_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 530.1;541.182

МОДЕЛИРОВАНИЕ ЖИДКОГО ИНДИЯ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

© 2021 г. Д. К. Белащенко^{а,*}

^а Национальный исследовательский технологический университет "Московский институт стали и сплавов", Москва, Россия

> *e-mail: dkbel75@gmail.com Поступила в редакцию 23.03.2021 г. После доработки 23.03.2021 г. Принята к публикации 19.04.2021 г.

Рассчитан потенциал EAM для жидкого индия по опытным данным для парной корреляционной функции, плотности, энергии и сжимаемости при 433 К. Рассчитаны свойства моделей индия на бинодали при температурах до 3000 К. Получено хорошее согласие с опытом для плотности (до 1300 К), энергии (до 2000 К), коэффициентов самодиффузии и вязкости (до 1000 К), а также согласие с имеющимися парными корреляционными функциями (до 973 К). По форме ударной адиабаты индия рассчитаны дополнительные параметры потенциала EAM (модель погруженного атома): без учета электронных вкладов в энергию и давление (EAM-1) и с учетом этих вкладов по модели свободных электронов (EAM-2). Построены две серии моделей при условиях ударного сжатия до степени сжатия Z = 1.9 (до давления 255 ГПа). Учет электронных вкладов при Z = 1.9 понижает температуру на ударной адиабате на ~35%. Изотермы холодного давления (при 298 К), рассчитанные с обоими потенциалами, хорошо согласуются друг с другом и с изотермой реального статического сжатия индия. Для нанокластеров индия размером от 13 до 5083 атомов рассчитаны значения избыточной поверхностной энергии, которые в макроскопическом пределе на 15–20% ниже поверхностного натяжения реального индия.

Ключевые слова: метод молекулярной динамики, моделирование структуры, жидкий индий, модель погруженного атома

DOI: 10.31857/S0044453721110054

В настоящей работе проведено моделирование структуры и физических свойств жидкого индия на основе модели погруженного атома (EAM – Embedded atom model). Применена методика, при которой межчастичный потенциал рассчитывается по структурным характеристикам жидкого индия алгоритмом Шоммерса [1], а также по энергии атомизации и по зависимости плотности металла вдоль бинодали от температуры [2, 3]. Рассмотрены состояния жидкого индия как вдоль бинодали, так и в условиях ударного сжатия при давлениях до 255 ГПа. Расчеты структуры и свойств моделей проводили методом классической молекулярной динамики (МД) [4].

МНОГОЧАСТИЧНЫЙ ПОТЕНЦИАЛ ЕАМ

В настоящее время при компьютерном моделировании металлов и сплавов часто используют потенциал EAM [5] и модифицированный потенциал EAM – MEAM [6]. В случае жидких и аморфных металлов с изотропной структурой хорошие результаты дает применение сферическисимметричного потенциала ЕАМ, не включающего угловые переменные.

Потенциал ЕАМ имеет вид:

$$U = \sum_{i} \Phi(\rho_i) + \sum_{i < j} \varphi(r_{ij}).$$
(1)

Здесь U — потенциальная энергия системы, $\Phi(\rho_i)$ — потенциал погружения *i*-го атома, зависящий от эффективной электронной плотности ρ в месте нахождения центра атома, а вторая сумма по парам атомов — парный вклад — содержит обычный парный потенциал. Эффективная электронная плотность в точке нахождения атома создается окружающими атомами и определяется по формуле:

$$\rho_i = \sum_j \psi(r_{ij}), \qquad (2)$$

где $\psi(r_{ij})$ – вклад в электронную плотность от соседа номер *j*. Функцию $\psi(r)$ удобно выбрать в виде:

$$\Psi(r) = p_1 \exp(-p_2 r). \tag{3}$$

Потенциал погружения выбран ниже в виде кусочно-непрерывной функции вида:

$$\Phi(\rho) = a_{1} + c_{1}(\rho - \rho_{0})^{2}$$

$$\Pi \rho_{I} \leq \rho \leq \rho_{6},$$

$$\Phi(\rho) = a_{i} + b_{i}(\rho - \rho_{i-1}) + c_{i}(\rho - \rho_{i-1})^{2}$$

$$\Pi \rho_{I} \leq \rho \leq \rho_{i-1} \quad (i = 2-5),$$

$$\Phi(\rho) = [a_{6} + b_{6}(\rho - \rho_{5}) + c_{6}(\rho - \rho_{5})][2\rho/\rho_{5} - (\rho/\rho_{5})^{2}] \quad \Pi \rho_{II} \quad \rho \leq \rho_{5},$$

$$\Phi(\rho) = a_{7} + b_{7}(\rho - \rho_{6}) + c_{7}(\rho - \rho_{6})^{m}$$

$$\Pi \rho_{II} \quad \rho_{6} \leq \rho \leq \rho_{7},$$

$$\Phi(\rho) = a_{8} + b_{8}(\rho - \rho_{7}) + c_{8}(\rho - \rho_{7})^{n}$$

$$\Pi \rho_{II} \quad \rho > \rho_{7},$$
(4)

причем $\rho_0 = 1$, а при $\rho = \rho_i$ непрерывны сама функция $\Phi(\rho)$ и ее первая производная. Функция $\Phi(\rho)$ и все коэффициенты *a*, *b* и *c* выражаются в эВ. Координаты точек деления оси абсцисс возрастают в последовательности $\rho_5 - \rho_4 - \rho_3 - \rho_2 - \rho_1 - \rho_2 -$ $\rho_0 - \rho_6 - \rho_7$. В итоге потенциал EAM определяется параметрами $p_1, p_2, a_1, c_1-c_8, \rho_1-\rho_7, m, n$, которые позволяют в принципе подогнать свойства моделей к выбранным экспериментальным данным. Эту подгонку проводили по зависимости плотности и энергии индия от температуры вдоль бинодали, а также по данным статического и ударного сжатия индия. Выражения при $\rho < \rho_0$ используются при моделировании состояний с нормальной и пониженной плотностью, а при $\rho > \rho_6 - для$ сжатых состояний. Параметр p₂ в (3) является подгоночным. Параметр p_1 определялся таким образом, чтобы получить для модели жидкости в "стандартном" состоянии (вблизи от точки плавления) среднее значение $\langle \rho \rangle = \rho_0 = 1$. В этом случае потенциал погружения не влияет на движение частиц, поскольку $d\Phi(\rho)/d\rho$ при $\rho \approx 1$ близко к нулю. Коэффициент a_1 определяется через энергию модели в "стандартном" состоянии при $\rho = 1$. Коэффициент c_1 определяется через модуль всестороннего сжатия в этом состоянии. Коэффициенты $c_2 - c_6$ подбираются по зависимости плотности индия от температуры вдоль бинодали, а c_7 и c_8 по форме ударной адиабаты [2, 3]. Коэффициенты $a_2 - a_8, b_2 - b_8$ рассчитываются из условия непрерывности потенциала погружения и его производной в точках ρ_i .

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ДЛЯ ЖИДКОГО ИНДИЯ

Экспериментальные значения плотности при температурах до 1100 К опубликованы в обзоре [7], в котором суммированы данные 11 исследований. В работе [8] соответствующие данные приведены до 1300 К. При 298 К стандартная энтальпия

газа In равна $\Delta H_{298}^0 = 243.3 \ \kappa Дж/моль [9]. Для ре$ $акции сублимации <math>\Delta H = \Delta E + RT$, где E – внутренняя энергия. Отсюда стандартная энергия индия при 298 K по отношению к **покоящемуся** газу (с нулевой энергией) равна $E_{298}^0 = -[\Delta H_{298}^0 - (5/2)RT] = -237.1 \ \kappa Дж/моль. Значения эн$ тальпии твердого и жидкого индия при различных температурах по отношению к абсолютному нулю приведены в справочнике [10]. Поэтим данным можно рассчитать значения энергии индия при различных температурах по отношению к покоящемуся газу. Вблизи от температуры плавления (при 433 K) энергия жидкого индия равна -230.03 кДж/моль.

Изотермическая сжимаемость индия β_T была рассчитана в [11] по данным о скорости звука:

$$\beta_T, \Pi a^{-1} = (2.030 + 21.0 \times 10^{-4} T) \times 10^{-11}.$$
 (5)

Эта формула пригодна до $T \sim 800$ К. Модуль всестороннего сжатия $K_T = \beta_T^{-1}$. При 433 К модуль равен $K_T = 34.02$ ГПа.

Самодиффузия в жидком индии исследована экспериментально в нескольких работах, при температурах преимущественно до 750–1000 К. В [12] рассмотрены работы, опубликованные до 2018 г., и проведены расчеты коэффициента самодиффузии приближенным методом с модифицированным псевдопотенциалом пустого иона до ~2500 К.

Значения вязкости индия в интервале до 1000 К приведены в обзоре [7].

РАСЧЕТ ПОТЕНЦИАЛА ЕАМ

Парный вклад в потенциал ЕАМ. Парные корреляционные функции (ПКФ) индия в интервале 433-973 К приведены в книге [13]. Для уточнения формы ПКФ на малых расстояниях, где играют заметную роль ложные осцилляции, эта ПКФ при 433 К была пересчитана методом наименьших квадратов [14] по таблицам структурных факторов из [13]. Поскольку ПКФ является продуктом фурье-преобразования структурного фактора (C Φ), то метод [14] предполагает, что ложные осцилляции ПКФ на малых расстояниях явфурье-преобразования ляются результатом ошибок измерения структурного фактора (СФ). В итоге поправка к измеренному СФ определяется путем обратного фурье-преобразования ложных осцилляций ПКФ. Исходная и преобразованная ПКФ (см. рис. 1) немного отличаются в области первого минимума и вблизи минимального межчастичного расстояния. Невязка (стандартное отклонение, см. ниже) между ними на интервале 2.6–6.7 Å равна $R_{\rm g} = 0.032$. Исходная ПКФ [13] обращается в нуль при 2.65 Å, а рассчи-

Рис. 1. Парные корреляционные функции индия при 433 К. Сплошная линия (*1*) – дифракционная функция [13], *2* – расчет по методу [14]. Невязка между ними на интервале 2.6–7.6 Å равна 0.0323.

танная по методу [14] — при 2.55 Å. Невязка на интервале 0—2.55 Å (т.е. средняя квадратичная амплитуда ложных осцилляций) равна 0.662 для исходной ПКФ и значительно меньше (0.125) для преобразованной. Неточности ПКФ на малых расстояниях заметно влияют на форму парного вклада в потенциал.

При сравнении графиков одного и того же свойства (например, двух различных гистограмм ПКФ $g_1(r)$ и $g_2(r)$), можно определять степень их различия как стандартное отклонение ("невяз-ку") с помощью формулы:

$$R_{\rm g} = \left\{ \frac{1}{n_2 - n_1 + 1} \sum_{n_1}^{n_2} [g_1(r_j) - g_2(r_j)]^2 \right\}^{1/2}.$$
 (6)

Здесь n_1 и n_2 — номера точек гистограмм ПКФ, между которыми вычисляется невязка. При невязке $R_g < 0.04$ две ПКФ визуально неразличимы. Величина R_g позволяет оценить различия между аналогичными данными, полученными в разных работах.

Парный вклад в потенциал ЕАМ был рассчитан в виде таблицы алгоритмом Шоммерса [1] по преобразованной ПКФ при 433 К. Модель состояла из 2048 частиц в основном кубе и имела плотность 7.02 г/см³ [7]. Радиус обрыва взаимодействия $r_c = 6.70$ Å был выбран равным координате на правом склоне второго пика ПКФ при $g(r) \approx 1.00$. В результате ~200 итераций была получена небольшая невязка $R_g \sim 0.04$ между ПКФ модели и преобразованной ПКФ. Давление модели составило при этом всего 0.0062 ГПа.

Наконец, таблица значений парного потенциала была аппроксимирована кусочно-непрерывной функцией с шестью участками по оси расстояний (точки деления $r_1, r_2, ... r_6$). На отрезке $r_1 - r_6$ она описывается формулой:

Рис. 2. Парный вклад в потенциал ЕАМ.

$$\varphi(r), \ \Im \mathbf{B} = \sum_{i=1}^{k} \sum_{n=0}^{L} a_{in} (r - r_{i+1})^{n} H(r_{i}, r_{i+1})$$

$$\Pi p \mathbf{M} \quad r_{1} < r < r_{6}.$$
(7)

Для индия выбрали k = 5 и L = 8. В этом выражении $H(r_i, r_{i+1}) - функция Хевисайда, равная единице при <math>r_i \le r \le r_{i+1}$ и нулю в остальных случаях, i -это номер интервала на оси r (i = 1, 2, ... 5). Условие непрерывности в точках $r = r_i$ было применено к самому потенциалу и к его производной. Величина $r_1 -$ это минимальное межчастичное расстояние в модели или близкое к нему значение. Радиус обрыва потенциала $r_c = r_6$ является границей второй координационной сферы. Радиусы r_i и коэффициенты a_{in} парного вклада для расстояний 2.55 $\le r \le 6.70$ Å приведены в табл. 1.

На расстояниях меньше $r_{\min} = 2.65$ Å значения потенциала в процедуре Шоммерса не определяются и были выбраны эмпирически в виде восходящей ветви:

$$\varphi(r) = 0.194286 + 0.949092(r_{\min} - r) + + 5.00(r_{\min} - r)^{3.50}.$$
(8)

При этом функция $\varphi(r)$ и ее производная непрерывны в точке $r = r_{min}$. График парного потенциала EAM показан на рис. 2. Этот вклад определяет структуру и свойства жидкого индия при условии $\langle \rho \rangle = 1$, т.е. вблизи от точки плавления при нулевом давлении.

Отметим, что для расчета парного вклада в потенциал EAM использованы только значение плотности и дифракционная ПКФ жидкого индия вблизи от точки плавления.

Потенциал погружения. Этот вклад определяется формулами (3)–(4). Коэффициент $p_2 = 1.200$ – подгоночный, а $p_1 = 3.8404$ найден из условия, что $\langle \rho \rangle = 1$ при 433 К. Коэффициент $a_1 = -1.6986$ найден по известной энергии индия при 433 К (-230.02 кДж/моль), а $c_1 = 1.2188$ – по величине модуля всестороннего сжатия [11, 15]. В первом варианте расчета потенциала (потенциал EAM-1) электронные вклады в давление и энергию не

a _{in}		Номер инте	рвала <i>і</i> /Границы интервала	$r_i - r_{i+1}, $ Å	
	1/2.55–2.85	2/2.85-3.40	3/3.40-4.20	4/4.20-6.20	5/6.20-6.70
a_{i0}	0.28790207579732D-01	-0.98203137516975D-01	-0.90621046721935D-01	-0.11112447828054D-02	0.0000000000000D+00
a _{ti}	-0.54603308439255D+00	-0.59092823415995D-01	0.62023375183344D-01	-0.12457665288821D-02	0.0000000000000D+00
a ₁₂	0.24961190259093D+02	0.14236783683883D+00	0.46805484048862D+00	-0.44737160225177D-01	0.52088645449744D—01
a ₁₃	0.85353813510338D+03	0.17011298395360D+01	0.31112381194033D+01	-0.32009424179952D-01	0.88419036528623D+00
a _{i4}	0.11256088460076D+05	0.17465714370491D+02	0.88838780767650D+01	0.41180372922851D-01	0.55057929979120D+01
ais	0.71879605953736D+05	0.65150900923425D+02	0.13304057334364D+02	0.15698320932799D+00	0.19068804337084D+02
a ₁₆	0.23839584021068D+06	0.12539762870229D+03	0.12157427940802D+02	0.15547180314791D+00	0.38058816253067D+02
an	0.39286451071906D+06	0.12173795882269D+03	0.68859085644049D+01	0.64700779995440D-01	0.40078402303117D+02
a _{/8}	0.25359827189694D+06	0.47467898456664D+02	0.18665516078792D+01	0.98709117421256D–02	0.17055229658189D+02

Таблица 1. Коэффициенты разложения парного вклада в потенциал ЕАМ индия

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

МОДЕЛИРОВАНИЕ ЖИДКОГО ИНДИЯ

1807

учитывались. Впрочем, на бинодали эти вклады малы; согласно модели свободных электронов (МСЭ), давление электронов даже при 1300 К равно 0.040 ГПа и энергия 1.074 кДж/моль.

Остальные коэффициенты c_2-c_6 найдены по зависимости плотности индия на бинодали от температуры. При расчетах использовали опытные данные по плотности до 1100 К из обзора [7] и до 1300 К из [8]. Значения коэффициентов потенциала погружения в ЕАМ-1 приведены в табл. 2.

Таким образом, для построения потенциала погружения использованы только данные по энергии и сжимаемости жидкого индия вблизи от точки плавления, а также значения плотности вдоль бинодали.

МД-расчет свойств моделей

Структура реального индия ГЦТ – гранецентрированная тетрагональная, с отношением параметров c/a = 1.521. Однако, поскольку нас интересовали преимущественно свойства жидкого индия, то для исходных кристаллических моделей выбрали более удобную для моделирования структуру ГЦК. При молекулярно-динамических (МД) расчетах применяли алгоритм Л. Верле, расчеты вели в режимах NVT и NpT. Свойства моделей в состояниях вдоль бинодали приведены в табл. 3. Как видно из таблицы, в случае применения потенциала ЕАМ-1 (без учета электронных вкладов) получено хорошее согласие между плотностью моделей и реальными значениями до 1300 К (колонки 2 и 3). Стандартное отклонение между величинами в этих колонках равно всего 0.023 г/см³ (около 0.35%). Получено также очень хорошее согласие с опытом [10] по энергии (колонки 7 и 8 в табл. 3) при всех температурах до 2000 K.

Модуль всестороннего сжатия K_T рассчитывали по зависимости давления от объема модели при постоянной температуре. Он приведен в 9-й колонке табл. 3 в сравнении с опытными данными (10-я колонка). Расчетное значение модуля при 433 К хорошо согласуется с опытом, но при нагревании моделей наблюдается постепенное занижение значений K_T . Этот эффект наблюдался и раньше во многих случаях моделирования жидких металлов. Он объясняется существенным недостатком модели погруженного атома – отсутствием средств влияния на температурные зависимости свойств металла [17].

Температура плавления модели индия при нулевом давлении, определенная методом отогрева, равна 484 К. Эта температура немного выше, чем у реального индия (429.7 К), из-за перегрева, обычного для этого метода.

Таблица 2. Коэффициенты разложения потенциала ЕАМ индия

<i>p</i> ₁					<i>p</i> ₂				
	3.84	404		1.2000					
Без уче	та эл вкла	іектр адов	онных	C	учетом эл вкла	іек адо	тронных в		
т	m n				т		n		
2.21	2.50		2.50		2.21		2.00		
Ko	Коэффициенты пот				иала погру	же	ния		
i	þ) _i	<i>а</i> _{<i>i</i>} , эВ		<i>b</i> _{<i>i</i>} , эВ		<i>с_і</i> , эВ		
1	0.	93	-1.698600		1.218800		1.2188		
2	0.	80	-1.6926	28 -0.170632		2	0.0000		
3	0.	70	-1.6704	46 -0.170632		2	0.4000		
4	0.	65	-1.6493	83	-0.250632		0.0000		
5	0.	50	-1.6368	51	-0.250632		0.0000		
6	1.	30	-1.5992	56	-0.250632		0.0000		
	Без учета элект			юні	ных вклад	ов			
7	2.	60	-1.5889	08	08 0.731280		0.7700		
8	-	_	0.7367	65	65 3.068795		1.2800		
С	учет	ом эл	пектронн	ых і	вкладов по) M	ICЭ		
7	2.	60	-1.5889	08	0.73128	0	0.8030		
8	-	-	0.7956	93	3.16897	4	1.5000		

Основная характеристика структуры жидкого индия — парная корреляционная функция (ПКФ) при 433 К показана на рис. 3. Она получена при моделировании индия с потенциалом EAM-1. Невязка по отношению к дифракционной ПКФ [13, 14] на интервале 2.45–6.70 Å равна 0.040. Эти функции практически совпадают, немного различаясь только высотой первого пика. Аналогично выглядит и сравнение дифракционных [13] и модельных ПКФ при 773 и 973 К (рис. 4).

Невязка между модельными и дифракционными ПКФ остается небольшой даже при 973 К (6-я колонка, табл. 3). Хорошее согласие модельных и реальных ПКФ в широком интервале температур подтверждает адекватность межчастичного потенциала.

Коэффициенты самодиффузии индия рассчитаны по средним значениям квадратов смещений атомов и приведены в 11 колонке табл. 3. Их зависимость от температуры хорошо описывается выражением:

$$D, \, \mathrm{cm}^2/\mathrm{c} = 5.795 \times 10^{-10} T^{1.7062}.$$
(9)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

МОДЕЛИРОВАНИЕ ЖИДКОГО ИНДИЯ

	Плотнос	ть, г/см ³				-Е, КД	ж/моль	<i>K</i> _{<i>T</i>} ,	ГПа	D>	< 10 ⁵ , см	² /c
<i>Т</i> , К	Опыт [7]	ЕАМ при <i>p</i> = 0	$\langle \rho \rangle$	<i>р</i> , ГПа	R_g	EAM	Опыт [10]	EAM	Опыт [11, 15]	EAM	[16]	[12]
1	2	3	4	5	6	7	8	9	10	11	12	13
298	7.362	7.202	1.025	0.000	_	235.17	237.1	38.9	35.3 [9]	-	_	_
433	7.020	7.020	1.000	0.0035	0.036	229.8	230.02	34.0	34.02	1.70	1.39	1.77
500	6.968	6.973	0.9941	0.000	_	227.93	228.08	_	32.47	2.31	2.20	2.18
600	6.892	6.900	0.9836	< 0.001	0.034	225.18	225.66	_	30.40	3.12	3.44	2.84
700	6.816	6.834	0.9732	< 0.001	_	222.53	222.45	_	28.57	4.40	4.71	3.68
800	6.740	6.761	0.9636	< 0.001	0.062	219.87	220.64	24.1	26.95	5.38	5.99	4.72
900	6.664	6.681	0.9521	0.003	_	217.12	216.93	—	25.51*	6.82	7.30	5.97
1000	6.587	6.612	0.9404	< 0.001	0.056	214.52	214.20	—	24.21*	7.60	8.64	7.43
1100	6.511 6.550 [8]	6.532	0.9332	0.004	_	211.69	211.77	_	23.04*	9.12	—	9.09
1200	6.480 [8]	6.453	0.9182	< 0.001	_	209.20	208.75	15.8	22.0*	10.32	_	10.9
1300	6.410 [8]	6.368	0.9045	-0.004	_	206.51	206.04	—	21.01*	11.66	—	12.9
1500	-	6.198	0.8827	0.0012	_	201.30	200.61	—	19.3*	15.22	—	17.4
2000	-	5.672	0.8017	0.005	_	187.3	187.00	—	16.05*	23.96	—	—
2500	-	5.088	0.7200	0.005	_	173.03	—	4.8	—	36.4	—	—
3000	_	4.618	0.6525	< 0.001	_	159.64	—	—	_	49.1	—	_

Таблица 3. Расчетные свойства индия, полученные методом МД с потенциалом ЕАМ-1

Примечание. Стандартное отклонение в ячейках 4-й колонки возрастает сверху вниз от 0.037 до 0.145 , * – эстраполяция.

Для сравнения в колонке 12 показаны экспериментальные данные [16], измеренные в серии 1958 года (см. рис. 5).

Недавно получены также теоретические оценки [12], основанные на анализе формы автокорреляционной функции скоростей (колонка 13). Они близки к [16] и к результатам МД-расчетов с потенциалом ЕАМ.

Сдвиговая вязкость моделей индия была рассчитана по методу Грина-Кубо через автокорреляционную функцию тензора вязких напряжений. С учетом работ [18, 19] вязкость можно рассчитывать по уравнению:

$$\eta = \frac{V}{10k_{\rm B}T} \int_{0}^{\infty} \left(\sum_{\alpha\beta} \left\langle P_{\alpha\beta}(0) P_{\alpha\beta}(t) \right\rangle \right) dt, \qquad (10)$$

где $\alpha\beta = xx, xy, xz, yx, yy, yz, zx, zy, zz, и k_{\rm B}$ – постоянная Больцмана. Далее, компоненты тензора

Рис. 3. Парные корреляционные функции индия. Сплошная линия – дифракционная функция [14] при 433 К, маркеры – метод МД с потенциалом ЕАМ. Невязка между ними на интервале 2.5–7.6 Å равна 0.040.

Рис. 4. Парные корреляционные функции индия при 773 и 973 К. Штриховые линии – дифракционные функции [13], маркеры – метод МД с потенциалом ЕАМ; R_g – невязки между ними на интервале 2.25–7.6 Å: 1 - 773 K, $R_g = 0.065$, 2 - 973 K, $R_g = 0.056$.

Рис. 5. Коэффициенты самодиффузии индия: 1 – МД-расчет с потенциалом ЕАМ (уравнение (9)), 2 – данные [16].

$$P_{\alpha\beta} = (\pi_{\alpha\beta} + \pi_{\beta\alpha})/2 - \delta_{\alpha\beta} \left(\sum_{y} \pi_{yy}\right)/3,$$

где $\delta_{\alpha\beta}$ – символ Кронекера, и

$$\pi_{\alpha\beta} = \frac{1}{V} \left[\sum_{j} m_{j} v_{j\alpha} v_{j\beta} + \sum_{j} \sum_{k>j} (r_{j\alpha} - r_{k\alpha}) f_{jk\beta} \right].$$

Здесь m_j — масса атома j, $r_{j\alpha}$ и $r_{j\beta}$ — координаты атома j, $v_{j\alpha}$ и $v_{j\beta}$ — компоненты его скорости, $f_{jk\beta}$ — β -компонента силы, с которой атом j действует на атом k. Расчеты проводили прогонами длиной 10000 шагов по времени, величины $P_{\alpha\beta}(t)$ вычисляли на каждом шаге, интегралы (10) рассчитывали на интервалах длиной 4999 шагов по времени. Усреднение путем сдвига расчетного интервала вдоль таблицы данных одного МД- прогона проводилось с использованием 5000 точек входа. Число прогонов составляло обычно 50. Таким образом, значение вязкости в (10) получалось усреднением по 2.25 × 10⁶ значениям. Рас-

Таблица 4. Вязкость моделей жидкого индия на бинодали, сПуаз

<i>Т</i> , К	Вязкость моделей, потенциал EAM-1	Опыт [7]
450	1.84 ± 0.017	1.748
600	1.21 ± 0.10	1.234
800	0.87 ± 0.10	0.951
1000	0.82 ± 0.08	0.813

Примечание. Со значком \pm указаны вероятностные ошибки математического ожидания.

Рис. 6. Вязкость индия: 1 – модели с потенциалом ЕАМ-1, 2 – данные обзора [7].

Рис. 7. Ударная адиабата индия: *1* – опыт [22, 23], *2* – МД-расчет с потенциалом ЕАМ-1, *3* – расчет с потенциалом ЕАМ-2.

четные значения вязкости при температурах 450— 1000 К приведены в табл. 4 и на рис. 6. При всех температурах наблюдается хорошее согласие МДрасчета вязкости с реальными значениями.

МОДЕЛИРОВАНИЕ УДАРНОЙ АДИАБАТЫ (УА)

Наряду с моделированием свойств индия при обычных давлениях, интересно провести исследование поведения индия при высоких температурах и давлениях, а именно в условиях ударного сжатия. Уравнение ударной адиабаты (УА) (Гюгонио) имеет вид:

$$\Delta E = (1/2)(p + p_0)(V_0 - V), \tag{11}$$

где ΔE — изменение энергии при переходе из исходного состояния в сжатое, p_0 и V_0 — давление и объем в исходном состоянии, а *p* и *V* — то же в сжатом состоянии [20]. Ударное сжатие компактного индия исследовано в ряде работ [21]. При подборе данных для целей моделирования использованы работы [22, 23]. Экспериментальные точки на адиабате Гюгонио хорошо описываются полиномом 3-й степени ($R^2 = 0.9980$):

$$p, \Gamma\Pi a = 4.0696E + 02Z^3 - 1.3822E + 03Z^2 + + 1.6446E + 03Z - 6.7058E + 02.$$
(12)

где $Z = V_0/V$, $V_0 = 16.356 \text{ см}^3/\text{моль} - исходный мольный объем индия при 298 K, а <math>V$ – объем в данной точке ударной адиабаты (УА). Эта адиабата показана на рис. 7.

Потенциал ЕАМ-1. Неучет электронных вкладов. По форме ударной адиабаты были рассчитаны методом [2, 3, 17] параметры потенциала ЕАМ-1 для сжатых состояний индия ρ_6 , ρ_7 , c_7 , c_8 , *m* и *n* без учета электронных вкладов. Они равны $\rho_6 = 1.30$, $\rho_7 = 2.60$, $c_7 = 0.77$, $c_8 = 1.28$, m = 2.21, n == 2.50 (табл. 2). На рис. 7 показаны расчетные давления моделей индия на УА в сравнении с опытом. В табл. 5 приведены характеристики моделей индия на УА, рассчитанные методом МД с потенциалом ЕАМ-1. Согласие с опытом очень

Ζ	р, ГПа (9)	Δ <i>Е</i> , кДж/моль	<i>Т</i> , К моделей	р _{МД} , ГПа модель	$E_{298}^{0} + \Delta E,$ кДж/моль	Е _{МД} , кДж/моль
1	2	3	4	5	6	7
1.00*	0.90	0.0	298	0.9	-237.1	-235.4
1.10*	7.68	5.71	350	6.51	-231.39	-231.28
1.20*	15.8	21.53	570	14.1	-215.57	-215.91
1.30	25.57	48.26	990	24.14	-188.84	-188.90
1.40	39.45	92.17	1400	39.12	-144.93	-144.69
1.50	59.86	163.18	3000	59.73	-73.92	-73.86
1.60	89.26	273.73	6370	89.64	36.63	36.75
1.70	130.08	438.02	12240	130.7	200.92	200.49
1.80	184.76	671.55	21670	184.21	434.45	435.02
1.90	255.76	990.75	35590	255.3	753.65	753.45

Таблица 5. Свойства моделей индия в условиях ударного сжатия, потенциал EAM-1, $V_0 = 16.356 \text{ см}^3/\text{моль}$

Примечания: * ГЦК структура, $E_{298}^0 = -237.1$ кДж/моль, $Z = V_0/V$.

хорошее. Стандартное отклонение от данных опыта по давлению для жидкого индия (2-я и 5-я колонки табл. 5) равно 0.39 ГПа, а по энергии (6-я и 7-я колонки) — 0.27 кДж/моль. Зависимость температуры в сжатых состояниях от степени сжатия *Z* показана на рис. 8.

Холодное давление. Изотерма давления индия (холодное давление) при температуре 298 К была измерена при давлениях $p \le 67 \ \Gamma \Pi a$ [24] методом сжатия в алмазных ячейках. Эти результаты описываются выражением

$$p = 3K_0 x^{-5} (1 - x) \exp[C_{02} (1 - x)], \qquad (13)$$

где $x = (1/Z)^{1/3}$, $C_{02} = (3/2)(K_0 - 3)$, $K_0 = 39$ ГПа,

 $K_0 = 5.43$. С потенциалом EAM-1 были построены модели индия при 298 К и степенях сжатия *Z* до 1.9. Значения холодного давления (при 298 К)

показаны на рис. 9 в сравнении с экспериментальными данными [24]. Расчетные значения давления очень хорошо согласуются с опытом.

Потенциал ЕАМ-2. Учет электронных вкладов. При проведении расчета УА индия с учетом электронных вкладов в энергию и давление по методу [2, 25] было принято, что давление модели равно сумме давлений ионной подсистемы с новым потенциалом ЕАМ-2 и вклада от электронного газа, а энергия модели также равна соответствующей сумме энергий. Суммарные давление и энергия модели при заданном значении Z должны равняться по-прежнему реальным значениям на УА при том же Z. В связи с этим параметры потенциала ЕАМ-2, относящиеся к сжатым состояниям, должны отличаться от параметров ЕАМ-1. Расчеты параметров проводили методом итераций.

Поскольку сведения о поведении электронного газа в индии у нас отсутствовали, то было ре-

Рис. 8. Температура на ударной адиабате: 1 – потенциал ЕАМ-1, 2 – потенциал ЕАМ-2.

Рис. 9. Изотермы давления индия при 298 К (холодное давление): *1* – опытные данные [24] (выше 67 ГПа – экстраполяция по уравнению (13)), *2* – потенциал EAM-1, *3* – потенциал EAM-2.

шено применить в качестве приближения модель свободных электронов (МСЭ). В этой модели можно использовать два уравнения для числа электронов и их энергии [26]:

$$N_{el} = C \int_{0}^{\infty} \frac{\varepsilon^{1/2} d\varepsilon}{1 + e^{(\varepsilon - \mu)/kT}}, \quad E_{el} = C \int_{0}^{\infty} \frac{\varepsilon^{3/2} d\varepsilon}{1 + e^{(\varepsilon - \mu)/kT}}.$$
 (14)

В этих уравнениях величина N_{el} – число электронов, є и μ – энергия и химический потенциал электронов. В модели свободных электронов коэффициент $C = 4\pi (2m)^{3/2} V/h^3$, где m – масса электрона, V – объем металла и h – постоянная Планка. Эти уравнения обычно хорошо выполняются для простых жидких металлов, структура которых изотропна. Задав N_{el} , объем V и температуру T, можно найти из первого уравнения величину μ , а потом из второго уравнения – энергию электронов E_{el} . При невысоких температурах из этих уравнений получается известное решение А. Зоммерфельда. Обычно при расчетах используют не саму величину E_{el} , а ее инкремент $E_{eT}(T) = E_{el}(T) - E_{el}(298 \text{ K})$, который при T = 298 K обращается в нуль.

В результате итерационного подбора были приняты следующие оптимальные значения коэффициентов потенциала погружения в EAM-2: $\rho_7 = 2.60, m = 2.21, n = 2.0, c_7 = 0.803, c_8 = 1.50$ (табл. 2). С применением потенциала EAM-2 были рассчитаны свойства моделей на УА. Они приведены в табл. 6. Как видно из таблицы, сумма давлений модели и электронного газа в точках на УА (7 колонка) хорошо согласуются с давлением на УА (2 колонка). Соответственно, сумма энергий модели и электронного газа (11 колонка) близки к энергии на УА (8 колонка). Согласие не-

Ζ	<i>р</i> , ГПа (7)	Δ <i>Е</i> , кДж/моль	<i>Т</i> , К моделей	<i>р</i> , ГПа моделей	<i>р_{еТ,}</i> ГПа	<i>р</i> + <i>p_{eT}, ГПа</i>	$E_{298}^{0} + \Delta E,$ кДж/моль	<i>Е_{еТ},</i> кДж/моль	Е _{МD} , кДж/моль	$E_{ m MD}+E_{eT},$ кДж/моль
1	2	3	4	5	6	7	8	9	10	11
1.00*	0	0	298	0.90	0	0.90	-237.1	0	-235.4	-235.4
1.10*	7.68	5.71	350	6.51	0.001	6.51	-231.39	0.020	-231.28	-231.26
1.20*	15.8	21.53	570	14.15	0.006	14.16	-215.57	0.132	-215.00	-214.87
1.30*	25.57	48.26	990	24.37	0.025	24.39	-188.84	0.473	-188.79	-188.32
1.40	39.45	92.17	1350	39.52	0.050	39.57	-144.93	0.875	-145.65	-144.78
1.50	59.86	163.18	2780	60.07	0.225	60.29	-73.92	3.681	-77.98	-74.30
1.60	89.26	273.73	5540	88.94	0.919	89.86	36.63	14.10	21.76	35.86
1.70	130.08	438.02	9890	127.45	2.980	130.43	200.92	43.00	158.28	201.26
1.80	184.76	671.55	15760	176.84	7.63	184.47	434.45	103.96	330.54	434.50
1.90	255.76	990.75	23220	23940	16.47	255.51	753.65	212.66	541.34	754.00

Таблица 6. Свойства моделей индия в условиях ударного сжатия, потенциал EAM-2, $V_0 = 16.356 \text{ см}^3/\text{моль}$

Примечания: * ГЦК-структура, $E_{298}^0 = -237.1$ кДж/моль, $Z = V_0/V$.

сколько ухудшается для твердого индия, для которого потенциал EAM работает хуже.

Результаты расчетов для температуры на адиабате показаны на рис. 8. Заметная разница между температурами в случаях EAM-1 и EAM-2 наблюдается лишь при Z > 1.5. При Z = 1.9 учет электронных вкладов по МСЭ приводит к понижению температуры на ~35%. Знание фактической температуры на УА было бы очень полезно для анализа поведения электронного газа. Поэтому опыты по ударному сжатию под действием импульса лазера с одновременным измерением температуры [27–29] очень перспективны.

Холодное давление при учете потенциала ЕАМ-2. Аналогично случаю потенциала ЕАМ-1, можно рассчитать график холодного давления (изотерму при 298 К) моделей индия, используя потенциал ЕАМ-2. Эта изотерма показана на рис. 9. Хотя опытные данные получены только до 67 ГПа, хорошее согласие расчетного давления с аппроксимантой (9) наблюдается до 160 ГПа.

Случай индия уникален в том смысле, что потенциалы EAM-1 и EAM-2, рассчитанные по форме УА, хорошо описывают и график холодного давления. Анализ других случаев показывает, что такое согласование данных при сильно отличающихся температурах — довольно редкое явление [17].

Нанокластеры индия. Анализ поверхностных свойств нанокластеров методом МД проводился ранее в ряде работ ([30-32] и др.). В частности, проводилась проверка применимости к нанокластерам макроскопических уравнений термодинамики (уравнения Лапласа для давления, формулы Толмена для зависимости поверхностного натяжения от кривизны поверхности, уравнения Кельвина для давления пара). В [30] исследовали методом МД нанокластеры с потенциалом Леннард-Джонса, а в [31] – нанокластеры серебра, построенные с потенциалом ЕАМ [5], а также методом ab initio. В [32] был исследованы нанокластеры Ar, а также Ag, Fe и Zn с потенциалами ЕАМ. Обычная погрешность расчета поверхностного натяжения металлических кластеров методом МД с потенциалами ЕАМ составляет ~15-25% (Li, [33], Sn [34]), причем в сторону как завышения, так и занижения.

Методом МД значительно проще определять не поверхностное натяжение σ , а избыточную энергию поверхности *h*. В силу термодинамического соотношения

$$\sigma = h + Td\sigma/dT \tag{15}$$

можно было бы ожидать, что $\sigma < h$ (поскольку обычно $d\sigma/dT < 0$), причем разница между σ и h должна быть невелика. В [31] величины σ и h оценивали для моделей кристаллических кластеров Ад приближенным образом, по изменению пара-

Рис. 10. Зависимость удельной энергии нанокластеров индия *Е*/*N* (эВ/атом) от размеров кластера *N*. Расчет по данным табл. 7.

метра решетки. Для кластеров Ag размером от 13 до 249 атомов при расчетах методом *ab initio* (SI-ESTA) отклонения σ от *h* были невелики (разница в несколько процентов) и знакопеременны, а при расчетах методом MД с потенциалом EAM из [5] величина σ при всех размерах кластеров Ag от 249 до 5233 атомов была на несколько процентов больше, чем *h* [31]. Это означает, что либо применяемые методы оценки поверхностных свойств кластеров неточны, либо не выполняется соотношение (15) для нанокластеров.

В соответствии с [32], энергию *Е* нанокластера с *N* атомами можно записать в виде

$$E = aN + bN^{2/3}$$
, или $E/N = a + bN^{-1/3}$. (16)

В [32] показано, что для Ar, Ag, Fe и Zn зависимость E/N от $N^{-1/3}$ действительно спрямляется в этих координатах с высокой точностью. Для кластеров Ag при 0 К из [31] экстраполяция величин h и σ на макроскопический размер при 0 К по правилу $N^{-1/3}$ (16) дает близкие значения: h = 1.00 и $\sigma = 1.04$ Дж/м², причем фактическое значение для Ag $\sigma = 1.34$ Дж/м² [29]. В работе [32] такая экстраполяция с другим потенциалом ЕAM дает при 0 К для серебра h = 0.84 Дж/м². Отсюда видно, что из-за расчетных неточностей метод MД не позволяет решить однозначно вопрос о соотношении между σ от h.

Аналогично [32], можно построить серию икосаэдрических нанокластеров Маккея с потенциалом ЕАМ-1 индия и исследовать их поведение в различных условиях. Значения энергии этих нанокластеров были рассчитаны методом МД при 433 К и приведены в табл. 7. Зависимость (16) выполняется и для нанокластеров индия, причем a = -2.3841 эВ/атом = -230.02 кДж/моль, а b == 1.3654 эВ/атом^{2/3} (см. рис. 10).

Величина *а* совпадает с удельной энергией жидкого индия при 433 К (-230.02, см. табл. 3).

N	<i>Е</i> , эВ	$N^{-1/3}$	E/N	$E_{\rm surf}$, эВ	$S_{\rm s}, {\rm \AA}^2$	$E_{ m surf}/S_{ m s},$ мДж/м ²	$S_{\rm s}^*, { m \AA}^2$	<i>E</i> _{surf} / <i>S</i> [*] , мДж/м ²
13	-23.453	0.42529	-1.80408	7.55	96.116	1258	95.82	1262
55	-111.268	0.26295	-2.02305	19.75	411.783	768.3	408.0	775.4
147	-312.473	0.18948	-2.12567	38.03	972.396	626.6	939.4	648.6
309	-674.523	0.14792	-2.18292	62.41	1676.85	596.3	1638	610.4
561	-1244.84	0.12125	-2.21897	92.88	2642.82	563.0	2569	579.2
923	-2071.25	0.10271	-2.24404	129.44	3815.09	543.6	3686	562.6
1415	-3201.74	0.08907	-2.26271	172.09	5087.95	541.9	4968	555.0
2869	-6563.78	0.07038	-2.28783	275.69	8482.68	520.7	8213	537.8
5083	-11712.0	0.05816	-2.30415	403.65	12528.1	516.2	12151	532.2
∞	—	—	-2.3841	—	—	458.9	—	474.5

Таблица 7. Поверхностные свойства кластеров индия при 433 К

Коэффициент же *b* отвечает за поверхностную энергию кластеров [32].

В наших обозначениях поверхностная энергия кластера равна $E_{\rm surf} = b N^{2/3}$. Эти величины для кластеров с размерами 13 ≤ N ≤ 5083 приведены в табл. 7. Чтобы провести сравнение с поверхностным натяжением σ, оценим поверхность кластеров, полагая ее равной сумме S_s пловнешних граней поверхностных шалей симплексов Делоне [32]. В табл. 7 приведены значения S_s и удельной поверхностной энергии кластеров $E_{\text{surf}}/S_{\text{s}}$. График величины S_{s} также спрямляется в координатах $S_{\rm s} - N^{-1/3}$ при N > 145(см. рис. 11). Предельное значение отношения $E_{\text{surf}}/S_{\text{s}}$ при $N \rightarrow \infty$ равно 458.9 мДж/м².

Реальное значение поверхностного натяжения индия при 433 К известно с разбросом: 560 [35], 595 [36], 556 [37], 572 мДж/м² [8]. Как видно из табл. 7, удельная поверхностная энергия индия $E_{\text{surff}}/S_{\text{s}}$ в пределе $N \rightarrow \infty$ ниже реальной величины

Рис. 11. Зависимости удельной энергии поверхности (Дж/м²) от размеров кластера: 1 - с учетом площади поверхности S_s , 2 - с учетом скорректированной площади поверхности S_s^* . Расчет по данным табл. 7.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

 σ на ~20%. Аналогичное занижение поверхностной энергии по отношению к величине σ было получено для кластеров Ag в [32].

Одной из причин этого занижения могло бы быть завышение поверхности кластеров, образованной поверхностными гранями симплексов Делоне, из-за своей естественной негладкости по типу черепичной крыши. При проверке этой возможности каждая грань симплексов, выходящая на поверхность кластера, поворачивалась перпендикулярно к вектору, соединяющему эту грань с центром масс кластера. Новая сумма пло-

щадей граней симплекса (повернутых) S_s^* оказалась ниже исходной в среднем всего на 3–4% (см. табл. 7). На соответствующую долю увеличивается при этом удельная поверхностная энергия (см. рис. 11). Очевидно, этот эффект составляет лишь небольшую часть расхождения между *h* моделей и σ реального индия.

Другая причина связана с тем, что, возможно, не сохраняется линейная зависимость удельной поверхностной энергии от $N^{-1/3}$ в интервале размеров кластера $N^{-1/3} < 0.06$. Наконец, причина расхождений может быть связана с формой потенциала EAM.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

МД моделирование жидкого индия проведено в настоящей работе, видимо, впервые. Результаты моделирования являются весьма показательными с точки зрения применимости потенциалов ЕАМ. Почти все рассмотренные выше свойства индия очень хорошо описываются предложенным потенциалом ЕАМ. Удалось даже получить высокую степень согласованности при описании ударной адиабаты и изотермы холодного давления единым потенциалом. Такая согласованность пока не достигалась в случае калия, рубидия, алюминия, железа, никеля, олова и др. [17]. В этом смысле индий выделяется из целого ряда других металлов. Очень вероятно, что такие же хорошие результаты могут быть получены при моделировании других свойств индия, не рассмотренных в этой статье.

Возникает вопрос, нельзя ли для металлов, рассмотренных в [17], добиться иным выбором потенциалов EAM лучшей согласованности результатов, полученных по форме ударной адиабаты и по форме изотермы холодного давления. Если такая задача будет решена, то это будет означать многозначность выбора потенциалов EAM, причем не тривиальную многозначность, связанную с эквивалентными комбинациями парного вклада в потенциал EAM и потенциала погружения. Пример такой неоднозначности был отмечен в случае нескольких парных потенциалов лития [38].

СПИСОК ЛИТЕРАТУРЫ

- 1. Schommers W. // Phys. Lett. 1973. V. 43A. P. 157.
- 2. *Belashchenko D.K.* Liquid Metals. From Interparticle Potentials to the Properties, Shock Compression, Earth's Core and Nanoclusters. Nova Science Publ. N.Y. 2018.
- 3. Белащенко Д.К. // УФН. 2013. Т. 183. № 12. С. 1281.
- 4. *Норман Г.Э., Стегайлов В.В.* // Математическое моделирование. 2012. Т. 24. № 6. С. 3.
- Daw M.S., Baskes M.I. // Phys. Rev. 1984. V. B 29. P. 6443.
- Baskes M.I., Chen S.P., Cherne F.J. // Phys. Rev. B. 2002. V. 66. 104107.
- 7. *Assael M.J., Armyra I.J., Brillo J. et al.* // J. Phys. Chem. Ref. Data. 2012. V. 41. № 3. P. 033101-16.
- 8. Ченцов В.П., Шевченко В.Г., Мозговой А.Г., Покрасин М.А. // Перспективные материалы. 2011. № 3. С. 46.
- 9. Данные на сайте: www.webelements.com.
- Термодинамические свойства индивидуальных веществ /Под ред. В.П. Глушко. Т. 3. М.: Наука, 1981 г.
- Almond D.P., Blairs S. // J. Chem. Thermodyn. 1980.
 V. 12. P. 1105.
- Patel A.B., Bhatt N.K. // AIP Conference Proceedings. 2018. V. 1951. 020003.
- Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980. 325 p.

- 14. *Белащенко Д.К.* // Кристаллография. 1998. Т. 43. № 3. С. 400.
- Li Huaming, Sun Yongli, Mo Li. // AIP Advances. 2015. V. 5. 097163.
- Careri G., Paoletti A., Vicentini M. // Nuovo cimento. 1958. V. 10. № 6. P. 1088.
- 17. Белащенко Д.К. // УФН. 2020. Т. 190. № 12. С. 1.
- Daivis P.J., Evans D.J. // J. Chem. Phys. 1994. V. 100. P. 541.
- Lee S.H., Chang T. // Bull. Korean Chem. Soc. 2003. V. 24. P. 1590.
- 20. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т.VI. Гидродинамика. М.: Наука, 1986.
- 21. Данные на сайте: http://www.ihed.ras.ru/rusbank/.
- 22. *Marsh S.P.* (Ed.). LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980)
- 23. Al'tshuler L.V., Bakanova A.A., Dudoladov I.P. et al. // J. Appl. Mech. Techn. Phys. 1981. V. 22. P. 145.
- 24. Schulte O., Holzapfel W.B. // Phys. Rev. B. 1993. V. 48. № 2. P. 767.
- 25. Белащенко Д.К. // ТВТ. 2013. Т. 51. № 5. С. 697.
- 26. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: ГИТТЛ, 1951.
- 27. *Ozaki N., Tanaka K.A., Ono T. et al.* // Phys. Plasmas. 2004. V. 11. № 4. P. 1600.
- 28. Koenig M., Henry E., Huser G. et al. // Nucl. Fusion. 2004. V. 44. S208.
- 29. *Qiao Z., Yan L., Cao Z., Xie Y. //* J. Alloys and Compounds. 2001. V. 325. P. 180.
- Thompson S.M., Gubbins K.E., Walton J.P.R.B. et al. // J. Chem. Phys. 1984. V. 81. P. 530.
- 31. Medasani B., Park Y.H., Vasiliev I. // Phys. Rev. B. 2007. V. 75. 235436.
- 32. *Белащенко Д.К.* // Журн. физ. химии. 2015. Т. 89. № 3. С. 517.
- Vella J.R., Stillinger F.H., Panagiotopoulos A.Z. et al. // J. Phys. Chem. B. 2015. V. 119. P. 8960.
- Vella J.R., Stillinger F.H., Panagiotopoulos A.Z. et al. // Phys. Rev. B. 2017. V. 95. 064202.
- 35. White D.W.G. // Met. Trans. 1972. V. 3. P. 1933.
- 36. *Sageman D.R.* Surface Tension of Molten Metals Using the Sessile Drop Method: Dissertation. Iowa State University. 1972.
- 37. Physical constants of pure Indium // Indium Corp.
- 38. Canales M., Padro J.A., Gonzales L.E., Giro A. // J. Phys.: Condens. Matter. 1993. V. 5. № 19. P. 3095.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021