_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541. 11:536.7

СТАНДАРТНЫЕ ЭНТАЛЬПИИ РАСТВОРЕНИЯ И ОБРАЗОВАНИЯ D,L-АЛАНИЛ-D,L-СЕРИНА В ВОДЕ И ВОДНЫХ РАСТВОРАХ КОН

© 2021 г. А. И. Лыткин^а, О. Н. Крутова^а, В. В. Черников^а, А. А. Голубев^а, П. Д. Крутов^{а,*}

^а Ивановский государственный химико-технологический университет, Иваново, Россия *e-mail: kdvkonkpd@vandex.ru

> Поступила в редакцию 24.03.2021 г. После доработки 16.04.2021 г. Принята к публикации 17.04.2021 г.

Значения стандартных энтальпий образования DL-аланил-D,L-серина рассчитаны по аддитивно групповому методу, основанному на групповой систематике с классификацией фрагментов типа классификации Бенсона, которая учитывает влияние первичного окружения для атомов. Определены тепловые эффекты растворения кристаллического DL-аланил-D,L-серина в воде и в растворах гидроксида калия при 298.15 К прямым калориметрическим методом в широком концентрационном интервале. Рассчитаны стандартные энтальпии образования пептида и продуктов его диссоциации в водном растворе.

Ключевые слова: термодинамика, кислота, растворы, калориметр, энтальпия **DOI:** 10.31857/S0044453721110121

Пептиды имеют большое биомедицинское значение, особенно велика их роль в эндокринологии. Пептидами являются многие важнейшие гормоны человека. Исследование различного рода систем, состоящих из биоорганических молекул — центральная задача современной физической химии, так как создает предпосылки к созданию новых перспективных материалов с заданными свойствами [1]. Подобные системы могут выступать в качестве биодатчиков, оптических фильтров, носителей лекарственных препаратов и др.

Цель настоящей работы — определение стандартных энтальпий образования DL-аланил-D,L-серина и продуктов его диссоциации в водном растворе по тепловым эффектам растворения пептида в воде и в водных растворах КОН при 298.15 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Измерения теплот растворения кристаллического DL-аланил-D,L-серина проводили на калориметре с изотермической оболочкой и автоматической записью температуры [2]. Калориметр калибровали по току. Объем калориметрической жидкости составлял 42.32 мл. Работа калориметрической установки была проверена по общепринятым калориметрическим стандартам – теплоте растворения кристаллического хлорида калия в воде. Препарат KCl очищали двукратной перекристаллизацией реактива марки "х.ч." из бидистиллята. Согласование экспериментально полученных теплот растворения KCl(кр.) в воде $\Delta_{sol}H_{(\infty H_2O)} = 17.25 \pm 0.06$ кДж/моль с наиболее надежными литературными данными [3] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески пептидов взвешивали на весах марки ВЛР-200 с точностью 2 × 10⁻⁴ г. Перед взятием навески препарат высушивали до постоянной массы при 150°С. Содержание H₂O в пептиде составляло не более 0.2-0.3%. Бескарбонатный раствор КОН приготавливали из реактива марки "х.ч." по обычной методике [4]. Доверительный интервал среднего значения ΔH вычисляли с вероятностью 0.95. Равновесный состав растворов рассчитывали с использованием программы KEV [5], результаты графической обработки полученных данных представлены на рис. 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Процесс растворения DL-аланил-D,L-серина в воде можно представить схемой:

$$\mathrm{HL}^{\pm}(\mathrm{\kappa p.}) + n\mathrm{H}_{2}\mathrm{O} = \mathrm{HL}^{\pm}(\mathrm{p-p}, n\mathrm{H}_{2}\mathrm{O}). \tag{1}$$

Стандартные энтальпии образования раствора DL-аланил-D,L-серина при различных разведениях рассчитывали по уравнению:

Рис. 1. Диаграмма долевого распределения в водном растворе DL-аланил-D,L-серина при температуре 298.15 К.

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_{2}{\rm O}, 298.15 {\rm K}) =$$

= $\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm \kappa p.}, 298.15 {\rm K}) +$ (2)
+ $\Delta_{\rm sol} H({\rm HL}^{\pm}, {\rm \kappa p.}, 298.15 {\rm K}),$

где $\Delta_{\rm f} H^{\circ}({\rm HL^{\pm}}, {\rm кр.}, 298.15 {\rm K})$ — стандартная энтальпия образования кристаллического DL-аланил-D,L-серина; $\Delta_{\rm sol} H({\rm HL^{\pm}}, 298.15 {\rm K})$ — теплота растворения пептида (табл. 1). Величину стандартной энтальпии образования DL-аланил-D,L-серина рассчитывали по аддитивно групповому методу [6–8], основанному на групповой систематике с классификацией фрагментов типа классификации Бенсона, которая учитывает влияние первоначального окружения для атомов. Расчет энтальпии сгорания и образования исследуемого соединения проводили по формуле:

$$_{c(f)}H^{\circ}(TB.) = \sum A_i \Delta_{c(f)}H_i^{\circ}, \quad i = 1, 2, 3..., n,$$
 (3)

где $\Delta_{c(f)}H_i^{\circ}$ — энергетический вклад в теплоту сгорания и образования определенной атомной группы, A_i — число таких атомных групп в молекуле, n — число типов атомных групп в молекуле. Исходные данные для расчета $\Delta_f H^{\circ}(C_6 H_{12} N_2 O_4(TB.)) = -970.3 кДж/моль представлены в табл. 2.$

Из табл. 1 видно, что энтальпия растворения DL-аланил-D,L-серина в водном растворе в исследуемом интервале концентраций практически не зависит от величины разведения, что неудивительно для столь больших разбавлений.

Стандартную энтальпию образования цвиттер-иона DL-аланил-D,L-серина в состоянии, гипотетически недиссоциированном при конечном разведении в водном растворе, находили по уравнению:

 $\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_2{\rm O}, {\rm гип., недисс.,}$ 298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, n{\rm H}_2{\rm O}, 298.15 \text{ K}) + (4)$ + $\alpha({\rm H}_2{\rm L}^{\pm})\Delta_{\rm dis} H^{\circ}({\rm H}_2{\rm L}^{\pm}) - \alpha({\rm L}^{-})\Delta_{\rm dis} H^{\circ}({\rm HL}^{\pm}),$

где $\alpha(H_2L^+)$ и $\alpha(L^-)$ – доли частиц H_2L^+ и L^- соответственно; $\Delta_{dis}H(H_2L^+)$ и $\Delta_{dis}H(HL^\pm)$ – тепловые эффекты ступенчатой диссоциации частицы H_2L^+ . Значения $\Delta_{dis}H^{\circ}(H_2L^+)$ и $\Delta_{dis}H^{\circ}(HL^\pm)$ определены ранее [9]. Суммарный вклад второго и третьего слагаемых правой части уравнения (4) не превышал 0.21 кДж/моль и практически не изменялся в исследуемой области концентраций.

Стандартную энтальпию образования DL-аланил-D,L-серина в гипотетическом недиссоциированном состоянии при бесконечном разведении находили экстраполяцией величин, полученных по уравнению (4), на нулевое значение моляльности раствора *m* (рис. 2). В результате по МНК найдена величина $\Delta_f H^{\circ}$ (HL[±], p-p, H₂O, гип. недисс., 298.15 K) = -960.6 ± 1.9 кДж/моль.

Стандартную энтальпию образования частицы L^- в водном растворе определяли, используя данные по теплоте растворения пептида в растворах щелочи при соотношении эквивалентов не менее

				1			
<i>т</i> _н , г	$m \times 10^3$	α	$-\Delta_{\rm sol}H$	т, г	$m \times 10^3$	α	$-\Delta_{\rm sol}H$
0.0069	0.9083	59708	9.56	0.0425	4.527	12261	10.08
0.0073	0.9609	56436	9.63	0.0569	5.207	10658	10.11
0.0082	1.079	50242	9.65	0.0752	7.301	7602	10.16
0.0111	1.461	37 116	9.74	0.0847	8.343	6653	10.18
0.0120	1.579	34332	9.85	0.0899	8.374	6629	10.23
0.0223	2.935	18474	9.88	0.0945	9.415	5895	10.28
0.0298	3.922	13825	9.99	0.1005	9.467	5863	10.32
0.0374	4.923	11015	10.04	0.1230	16.19	3349	10.39

Таблица 1. Тепловые эффекты растворения DL-аланил-D,L-серина в воде (кДж/моль) при 298.15 К ($m_{\rm H}$ – масса навески пептида; *m*, моль HL[±]//1000 кг H₂O; α – разведение, моль H₂O/моль HL[±])

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 11 2021

1:2 (табл. 3). Процесс растворения пептида в растворе КОН можно представить схемой:

$$HL^{\pm}(\kappa p.) + OH^{-}(p-p, nH_2O) =$$

= L⁻(p-p, nH_2O) + H_2O(x). (5)

Расчет показал, что полнота протекания реакции (5) составляла не менее 99.9%. Поскольку в реакции (5) $\Delta z^2 = 0$, тепловые эффекты растворения пептида при нулевой ионной силе рассчитывали по уравнению [10]:

$$\Delta_{\rm r}H_{(5)} = \Delta_{\rm r}H_{(5)}^\circ + iI,\tag{6}$$

где $\Delta_{\rm r} H_{(5)}$ и $\Delta_{\rm r} H_{(5)}^{\circ}$ – тепловые эффекты процесса (5) при конечном и нулевом значениях ионной силы. Используя полученные величины $\Delta_r H_{(5)}^{\circ}$ и значения $\Delta_{\rm f} H^{\circ}({\rm OH^{-}}, {\rm p-p} {\rm H}_2{\rm O}, 298.15 {\rm K}),$ $\Delta_{\rm f} H^{\circ}({\rm H}_2{\rm O}, {\rm w}, 298.15 {\rm K})$, рекомендованные справочником [11], рассчитали стандартную энтальпию образования аниона:

$$\Delta_{\rm f} H^{\circ}({\rm L}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, 298.15 {\rm K}) =$$

$$= \Delta_{\rm f} H^{\circ}({\rm H}{\rm L}^{\pm}, {\rm \kappa p.}, 298.15 {\rm K}) +$$

$$+ \Delta_{\rm f} H^{\circ}({\rm O}{\rm H}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, 298.15 {\rm K}) + \Delta_{\rm r} H^{\circ}_{(5)} -$$

$$- \Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm O}, {\rm \ mathbf{x}}, 298.15 {\rm \ K}) =$$

$$= -970.3 - 230.04 - 2.11 + 285.83 =$$

$$= -912.4 \pm 1.9 {\rm \ \kappa} {\rm \ M}_{\rm MOJL}.$$
(7)

Стандартную энтальпию образования частицы HL[±] рассчитывали также по уравнению:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{\pm}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm гип. недисс., 298.15 K}) =$$

= $\Delta_{\rm f} H^{\circ}({\rm L}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, 298.15 K) -$
- $\Delta_{\rm dis} H^{\circ}({\rm HL}^{\pm}, 298.15 K) = -912.4 - 48.18 =$
= $-960.6 \pm 1.9 \ \kappa \mbox{Дж/моль.}$ (8)

Значение стандартной энтальпии образования цвиттер-иона пептида удовлетворительно согласуется с ранее полученной величиной. В качестве наиболее вероятной принята средневзвешенная величина по результатам двух независимых определений $\Delta_f H^{\circ}(HL^{\pm}, p-p, H_2O, гип. недисс.,$ 298.15 K) = -933.9 ± 1.9 кДж/моль.

Стандартную энтальпию образования частицы H₂L⁺ рассчитывали по уравнению:

$$\Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm L}^{+}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm гип. недисс., 298.15 K}) =$$

$$= \Delta_{\rm f} H^{\circ}({\rm H}{\rm L}^{\pm}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm гип. недисс., (9)}$$

$$298.15 {\rm K}) - \Delta_{\rm dis} H^{\circ}({\rm H}_{2}{\rm L}^{+}, 298.15 {\rm K}) =$$

$$= -960.6 - 17.01 = -977.6 \pm 1.9 {\rm \kappa}{\rm Д}{\rm ж}/{\rm моль.}$$

Значения стандартных энтальпий образования DL-аланил-D,L-серина и продуктов его диссоциации в водном растворе (табл. 4) получены впервые. Они являются ключевыми величинами

Таблица 2. Величины энергетических вкладов в величины энтальпий образования по классификации Бенсона

Группа	Количество групп	$-\Delta_{ m f} H^{\circ}({ m tb.})_i,$ кДж/моль
(C)–COOH	1	435.30
$(C)-NH_2$	1	50.8
(C)–CH ₃	1	64.3
$(N)(C)_2-CH$	2	21.6
(N)(C)-C=O	1	182.3
$(C)_2 - NH$	1	-28.9
$CH_2-(C)(O)$	1	16.6
OH–(C)	1	206.7

Таблица 3. Тепловые эффекты растворения DL-аланил-D,L-серина (кДж/моль) в водных растворах КОН при 298.15К (*m*_н – масса навески)

т, г	$C_{\rm кон}^0$, моль/л	$-\Delta H_{\rm sol}$	α
0.0085 0.0085	0.002245	$\begin{array}{c} 2.70 \pm 0.20 \\ 2.52 \pm 0.20 \end{array}$	0.9985 0.9988
0.0082 0.0186	0.004896	2.56 ± 0.20 3.12 ± 0.21	0.9989 0.9985
0.0188	0.01506	3.07 ± 0.20 3.09 ± 0.21	0.9986 0.9988
0.0602 0.0601 0.0602	0.01596	5.18 ± 0.20 5.10 ± 0.20 5.17 ± 0.21	0.9985 0.9985 0.9986

в термохимии пептида, открывают возможности проведения строгих термодинамических расчетов в системах с DL-аланил-D,L-серина.

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть) проект № FZZW-2020-0009.

Рис. 2. Графическое определение стандартной энтальпии образования DL-аланил-D,L-серина в гипотетическом недиссоциированном состоянии при бесконечном разведении.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ 2021 том 95 № 11

1677

Таблица 4. Стандартные энтальпии образования DLаланил-D,L-серина и продуктов его диссоциации в водном растворе, кДж/моль

Частица	Состояние	$-\Delta_{\rm f} H^{\circ}(298.15 \text{ K}) \pm 1.9$
HL^{\pm}	крист.	970.3
	р-р, H ₂ O, гип. недисс.	960.6
H_2L^+	р-р, H ₂ O, гип. недисс.	977.6
L-	р-р, Н ₂ О	912.4

СПИСОК ЛИТЕРАТУРЫ

- Кобаяси Н. Введение в нанотехнологию / Н. Кобаяси. М.: Изд-во БИНОМ. Лаб. знаний, 2008. 134 с.
- Васильев В.П., Кочергина Л.А., Крутова О.Н. // Изв. вузов. Химия и хим. технология. 2003. Т. 46. Вып. 6. С. 69.

- 3. *Archer D. G.* // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 1.
- 4. Золотов Ю.А. Основы аналитической химии. М.: Высшая школа, 2001. 463 с.
- 5. *Meshkov A.N., Gamov G.A.* // Talanta. 2019. V. 198. P. 200.
- 6. Васильев В.П., Бородин В.А., Копнышев С.Б. // Журн. физ. химии. 1991. Т. 65. № 1. С. 55.
- Кизин А.Н., Лебедев Ю.А. // Докл. АН СССР 1982. Т. 262. № 4. С. 914.
- Тахистов А.В., Пономарев Д.А. Органическая массспектрометрия. С.-Петербург: BBM, 2002. С. 346.
- 9. Гридчин С.Н., Пырэу Д.Ф. // Журн. физ. химии. 2015. Т. 89. № 1. С. 5.
- Васильев В.П. Термодинамические свойства растворов электролитов, М.: Высшая школа, 1982. С. 200, 313.
- 11. Термические константы веществ. Вып. III / Под ред. В.П. Глушко и др. М.: ВИНИТИ, 1965–1971.