_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.35

ВЗАИМОДЕЙСТВИЕ УРАЦИЛА С L-ГИСТИДИНОМ В ВОДНОМ БУФЕРНОМ РАСТВОРЕ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 288.15–313.15 К

© 2021 г. Е. Ю. Тюнина^{*а*,*}

^а Российская академия наук, Институт химии растворов им. Г.А. Крестова, Иваново, 153045 Россия *e-mail: tev@isc-ras.ru

> Поступила в редакцию 31.03.2021 г. После доработки 31.03.2021 г. Принята к публикации 26.04.2021 г.

Методами денсиметрии и дифференциальной сканирующей калориметрии изучены взаимодействия урацила (Ura) с гетероциклической аминокислотой, L-гистидином (His), в водном буферном растворе (pH 7.4). Получены экспериментальные значения плотности и удельной теплоемкости урацила в буферном растворе в присутствии и отсутствии аминокислоты в интервале температур (288.15–313.15) К. Концентрация Ura изменялась от 0.004 до 0.032 моль кг⁻¹ при постоянной концентрации His (0.0125 моль кг⁻¹). Определены кажущиеся молярные параметры урацила (${}^{\varphi}V_{\text{Ura}}, {}^{\varphi}C_{p}$) в буферном растворе и в буферном растворе, содержащем аминокислоту. Показано, что взаимодействие His с Ura сопровождается образованием между ними молекулярного комплекса. Выявлено, что парциальные молярные свойства переноса (${}^{\varphi}V_{\text{Ura}}, {}^{\varphi}C_{p}^{\circ}$) урацила из буфера в буферный раствор аминокислоты имеют положительные значения в изученном интервале температур. Полученные результаты обсуждаются на основе использования модели Гэрни.

Ключевые слова: плотность, теплоемкость, кажущийся молярный объем, кажущаяся молярная теплоемкость, L-гистидин, урацил, комплексообразование **DOI:** 10.31857/S0044453721110248

Взаимодействия между лекарственными средствами, в состав которых входят гетероциклические соединения, и макромолекулярными белками имеют важное значение в многокомпонентных физиологических средах, таких как кровь, клеточные мембраны, внутри- и межклеточные флюиды и т.д. Изучение механизмов и движущих сил образования между ними комплексов, лежащих в основе молекулярных процессов транспортировки лекарств, доставки их к клеткам-мишеням, относится к приоритетным задачам химии. биологии и фармакологии. Необходимым этапом исследование является физико-химических свойств модельных соединений биомакромолекул в водных растворах прежде, чем приступать к исследованию более сложных систем. Основания нуклеиновых кислот и их производные могут использоваться в качестве противоопухолевых, антибактериальных и противовирусных препаратов [1, 2]. Урацил является структурным элементом широкого круга биологически значимых молекул

(РНК, пиримидин, птеридин, фолиевая кислота, флавин и др.). Молекулы урацила содержат донорные и акцепторные группы, способные к образованию водородной связи [3–5].

До сих пор актуальны исследования поведения аминокислот, молекулы которых содержат полярную боковую цепь [6-10]. К их числу относится гетероциклическая аминокислота L-гистилин. характеризуюшаяся наличием имилазольной функциональной группы, которая может служить как донором, так и акцептором образования водородных связей, и проявлять свойства как кислоты, так и основания в зависимости от диапазона рН. Гистидиновые остатки идентифицируются как активные сайты для ~50% всех белковых ферментов [11, 12]. Данная аминокислота является предшественником в биосинтезе гистамина, способствует росту и восстановлению тканей. Гистидин - составная часть многих витаминных комплексов; он используется при лечении глазных заболеваний, ревматоидных артритов, аллергий, язв и анемии [13].

Исследования водных растворов белков, нуклеиновых кислот и их производных в присутствии различных добавок (электролитов, органических растворителей, ПАВ и др.) проводятся разными методами [14—17]. Кислотно-основные свойства нуклеиновых оснований и аминокислот влияют на стабильность образуемых ими комплексов и конъюгатов [2, 16, 18–20]. Однако до сих пор недостаточно изучены взаимодействия указанных соединений в условиях физиологических значений рН среды при различных температурах.

Ранее [21] методами калориметрии растворения и УФ-спектроскопии было показано образование молекулярного комплекса между L-гистидином и Ura в водном буферном растворе. Как известно, такие термодинамические свойства, как объем и теплоемкость, чувствительны к структурным изменениям в растворах, происходящих на молекулярном уровне [22, 23]. Задачей настоящего исследования является использование методов денсиметрии и дифференциальной сканирующей калориметрии для выявления особенностей межмолекулярных взаимодействий His с Ura в водном фосфатном буферном растворе (рН 7.4) в широком интервале температур и концентраций. В литературе отсутствуют данные по плотности и теплоемкости системы L-гистидин-урацил-буфер.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали L-гистидин (Sigma-Aldrich, Japan, CAS 63-91-2) и урацил (Sigma, CAS 66-22-8). Содержание основного вещества составляло >99%. Аминокислоту сушили в вакуумном шкафу при 343 K, а Ura – при 410.15 K в течение 48 ч непосредственно перед использованием. Исследования проводили в водных буферных растворах (рН 7.4), содержащих NaH₂PO₄ и Na₂HPO₄, что приближает среду к условиям реальных биологических систем. Значения pH растворов фиксировали цифровым pH-метром Mettler Toledo, модель Five-Easy. Все растворы приготовлены весовым методом, используя весы Sartorius-ME215S (с точностью взвешивания 1 × $\times 10^{-5}$ г). Концентрацию урацила варьировали в пределах (0.0041-0.0324) моль кг⁻¹ при фиксированной концентрации аминокислоты (0.0125 ± ± 0.0002 моль кг⁻¹). Низкие концентрации Ura использовались в связи с его низкой растворимостью [19].

Измерения плотности исследуемых растворов выполнены на цифровом вибрационном денсиметре (model DMA-5000M, Anton Paar, Австрия) при температурах (288.15, 298.15, 303.15, 308.15 и 313.15) К. Два встроенных платиновых термометра Pt100 в сочетании с элементами Пельтье обеспечивали термостатирование образца внутри ячейки с погрешностью 5×10^{-3} К. Стандартная погрешность измерения плотности исследуемых растворов не превышала 0.00005 г см⁻³.

Для измерения удельной теплоемкости (c_p) смесей Ura-буфер и Ura-His-буфер использовали дифференциальный сканирующий микрокалориметр SCAL-1 ("Биоприбор", Пущино, Россия), оснащенный термоэлементами Пельтье, двумя измерительными стеклянными ячейками с внутренним объемом 0.377 см³, а также компьютерным терминалом и программным обеспечением для вычисления удельной теплоемкости. Интегральная чувствительность детектора калориметра составляет 33.218 нВт/мВ, калибровочная мощность – 25 мкВт, скорость сканирования – 1 К/мин, постоянная времени – 20 с. Прибор, детальное описание которого приведено в [24], был ранее протестирован по теплоемкости водных растворов хлорида натрия, рекомендованного в качестве стандарта для сканирующей калориметрии растворов [25]. Стандартная погрешность измерения удельной теплоемкости исследованных растворов находилась в пределах $\pm 7 \times 10^{-3} \, \text{Дж K}^{-1} \, \text{г}^{-1}$. Измерения удельной теплоемкости исследуемых растворов выполнены при температурах (288.15, 293.15, 298.15, 303.15, 308.15 и 313.15) К.

Полученные экспериментальные данные по плотности (ρ) и удельной теплоемкости (c_p) исследуемых растворов приведены в табл. 1 и 2. Как видно из таблиц, значения ρ уменьшаются с температурой и возрастают с концентрацией Ura, в то время как температурные и концентрационные изменения значений c_p носят противоположный характер.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В зависимости от рН среды аминокислота и урацил могут находиться в различных ионных состояниях. Гистидин является основной аминокислотой с гетероциклической полярной боковой цепью. При разных значениях pH His может образовывать три разных протонированных комплекса [26, 27]. Ранее показано, что в случае водных растворов с pH 7.4 L-гистидин существует, прежде всего, как цвиттерион, при этом вероятность наличия его катионной формы ($[H_2L]^+$) составляет менее 5% [21, 28]. Урацил представляет собой пиримидиновое основание, обладающее ароматическими свойствами и способное к таутомерии в виде лактамной или лактимной форм [29]. Установлено, что в нейтральной среде преобладает лактамная форма, которая переходит в моноанион при повышении pH (pH \ge 9.52) [19, 29]. В условиях выбранной буферной среды (рН 7.4) урацил находится в нейтральной молекулярной форме [30]. Таким образом, при обсуждении движущих сил процесса образования комплекса между His и Ura следует рассматривать цвиттерионы аминокислоты и молекулы урацила в качестве их доминирующих форм, присутствующих в водном буферном растворе (рН 7.4).

ТЮНИНА

		· I ·	1 91			
m , моль кг $^{-1}$	288.15 K	298.15 K	303.15 K	308.15 K	313.15 K	
	Система: Ura-буфер					
0	1029.289	1026.562	1024.859	1023.023	1021.012	
0.0040	1029.506	1026.767	1025.057	1023.215	1021.200	
0.0070	1029.648	1026.912	1025.197	1023.353	1021.333	
0.0099	1029.784	1027.040	1025.325	1023.475	1021.446	
0.0126	1029.893	1027.148	1025.425	1023.579	1021.550	
0.0150	1029.988	1027.242	1025.524	1023.672	1021.645	
0.0201	1030.199	1027.434	1025.715	1023.861	1021.831	
0.0250	1030.380	1027.626	1025.890	1024.025	1021.984	
0.0300	1030.565	1027.799	1026.065	1024.194	1022.161	
		Сис	стема: Ura–His–бу	фер	I	
0	1029.829	1027.165	1025.529	1023.695	1021.643	
0.0040	1030.035	1027.363	1025.719	1023.875	1021.814	
0.0070	1030.177	1027.501	1025.857	1024.003	1021.938	
0.0100	1030.300	1027.623	1025.976	1024.119	1022.055	
0.0125	1030.394	1027.716	1026.067	1024.207	1022.144	
0.0147	1030.484	1027.799	1026.147	1024.288	1022.223	
0.0199	1030.674	1027.995	1026.341	1024.472	1022.405	
0.0249	1030.875	1028.188	1026.532	1024.652	1022.573	
0.0275	1031.026	1028.339	1026.658	1024.782	1022.688	
0.0299	1031.230	1023.485	1026.805	1024.928	1022.822	

Таблица 1. Плотность (ρ) водных буферных растворов урацила (Ura) и водных буферных растворов, содержащих урацил и L-гистидин (His), при разных концентрациях и температурах

Примечание. Погрешность экспериментальных значений $\rho \pm 3 \times 10^{-3}$ кг м⁻³, $m_{\text{His}} = (0.0125 \pm 0.0002)$ моль кг⁻¹.

Объемные свойства растворов

Кажущийся мольный объем Ura (^{*ч*}) вычислен с использованием экспериментальных данных по плотности и уравнения:

$${}^{\varphi}V = 1000(\rho_0 - \rho)/(\rho\rho_0 m) + M/\rho, \tag{1}$$

где ρ_0 и ρ – плотности растворителя и раствора (г см⁻³), *т* – моляльная концентрация Ura (моль $\kappa \Gamma^{-1}$), M – молекулярная масса Ura. Растворителем в бинарных водных растворах (Ura-буфер) является буферный раствор, а в тройных системах (Ura – аминокислота–буфер) – буферный раствор аминокислоты (His) (с фиксированной концентрацией 0.0125 моль кг⁻¹). На рис. 1 представлены концентрационные зависимости кажущихся мольных объемов Ura ${}^{\varphi}V = f(m)$ в бинарной и тройной системах, соответственно, при разных температурах. Форма полученных изотерм может свидетельствовать о связывании растворенных веществ в комплекс [23, 31, 32]. Определена стехиометрия образуемого молекулярного комплекса, фиксируемая по максимуму на концентрационной зависимости кажущегося мольного объема Ura в трехкомпонентной системе урацил—аминокислота-буфер (рис. 1б). Максимальные значения ^{ϕ}*V* приходятся на концентрацию $m_{\text{Ura}} = 0.0249$ моль кг⁻¹, которая соответствует молярному соотношению 1 His : 2Ura. Зависимости стехиометрии образуемого комплекса от температуры не обнаружено.

Концентрационные зависимости ${}^{\varphi}V = f(m)$ хорошо аппроксимируются полиномами второй и третьей степени, соответственно, для бинарной (Ura–буфер) и тройной (Ura–Phe–буфер) систем:

$${}^{\varphi}V = {}^{\varphi}V^{\circ} + B_{1}m_{\text{Ura}} + B_{2}m_{\text{Ura}}^{2}, \qquad (2)$$

$${}^{\varphi}V = {}^{\varphi}V^{\circ} + B'_{1}m_{Ura} + B'_{2}m^{2}_{Ura} + B'_{3}m^{3}_{Ura}, \qquad (3)$$

где ${}^{\varphi}V^{\circ}$ — предельное значение кажущегося молярного объема, равное парциальному молярному объему при бесконечном разбавлении, B_1 , B_2 и B'_1 , B'_2 , B'_3 — постоянные коэффициенты. Получены положительные значения ${}^{\varphi}V^{\circ}$, которые увеличиваются с ростом температуры (табл. 3). При образовании комплекса между Ніѕ и Ura происходит вытеснение электрострикционно сжатых молекул воды, находящихся в гидратных сферах цвиттерионов Ніѕ и молекул Ura, в объем раство-

1699

m, моль кг ^{-1}	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	313.15K
	Система: Ura–буфер					
0	4.0159	4.0181	4.0215	4.0259	4.0306	4.0354
0.0040	4.0137	4.0156	4.0184	4.0225	4.0268	4.0311
0.0042	4.0136	4.0156	4.0183	4.0224	4.0267	4.0309
0.0071	4.0122	4.0138	4.0164	4.0201	4.0242	4.0281
0.0072	4.0121	4.0137	4.0163	4.0200	4.0241	4.0280
0.0098	4.0109	4.0125	4.0147	4.0181	4.0219	4.0256
0.0099	4.0108	4.0123	4.0147	4.0181	4.0219	4.0256
0.0162	4.0086	4.0098	4.0115	4.0147	4.0179	4.0216
0.0163	4.0085	4.0098	4.0114	4.0146	4.0178	4.0215
0.0205	4.0066	4.0077	4.0097	4.0122	4.0152	4.0184
0.0207	4.0065	4.0077	4.0093	4.0121	4.0151	4.0186
0.0312	4.0037	4.0046	4.0060	4.0078	4.0104	4.0127
0.0318	4.0035	4.0044	4.0058	4.0077	4.0102	4.0124
0.0324	4.0032	4.0043	4.0056	4.0074	4.0099	4.0120
	Система: Ura-His-буфер					
0	4.0371	4.0431	4.0492	4.0538	4.0591	4.0639
0.0041	4.0359	4.0417	4.0477	4.0523	4.0577	4.06247
0.0071	4.0337	4.0396	4.0456	4.0504	4.0558	4.0604
0.0098	4.0326	4.0385	4.0441	4.0497	4.0548	4.0595
0.0164	4.0295	4.0349	4.0409	4.0461	4.0518	4.0560
0.0207	4.0267	4.0329	4.0383	4.0444	4.0489	4.0536
0.0257	4.0248	4.0312	4.0364	4.0419	4.0464	4.0517
0.0318	4.0237	4.0299	4.0346	4.0404	4.0447	4.0496
0.0324	4.0235	4.0296	4.0341	4.0401	4.0443	4.0495

Таблица 2. Удельная теплоемкость (*c_p*) водных буферных растворов урацила и водных буферных растворов, содержащих урацил и L-гистидин, при разных концентрациях и температурах

Примечание. Погрешность экспериментальных значений $c_p \pm (0.002c_p)$ Дж K⁻¹ г⁻¹, $m_{\text{His}} = (0.0125 \pm 0.0002)$ моль кг⁻¹.

Таблица 3. Предельные кажущиеся мольные объемы (${}^{\phi}V^{\circ}$) урацила и значения его производной по температуре ($\partial^{\phi}V^{\circ}/\partial T$)_{*p*} в водном буферном растворе и водном буферном растворе с аминокислотой (His) при разных температурах

Т, К	Ura–6	буфер	Ura-His ^a -буфер		
	${}^{\phi}V_{\text{Ura}}^{\circ} imes 10^{6},$ м ³ моль ⁻¹	$(\partial^{\phi}V^{\circ}/\partial T)_{p} imes 10^{6},$ м ³ моль ⁻¹ K ⁻¹	${}^{\phi}\!V_{\mathrm{Ura}}^{\circ} imes 10^{6},$ м ³ моль ⁻¹	$(\partial^{\phi} V^{\circ} / \partial T)_{p} \times 10^{6},$ м ³ моль ⁻¹ K ⁻¹	
288.15	55.77 ± 0.41	0.252 ± 0.110	57.45 ± 0.33	0.133 ± 0.120	
298.15	58.12 ± 0.39	0.282 ± 0.098	59.97 ± 0.28	0.398 ± 0.117	
303.15	60.01 ± 0.36	0.297 ± 0.101	62.40 ± 0.30	0.531 ± 0.126	
308.15	61.52 ± 0.28	0.312 ± 0.101	65.62 ± 0.29	0.663 ± 0.124	
313.15	62.85 ± 0.31	0.326 ± 0.106	68.97 ± 0.24	0.796 ± 0.121	

Примечание. $m_{\text{His}} = 0.0125 \pm 0.0002$ моль кг⁻¹, $(\partial^{\phi} V^{\circ} / \partial T)_p$ вычислено по уравнению: $(\partial^{\phi} V^{\circ} / \partial T)_p = \beta + 2T\gamma$, где β, γ – константы из (5).

Рис. 1. Концентрационные зависимости кажущихся мольных объемов урацила (V_{φ}) в водном буферном растворе (a) и водном буферном растворе L-гистидина (б) при температурах: I - 288.15 K, 2 - 298.15 K, 3 - 303.15 K, 4 - 308.15 K, 5 - 313.15 K ($m_{\text{His}} = 0.0125 \pm 0.0002$ моль кг⁻¹).

ра, что приводит к расширению общего объема раствора при более высокой температуре.

Кажущиеся мольные объемы переноса ($\Delta_{tr}^{\phi} \mathcal{V}^{\circ}$) при бесконечном разбавлении для Ura из буфера в буферный раствор аминокислоты вычислены по соотношению:

$$\Delta_{tr}^{\varphi} V^{\circ} = {}^{\varphi} V^{\circ} (Ura - His - \delta y \phi ep) -$$

$$- {}^{\varphi} V^{\circ} (Ura - \delta y \phi ep).$$
(4)

Наблюдаемые положительные значения $\Delta_{tr}^{\phi} V^{\circ}$ могут быть обусловлены эффектами дегидратации растворенных веществ и, прежде всего, отражать уменьшение электрострикционного сжатия молекул воды, находящихся в гидратных оболочках реагентов, при их вытеснении в объем раствора в процессе образования комплекса между His и Ura [33, 34]. Согласно модели перекрывания гидратных сфер Гэрни [35, 36], отрицательные изменения объема предполагают ион-гидрофобные и гидрофобно-гидрофобные взаимодействия Ura с His, тогда как ион-гидрофильные и гидрофильно-гидрофильные взаимодействия дают положительные вклады. Иными словами, взаимодействия между регентами, обусловленные, преимущественно, электростатическими силами И водородными связями, сопровождаются увеличением объема ($\Delta_{tr}V_{\phi}^{0} > 0$), а его понижение $(\Delta_{\rm tr} V_{\phi}^0 < 0)$ имеет место в случае участия во взаимодействии неполярных групп (гидрофобные силы)] [31, 32, 37]. Между компонентами (Ura и His) исследуемой тройной системы возможны следующие взаимодействия: (1) цвиттерион-гидрофильные взаимодействия между зарядными группами NH₃⁺/COO⁻ аминокислоты (AK) и гидрофильными группами (>C=O, >NH) урацила; (2) гидрофильно-гидрофильные взаимодействия между полярными фрагментами His и гидрофильными группами Ura; (3) гидрофильно-гидрофобные взаимодействия между полярными/неполярными группами аминокислоты и неполярными/полярными группами нуклеинового основания (HO); (4) гидрофобно-гидрофобные взаимодействия между неполярными фрагментами AK и гидрофобными группами HO. Два первых типа взаимодействия дают положительные

вклады в $\Delta_{
m tr} V_{
m \phi}^0$, а третий и четвертый типы приво-

дят к отрицательным значениям $\Delta_{tr}V_{\phi}^{0}$ [23, 38]. Полученные положительные изменения объема ΔV_{tr}° свидетельствуют о том, что в растворах Ura в присутствии His взаимодействия первых двух типов доминируют в условиях существующей конкуренции между различными типами взаимодействий в исследуемых растворах. Таким образом, можно предположить, что комплексы His с молекулами Ura могут быть образованы за счет цвиттерион-гидрофильных взаимодействий и образования водородных связей, что согласуется с литературными данными [39].

Температурные зависимости парциальных мольных объемов ${}^{\varphi}V^{\circ}$ урацила в буфере и буферном растворе аминокислоты, представленные на рис. 2, описываются уравнением:

$${}^{\varphi}V^{\circ} = \alpha + \beta T + \gamma T^2, \tag{5}$$

где α , β и γ – константы, T – температура. Значения $(\partial^{\varphi}V^{\circ}/\partial T)_{p}$ и $(\partial^{2\varphi}V^{\circ}/\partial T^{2})_{p}$ были получены путем дифференцирования уравнения (5). В табл. 3 приведены рассчитанные первые производные $(\partial^{\varphi}V^{\circ}/\partial T)_{p}$, положительные значения которых указывают на высвобождение электрострикционно сжатой воды из гидратных сфер His и Ura в

Рис. 2. Температурные зависимости парциальных мольных объемов ${}^{\phi}V^{\circ}$ (а) и парциальных мольных теплоемкостей ${}^{\phi}C_{\rho}^{\circ}$ (б) при бесконечном разбавлении для урацила в буфере (*1*) и в водном буферном растворе, содержащем 0.0125 моль кг⁻¹ L-гистидина (*2*).

раствор в процессе их связывания в комплекс, что сопровождается увеличением объема системы. Показано, что величины $(\partial^{\varphi} V^{\circ} / \partial T)_{p}$ проявляют тенденцию к повышению с температурой как в бинарной (Ura—буфер), так и в тройной (Ura—His—буфер) системах.

На основе использования уравнения Хеплера [40]:

$$(\partial C_p^{\circ} / \partial P)_T = -T (\partial^{2\,\varphi} V^{\circ} / \partial T^2)_p, \tag{6}$$

можно количественно оценить воздействие растворенных веществ на структру растворителя. Положительный знак второй производной $(\partial^{2\varphi} V^{\circ} / \partial T^2)_n$ свидетельствует о структурно-образующей способности растворенного вещества, а его отрицательная величина указывает на структурно-разрушающие свойства в водном растворе. В нашем случае значения $(\partial^{2\varphi}V^{\circ}/\partial T^{2})_{p}$ составляют $0.0029 \text{ см}^6 \text{ моль}^{-2} \text{ K}^{-2}$ для Ura в водном буферном растворе и 0.0265 см⁶ моль⁻² К⁻² для Ura в водном буферном растворе, содержащем His. Полученные результаты показывают, что растворение полярного вещества Ura в буферном растворе, повидимому, индуцирует структурирование окружающих молекул воды в соответствии с моделью гидрофобной гидратации [41]. В случае растворов Ura в буфере, содержащем аминокислоту, также наблюдается стабилизация структуры растворителя вследствие процессов ассоциации. При этом можно предположить, что буферные системы с Ura и His более структурированы, чем буферные растворы урацила.

Теплоемкостные свойства растворов

Значения кажущейся молярной теплоемкости урацила (${}^{\phi}C_{p}$) в буфере и буферном растворе с гистидином определены из экспериментальных данных удельной теплоемкости с использованием уравнения (7):

$${}^{\phi}C_{p} = Mc_{p} + 1000(c_{p} - c_{p}^{\circ})/m, \tag{7}$$

где c_p и c_p° — удельные теплоемкости, соответственно, раствора и растворителя (Дж K⁻¹ г⁻¹), *m* — моляльная концентрация растворенного вещества Ura (моль кг⁻¹), *M* — молярная масса Ura (г моль⁻¹). Значения ${}^{\diamond}C_p$ урацила получены как функция его концентрации при постоянной концентрации аминокислоты (0.0125 ± 0.0002 моль кг⁻¹). Погрешность определения ${}^{\diamond}C_p$ не превышает 2%.

Анализ полученных данных показал, что концентрационные изменения значений ${}^{\phi}C_{p}$ урацила в буферном растворе близки к линейным и могут быть выражены уравнением:

$${}^{\scriptscriptstyle 0}\!C_p = {}^{\scriptscriptstyle 0}\!C_p^\circ + A_{\!\!1}m, \tag{8}$$

а изотермы ${}^{\phi}C_{p}$ для тройной системы Ura–His– буфер аппроксимируются полиномом второй степени:

$$C_p = {}^{\phi}C_p^{\circ} + A'_{\rm l}m_{\rm Ura} + A'_{\rm 2}m_{\rm Ura}^2$$
 (9)

во всем изученном диапазоне параметров (m, T). Здесь ${}^{\phi}C_{p}^{\circ}$ — предельное значение кажущейся мольной теплоемкости, равное парциальной мольной теплоемкости при бесконечном разбавлении, A_{1} , A'_{1} and A'_{2} — постоянные коэффициенты. На рис. 3 представлены концентрационные зависимости кажущихся мольных теплоемкостей ТЮНИНА

Рис. 3. Концентрационные зависимости кажущихся мольных теплоемкостей урацила (${}^{\phi}C_{p}$) в водном буферном растворе (а) и водном буферном растворе L-гистидина (б) при температурах: 1 - 288.15 K, 2 - 293.15 K, 3 - 298.15 K, 4 - 303.15 K, 5 - 308.15 K, 6 - 313.15 K ($m_{\text{His}} = 0.0125 \pm 0.002$ моль кг⁻¹).

урацила в изученной области температур, которые носят нелинейный характер в тройной системе Ura—His—буфер в отличие от бинарной смеси Ura—буфер. Следует отметить, что в указанных условиях эксперимента (m, T) наблюдаемые тенденции к понижению значений ${}^{\diamond}C_{p}$ с ростом концентрации Ura и линейный характер полученных зависимостей ${}^{\diamond}C_{p} = f(m)$ для системы Ura-буфер проявляются и для его водных растворов [42, 43]. Как известно [44], если в растворах отсутствуют изменения во взаимодействиях растворенное вещество—растворитель и растворенное вещество растворенное вещество, то теплоемкостные свойства раствора будут находиться в линейной зависимости от концентрации. Как видно из табл. 4, значения парциальной молярной теплоемкости (${}^{\phi}C_{p}^{\circ}$) урацила положительны для исследуемых систем и возрастают с температурой в интервале (288.15–313.15) К. Повидимому, нуклеиновое основание (Ura), имеющее в своей структуре гидрофильные и гидрофобные группы, индуцирует структурирование растворителя, как за счет гидрофобной гидратации, так и взаимодействия с растворенной аминокислотой [41, 42]. Увеличение ${}^{\phi}C_{p}^{\circ}$ с температурой может указывать на то, что взаимодействия между молекулами растворенных веществ сильнее, чем межмолекулярная водородная связь между молекулами воды.

В исследуемых растворах при изменении концентрации Ura происходят структурные превра-

Таблица 4. Предельные кажущиеся мольные теплоемкости (${}^{\phi}C_{p}^{\circ}$) урацила и значения его производной по температуре ($\partial^{\phi}C_{p}^{\circ}/\partial T$)_p в водном буферном растворе и водном буферном растворе с аминокислотой (His) при разных температурах

	Ura-6	буфер	Ura-His ^a -буфер		
Т, К	$^{\phi}C_{p}^{\circ},$ Дж K^{-1} моль $^{-1}$	$(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p},$ Дж K^{-2} моль $^{-1}$	$^{\phi}C_{p}^{\circ},$ Дж K^{-1} моль $^{-1}$	$(\partial^{\phi} C_{p}^{\circ} / \partial T)_{p},$ Дж K^{-2} моль $^{-1}$	
288.15	449.42 ± 0.03	0.0203 ± 0.005	452.34 ± 0.09	0.1411 ± 0.010	
293.15	449.55 ± 0.04	0.0368 ± 0.005	453.04 ± 0.06	0.1314 ± 0.009	
298.15	449.73 ± 0.03	0.0533 ± 0.007	453.71 ± 0.09	0.1217 ± 0.011	
303.15	450.10 ± 0.04	0.0698 ± 0.007	454.22 ± 0.08	0.1120 ± 0.010	
308.15	450.52 ± 0.04	0.0863 ± 0.009	454.76 ± 0.09	0.1023 ± 0.012	
313.15	450.92 ± 0.04	0.1028 ± 0.009	455.29 ± 0.08	0.0928 ± 0.015	

Примечание. $m_{\text{His}} = 0.0125 \pm 0.0002$ моль кг⁻¹, $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p}$ вычислено по уравнению: $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p} = b_{1} + 2Tb_{2}$, где b_{1}, b_{2} – константы из (11).

щения, обусловленные изменениями гидрофобных, гидрофильных и электростатических взаимодействий, приводящих, в конечном итоге, к связыванию Ura с His. Обычно положительный вклад в величину кажущейся молярной теплоемкости растворенного вещества дают эффекты дегидратации и увеличения степеней свободы и интенсивности молекулярных движений, что ведет к разрушению структуры раствора. В то же время, эффекты ассоциации и гидратации, образование более упорядоченных структур, сопровождающиеся уменьшением степеней свободы молекул растворенных веществ, приводят к отрицательному вкладу в значения ${}^{\phi}C_{p}$ [45, 46]. Как показано на рис. 3, с увеличением концентрации Ura наблюдается понижение значений кажущейся молярной теплоемкости. По-видимому, в случае растворения Ura в водном буферном растворе и водном буферном растворе, содержащем полярную гетероциклическую аминокислоту (His), можно говорить о преобладании вклада от эффекта гидрофобного структурирования среды и образования молекулярного комплекса Ura с His в общую теплоемкость раствора.

Структурные изменения, происходящие в растворе в процессе связывания Ura с His, можно объяснить на основе использования модели Гэрни о перекрывания ко-сфер молекул растворенных веществ, как это было показано выше при интерпретации объемных свойств [36, 47]. Изменение парциальной мольной теплоемкости ($\Delta_{\rm tr} C_p^{\circ}$) при переносе Ura из буфера в буферные растворы с аминокислотой определено по соотношению:

$$\Delta_{\rm tr} C_p^{\circ} = {}^{\phi} C_p^{\circ} ({\rm Ura-His-6y \varphi ep}) -$$

$$- {}^{\phi} C_p^{\circ} ({\rm Ura-6y \varphi ep}).$$
(10)

Полученные положительные значения $\Delta_{tr}C_p^{\circ}$ (от 2.92 до 4.37 Дж K⁻¹ г⁻¹ в интервале от 288.15 до 313.15 К) обычно указывают на то, что в присутствии Ura водные буферные системы His более структурированы, чем буферный растворитель [23, 32, 38, 45, 46]. Образование молекулярного комплекса между Ura и His приводит к потере некоторых степеней свободы, что дает отрицательный вклад в $\Delta_{\rm tr} C_p^{\circ}$, при этом имеет место дегидратация молекул растворенных веществ, что вносит положительный вклад в $\Delta_{tr}C_p^{\circ}$ [47]. Положительные значения $\Delta_{\rm tr} C_p^{\circ}$ свидетельствуют, что взаимодействия полярных гидрофильных групп нуклеинового основания (>C=O, >NH) с цвиттерионными группами (СОО⁻/NH₃) аминокислоты через перекрывание их гидратных сфер и образование водородных связей доминируют над цвиттерион-гидрофобными взаимодействиями между зарядными центрами His и пиримидинового

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 11 2021

кольца Ura [44, 48]. Как и в случае ΔV_{tr}° , значения $\Delta_{tr}C_p^{\circ}$ проявляют тенденцию к возрастанию с повышением температуры.

Температурные зависимости парциальной мольной теплоемкости (${}^{\phi}C_{p}^{\circ}$) при бесконечном разбавлении описываются полиномом второй степени как для бинарной (Ura–буфер), так и тройной (Ura–His–буфер) систем (рис. 2):

$${}^{p}C_{p}^{\circ}(T) = a + b_{1}T + b_{2}T^{2}.$$
 (11)

Здесь *T* – температура (К), *a*, *b*₁ и *b*₂ – константы. Значения полученных первых производных $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p}$ приведены в табл. 4. Видно, что для исследуемого пиримидинового нуклеинового основания значения $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p}$ положительны, что подтверждает полярный характер молекул Ura [41, 49]. Следует отметить, что для тройной системы Ura–His–буфер наблюдаются более высокие значения $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p}$ по сравнению с бинарной системой Ura–буфер из-за присутствия амино-кислоты, содержащей как полярные, так и неполярные фрагменты в молекуле.

Таким образом, методами денсиметрии и ДСК определены плотности и удельные теплоемкости буферных растворов, содержащих урацил и L-гистидин в интервале температур 288.15–313.15 К. Вычислены кажущиеся и парциальные молярные свойства (${}^{\phi}V, {}^{\phi}C_p$) урацила, а также предельные кажущиеся молярные свойства переноса Ura из буферного раствора в буферный раствор с аминокислотой. Показано, что функции ${}^{\phi}V = f(m)$ и ${}^{\phi}C_p = f(m)$ имеют нелинейный характер. Полученные данные позволили обнаружить структурные изменения в водных буферных растворах Ura с His, соответствующие образованию между ними молекулярного комплекса.

Определены параметры $(\partial^{\phi}C_{p}^{\circ}/\partial T)_{p}, (\partial^{\phi}V^{\circ}/\partial T)_{p}$ и $(\partial^{2\phi}V^{\circ}/\partial T^{2})_{p}$ для Ura в водном буферном растворе и водном буферном растворе аминокислоты. Выявленная тенденция в изменении их значений при различных температурах показывает, что буферные системы с Ura и His более структурированы, чем буферные растворы урацила. Полученные результаты показывают, что исследуемое нуклеиновое основание (Ura), имеющее в своей структуре гидрофильные и гидрофобные группы, индуцирует структурирование растворителя, как за счет гидрофобной гидратации, так и вследствие взаимодействия с растворенной гетероциклической аминокислотой (His) в буферном растворе.

Наблюдаемые положительные значения свойств переноса Ura из буфера в буферный раствор с His ($\Delta V_{tr}^{\circ}, \Delta_{tr} C_p^{\circ}$) при изученных температурах являются результатом компенсации отрица-

тельных и положительных вкладов в их величину, соответственно, от гидрофобных взаимодействий аполярных фрагментов молекул Ura с His и от ион-гидрофильных взаимодействий цвиттерионов His с полярными группами Ura и образования водородных связей.

Измерения плотности и удельной теплоемкости выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований" ИХР РАН (http://www.isc-ras.ru/ru/struktura/ckp).

СПИСОК ЛИТЕРАТУРЫ

- 1. Wettergren Y., Carlsson G., Odin E., Gustavsson B. // Cancer. 2012. V. 6. P. 2935.
- Bakkialakshmi S., Chandrakala D. // Spectrochim. Acta. Part A. 2012. V. 88. P. 2.
- Cheng A.C., Frankel A.D. // J. Am. Chem. Soc. 2004. V. 126. P. 434.
- Jones S., Daley D. T.A., Luscombe N.M. et al. // Nucleic Acids Rec. 2001. V. 29. P. 943.
- Ribeiro R.F., Marenich A.V., Cramer Ch.J., Truhlar D.G. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 10908.
- Yasuda Y., Tochio N., Sakurai M., Nitta K. // J. Chem. Eng. Data. 1998. V. 43. P. 205.
- Nain A.K., Pal R., Sharma R.K. // J. Mol. Liq. 2012. V. 165. P. 154.
- 8. Jardine J.J., Call T.G., Patterson B.A. et al. // J. Chem. Thermodynamics. 2001. V. 33. P. 1419.
- 9. *Riyazuddeen, Altamash T.* // Thermochimica Acta. 2010. V. 501. P. 72.
- 10. Banipal T.S., Singh K., Banipal P.K. // J. Solution Chem. 2007. V. 36. P. 1635.
- 11. Hansena A.L., Kaya L.E. // PNAS. 2014. P. E1705. (www.pnas.org/cgi/doi/10.1073/pnas.1400577111)
- 12. Oya-Ohta Y., Ochi T., Komoda Y., Yamamoto K. // Mutation Research. 1995. V. 326. P. 99.
- Чернова Р.К., Варыгина О.В., Березкина Н.С. // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2015. Т. 15. № 4. С. 15.
- 14. Hunter K.C., Millen A.L., Wetmore S.D. // J. Phys. Chem. B. 2007. V. 111. P. 1858.
- 15. Boeckx B., Maes G. // Ibid. B. 2012. V. 116. P. 11890.
- 16. *Banipal T.S., Kaur N., Banipal P.K.* // J. Chem. Thermodynamics. 2016. V. 95. P. 149.
- Smirnov V.I., Badelin V.G. // J. Mol. Liq. 2017. V. 229. V. 198.
- Bell-Upp P., Robinson A.C., Whitten S.T. et al. // Biophys. Chem. 2011. V. 159. P. 217.
- Balodis E., Madekufamba M., Trevani L.N., Tremaine P.R. // Geochim. Cosmochim. Acta. 2012. V. 93. P. 182.
- Khalil M.M., Fazary A.E. // Monatshefte f
 ür Chemie. 2004. V. 135. P. 1455.
- Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092

- Bhat R., Ahluwalia J.C. // J. Phys. Chem. 1985. V. 89. P. 1099.
- 23. *Terekhova I.V., De Lisi R., Lazzara G. et al.* // J. Therm. Anal. Cal. 2008. V. 92. P. 285.
- 24. *Tyunina E.Yu., Badelin V.G., Mezhevoi I.N.* // J. Soltion Chem. 2017. V. 46. P. 249.
- 25. *Clarke E.C.W., Glew D.N.* // J. Phys. Chem. Ref. Data. 1985. V. 14. P. 490.
- 26. *Miao Y., Cross T.A., Fu R. //* J. Magnetic Resonance. 2014. V. 245. P. 105.
- 27. Bretti C., Cigala R.M., Giuffrè O. et al. // Fluid Phase Equilibr. 2018. V. 459. P. 51.
- Тюнина Е.Ю., Баделин В.Г., Курицына А.А. // Журн. физ. химии. 2020. Т. 94. № 4. С. 557. https://doi.org/10.1134/S0036024420040226
- 29. *DeMember J.R., Wallace F.A.* // J. Am. Chem. Soc. 1975. V. 97. P. 6240.
- 30. Badeline V.G., Tyunina E.Yu., Mezhevoi I.N., Tarasova G.N. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 2229.
- 31. Zielenkiewicz W., Pietraszkiewicz O., Wszelaka-Rylic M. et al. // J. Solution Chem. 1998. V. 27. P. 121.
- 32. *Terekhova I.V., Kulikov O.V.* // Mendeleev Comm. 2002. V. 3. P. 1.
- Lepori L., Gianni P. // J. Solution Chem. 2000. V. 29. P. 405.
- 34. *Shahidi F., Farrell P.G.* // J. Chem. Soc., Faraday Trans. 1981. V. 77. P. 963.
- 35. *Franks F.* Water: A comprehensive treatise. V. 3. New York: Plenum Press, 1973.
- 36. *Gurney R.W.* Ionic processes in solution. New York: McGraw Hill, 1953.
- Banipal T.S., Kaur N., Banipal P.K. // J. Chem. Thermodynamics. 2015. V. 82. P. 12. https://doi.org/10.1016/j.jct.2014.10.015
- 38. *Bhuiyan M.M.H., Hakin A.W., Liu J.L.* // J. Solution Chem. 2010. V. 39. P. 877.
- Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092
- 40. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.
- Hadži S., Lah J. // BBA General Subjects. 2021. V. 1865. P. 129774.
- Kishore N., Ahluwalia J.C. // J. Solution Chem. 1990.
 V. 19. P. 51.
- 43. Zielenkiewicz W., Zielenkiewicz A., Grolier J.-P.E. et al. // J. Solution Chem. 1992. V. 21. P. 1.
- 44. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа. 1982.
- 45. Lat'isheva V.A. // Russ. Chem. Rev. 1973. V. XLII. P. 1757.
- 46. *Madan B., Sharp K.A.* // J. Phys. Chem. B. 2001. V. 105. P. 2256.
- Banipal P.K., Banipal T.S., Ahluwalia J.C., Lark B.S. // J. Chem. Thermodynamics. 2002. V. 34. P. 1825.
- 48. Lark B.S., Patyar P., Banipal T.S., Kishore N. // J. Chem. Eng. Data. 2004. V. 49. P. 553.
- 49. Szemińska J., Zielenkiewicz W., Wierzchowski K.L. // Biophys. Chem. 1979. V. 10. P. 409.