2011.02.018
- Shuangshuang Jiang, Shuzhen Li, Luoxin Liu et al. // Tribology International. 2015. V. 86. P. 42. https://doi.org/10.1016/j.triboint.2015.01.015

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 10 2021

 Érika C.G. Aguieiras, Elisa D.C. Cavalcanti, Priscila R. da Silva et al. // Renewable Energy. 2020. V. 148. I. 4. P. 689.

https://doi.org/10.1016/j.renene.2019.10.156

- Serrano-Arnaldos M., García-Martínez J.J., Ortega-Requena S. et al. // Enzyme and Microbial Technology. 2020. V. 132. P. 109400. https://doi.org/10.1016/j.enzmictec.2019
- Fragrance and Flavor Compositions Comprising Neopentyl Glycol Diacetate. WO2016118882 (A1) – 2016-07-28.
- Matsumoto A., Mitomi D., Aota H. et al. // Polymer. 2020. V. 41. I. 4. P. 1321. https://doi.org/10.1016/S0032-3861(99)00324-9
- López-González M.M.C., Callejo Cudero M.J., Barrales-Rienda. J.M. // Polymer. 1997. V. 38. I. 25. P. 6219. https://doi.org/10.1016/S0032-3861(97)00190-0
- Arumugam S., Chengareddy P., Sriram G. // Industrial Crops and Products. 2018. V. 123. P. 617. https://doi.org/10.1016/j.indcrop.2018.07.039
- Krasnykh E.L., Druzhinina Yu.A., Portnova S.V. et al. // Fluid Phase Equilibria. 2018. V. 462. P. 111. https://doi.org/10.1016/j.fluid.2018.01.018
- 11. Lukina O.D., Krasnykh E.L., Portnova S.V. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. I. 3. P. 659. https://doi.org/10.1134/S0036024420030188
- Campbell A., Rydon H.N. // J. Chem. Soc. 1953. P. 3002. https://doi.org/10.1039/JR9530003002
- 13. Lipp S.V., Krasnykh E.L., Levanova S.V. // Russ. J. Phys. Chem. A. 2008. V. 82. I. 12. P. 2025.
- Portnova S.V., Yamshchikova Yu.F., Krasnykh E.L. et al. // J. Chem. Eng. Data. 2020. V. 65. P. 2566. https://doi.org/10.1021/acs.jced.9b01195
- Krasnykh E.L., Portnova S.V. // J. Struct. Chem. 2017. V. 58. P. 706. https://doi.org/10.1134/S0022476617040096
- Verevkin S.P., Sazonova A.Yu., Emel'yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. P. 89. https://doi.org/10.1021/je500784s
- Krasnykh E.L., Portnova S.V. // J. Struct. Chem. 2016.
 V. 57. I. 3. P. 437. https://doi.org/10.1134/S0022476616030033
- Lipp S.V., Krasnykh E.L., Verevkin S.P. // J. Chem. Eng. Data. 2011. V. 56. P. 800. https://doi.org/10.1021/je100231g
- Zaitseva K.V., Zaitsau D.H., Varfolomeev M.A., Verevkin S.P. // Fluid Phase Equil. 2019. V. 494. P. 228. https://doi.org/10.1016/j.fluid.2019.04.036
- Chickos J.S., Hosseini S., Hesse D.G. // Thermochim. Acta. 1995. V. 249. P. 41. https://doi.org/10.1016/0040-6031(95)90670-3
- Siripoltangman N., Chickos J. // J. Chem. Therm. 2019.
 V. 138. P. 107.
 https://doi.org/10.1016/j.ict.2010.06.011

https://doi.org/10.1016/j.jct.2019.06.011

- 22. Яшкин С.Н., Кудашева Н.В. // Химия и хим. техн. 2009. Т. 52. В. 7. С. 48.
- 23. Portnova S.V., Yamshchikova Yu.F., Krasnykh E.L. // Russ. J. Phys. Chem. A. 2019. V. 93. I. 3. P. 577. https://doi.org/10.1134/S0036024419020213