ПРОБЛЕМЫ, ТЕНДЕНЦИИ РАЗВИТИЯ И АКТУАЛЬНЫЕ ЗАДАЧИ ФИЗИЧЕСКОЙ ХИМИИ

УДК 544.35.03+541.11/.118+544.971.62

АДДУКТЫ ЛЕГКИХ ФУЛЛЕРЕНОВ И АМИНОКИСЛОТ: СИНТЕЗ, ИДЕНТИФИКАЦИЯ И КВАНТОВО-МЕХАНИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИХ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

© 2021 г. Н. А. Чарыков^{*a,b*}, В. А. Кескинов^{*a,**}, А. В. Петров^{*c*}

^а Санкт-Петербургский государственный технологический институт (технический университет), 190013, Санкт-Петербург, Россия ^b Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), 197022, Санкт-Петербург, Россия ^c Институт химии Санкт-Петербургского государственного университета, 198504, Санкт-Петербург, Россия *e-mail: keskinov@mail.ru Поступила в редакцию 09.04.2021 г. После доработки 08.05.2021 г.

Рассмотрены различные методы синтеза *бис-, трис-* и *окта-*аддуктов легких фуллеренов C₆₀ и C₇₀; описаны выход и чистота получаемых аддуктов. Идентификация аддуктов проведена группой методов физико-химического анализа: элементный анализ, ИК-, электронная и рамановская спекроскопия, ВЭЖХ, масс-спектрометрия, комплексный термический анализ. Рассмотрено применение на атомно-молекулярном уровне компьютерного моделирования физико-химических свойств методами функционала плотности и молекулярной динамики.

Ключевые слова: бис-, *трис-*, *окта-*аддукты, легкие фуллерены, аминокислоты, лизин, треонин, аргинин, оксипролин, элементный анализ, ИК-, электронная и рамановская спекроскопия, ВЭЖХ, масс-спектрометрия, комплексный термический анализ, метод функционала плотности, молекулярная динамика

DOI: 10.31857/S0044453721120049

Фуллерены, обладающие уникальными химическими и физическими свойствами, привлекают большое внимание исследователей с момента их открытия в 1985 г. [1] благодаря широким возможностям их перспективного практического использования. Однако они фактически несовместимы с водой и водными растворами [2-5] что накладывает существенные ограничения на их применение. Так, по данным [2], растворимость С₆₀ в воде составляет 0.02 нг/л. То же относится и к большинству производных легких фуллеренов [галоген- (фтор-, хлор-, бром- и иод-), оксо-, амино-, карбоксо-] – они, как правило, весьма малорастворимы в воде и в растворах [5-7]. Между тем водорастворимые формы производных фуллеренов могут находить самое широкое применение в машиностроении, строительстве и, особенно, в медицине и фармакологии (вследствие хорошей совместимости с водой, физиологическими растворами, кровью, лимфой, желудочным соком), косметологии (при использовании водных и водно-спиртовых основ), а также науке и технике. Из всего разнообразия путей, по

которым шли исследования в этом направлении, следует отметить следующие: создание стабильных водных дисперсий фуллерена, например, [8, 9] (размер фуллереновых кластеров зависит от конкретного метода и изменяется в нанометровом диапазоне); получение устойчивых комплексных ассоциатов с гидрофильными веществами [3, 4, 10-12]. И в том, и в другом способе устойчивость систем сильно зависит от среды, в которой они находятся, кроме того, такие продукты не являются индивидуальными веществами, поэтому применение их как исходных реагентов для получения широкого спектра водорастворимых аддуктов фуллерена неприемлемо [13]. Третий путь функциализации фуллеренов – присоединение гидрофильных групп к фуллереновому кору, т.е. получение аддуктов. Данный способ наиболее универсален благодаря наличию у фуллеренов слабосопряженных двойных связей и высокой склонности их к реакции по двойной связи реакции нуклеофильного и радикального присоединения. Большинство образующихся в результате этих процессов аддуктов имеют достаточную стабильность, что позволяет применять дальнейшие химические модификации для создания новых биологически активных веществ [13]. Наиболее известны в химии фуллерена реакции циклоприсоединения, известного в органической химии как диеновый синтез Дильса-Альдера, где С₆₀ всегда выступает в роли диенофила [3, 14]. Реакции одностадийного присоединения первичных и вторичных аминов и реакции прямого присоединения аминокислот и дипептидов к фуллерену идут по радикальному механизму [15, 16]. Полученные соединения стабильны и физиологичны, так как при синтезе используют природные аминокислоты. Последнее было подтверждено биологическими тестами еще в конце 90-х и позднее [17–19]. Таким образом, одна из наиболее важных проблем применимости фуллеренов в биологическом и химическом смысле создание водорастворимых соединений фуллеренов и получение их производных на основе матриц различных аминокислот. Этой теме и посвящен настоящий обзор.

СИНТЕЗ И ИДЕНТИФИКАЦИЯ АДДУКТОВ ЛЕГКИХ ФУЛЛЕРЕНОВ С АМИНОКИСЛОТАМИ

К настоящему времени синтезированы различные классы водорастворимых производных фуллеренов – фуллеренолов, сложных эфиров с карбоновыми и дикарбоновыми кислотами, с аминокислотами, пептидами и белками и др. [15-53]. Например, полиамино- и полигидроксифуллерены, (а также несколько монофункциональных производных C₆₀, содержащих полярные боковые цепи) были исследованы еще в первой половине 90-х годов [27, 28]. Так, в обзоре [53] сообщается о большом количестве различных полигидроксилированных производных фуллеренов, протестированных в различных химических и биологических модельных системах, которые показали как свои антиоксидантные, так и проокислительные характеристики. Было предложено несколько механизмов антиоксидантной активности фуллеренола. Кроме того, в этой статье также представлены патенты, касающиеся антиоксидантных свойств фуллеренола. Первая публикация о фуллеренах, содержащих множественные ковалентно связанные заместители производного амина, Хирша и др. [15], датирована 1991 годом. Все производные демонстрировали высокую растворимость в воде [15-30]. Было показано, что чем больше количество водорастворимых групп, добавленных к фуллерену, тем больше его растворимость в воде.

Главная проблема синтеза водорастворимых аддуктов фуллерена с гидрофильными соединениями (аминокислоты, пептиды) — несовместимость по растворимости компонентов реакции: очень гидрофобного фуллерена и гидрофильных аминокислот. Фуллерен для растворения требует апротонной неполярной среды, а аминокислоты – полярной водной среды. Гетерогенность реакционной системы увеличивает длительность реакционного процесса и уменьшает выход целевого продукта; применяемое при этом нагревание может приводить к рацемизации присоединяемого адденда (аминокислоты, пептида и т.п.) [13].

В США в 2001 г. запатентован метод получения функциализированного фуллерена симметрично расположенными полярными органическими фрагментами, содержащими от 1 до 20 атомов углерода и необязательно дополнительно содержащими кислород или азот [54], однако, из-за сложности и многостадийности его скорее следует считать чисто препаративным. Первое запатентованное решение было принято по получению аминокислотных аддуктов (производное лизина) путем синтеза фуллеренового производного аминокапроновой кислоты и последующего его присоединения к лизиновому производному гликопептида [55]. Для реакции с фуллереном использовали соли аминокапроновой, аминомасляной кислот со щелочными металлами в форме комплексов с 18-краун-6, система гетерогенная: *о*-дихлорбензол – вода, нагрев при 60°С в течение 6-8 ч, после чего растворители отгоняют, остаток обрабатывают насыщенным раствором хлористого калия и водой.

Ряд работ посвящен теоретическому исследованию производных фуллеренов с аминокислотами. В [56] на теоретическом уровне исследована способность фуллерена С₆₀ взаимодействовать с аминокислотами. Как показали расчеты, наиболее благоприятны взаимодействия фуллерена с аргинином, лейцином и триптофаном, что связано с каркасной структурой соответствующих аминокислот (расчеты проводились с использованием DFT-B3LYP/3-21G). В [57] квантово-химическими методами рассчитаны молекулярные структуры гибридных производных С₆₀ с аминокислотами. Более подробно применение расчетных методов на атомно-молекулярном уровне к производным фуллеренов и аминокислот будет изложено ниже в разделе "Компьютерное моделирование физико-химических свойств производных фуллеренов с аминокислотами".

За последующие годы были синтезированы и изучены (как с точки зрения идентификации и чистоты получаемых продуктов, так и их некоторых физико-химических свойств) не только фуллерены C_{60} , но и C_{70} , функциализированные аминокислотами [58–81]. Работы [9, 29, 82–86] посвящены изучению биологической активности полученных водорастворимых производных фуллеренов и аминокислот.

В работе [45] были синтезированы и охарактеризованы амфифильные производные фуллерена С₆₀ с аланином, цистеином и аргинином. Авторы пришли к выводу, что производные фуллерена С₆₀ с аминокислотами способны предотвращать окислительную стресс-индуцированную гибель клеток без очевидной токсичности. В работе [50] синтезировано производное фуллерена С₆₀ с лизином и изучена его биологическая активность. Авторы [51] синтезировали производное фуллерена С₆₀ с глицином. Изучение цитотоксичности полученного производного на раковые клеточные линии показали, что производное С₆₀ с глицином вызывает гибель раковых клеток. В работах [18, 78] были изучены нейропротективные свойства гибридных структур на основе C₆₀ и производных пролина. Авторы установили, что все изученные соединения обладали антиоксидантной активностью и подавляли глутамат-индуцированное поглошение ионов Ca²⁺ в синаптосомах коры головного мозга крыс.

Основное число представленных в научной литературе синтезов относится преимущественно к фуллерену C_{60} , значительно меньшее количество работ относится к синтезу производных на основе фуллерена C_{70} . Несмотря на кажущуюся близость этих фуллеренов, их биологическое действие и физико-химические свойства могут существенно различаться [80, 81].

Следует отметить, что в большом числе работ не приволятся метолики синтеза, а также данные по идентификации производных, а результаты изучения физико-химических свойств производных фуллеренов достаточно ограничены, несмотря на их значимость в оптимизации и разработке основных наиболее перспективных направлений практического использования углеродных нанокластеров. Кроме того, представленные в литературе методики синтеза производных фуллеренов в большинстве своем препаративны и позволяют получать только миллиграммовые количества, а в данных по биологической активности производных фуллеренов не проводится сопоставление и выявление взаимосвязи с физико-химическими свойствами производных [87].

Структурные формулы некоторых аддуктов C_{60} с аминокислотами представлены на рис. 1.

Структурные формулы некоторых аддуктов C_{60} с аминокислотами представлены на рис. 1. В табл. 1 представлены схемы синтеза некоторых аддуктов фуллеренов с различными аминокислотами, характеризующиеся конкретным стехиометрическим составом, а также приведены методы их идентификации. Как правило, это ИКспектроскопия, рамановские спектры, электронная спектроскопия, ядерный магнитный резонанс, высокоэффективная жидкостная хромато-

графия, (хромато)-масс-спектрометрия, элементный анализ, реже масс-спектроскопия, термический анализ. Некоторые примеры методов идентификации [87] представлены на рис. 2— 6 и табл. 2.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ С АМИНОКИСЛОТАМИ

Основные методы теоретического подхода к изучению производных фуллеренов с аминокислотами и расчета физико-химических свойств теория функционала плотности (DFT — Density Functional Theory) и молекулярная динамика. В основе применения теории DFT лежит зависимость свойств молекул от электронной структуры, тогда как в молекулярной динамике для свойств моделируемых систем определяющую роль играют межмолекулярные взаимодействия, которые опосредованно (через силовые поля), также зависят от электронной структуры.

В работе [65] впервые выполнен расчет теплоемкости для легкого производного фуллерена с аминокислотой C_{60} —Агд в широком диапазоне температур. Расчеты теплоемкости проведены в гармоническом приближении методом DFT, реализованным в модуле DMol³ программного комплекса Materials Studio. Оптимизация геометрии C_{60} —Агд выполнена с использованием функционалов PBE, PW91 и HCTH, полного электронного атомного базиса DNP (4.4) и допуска по общей энергии, равного 2 × 10⁻⁵ Хартри.

Расчеты теплоемкости проведены для двух типов молекул C_{60} —Агд с различным расположением аминокислотных остатков: с равномерным (рис. 7а) и "сатурноподобным" распределением (рис. 7б) при температуре от 50 до 320 К. По результатам расчетов выяснено, что при ~50 К наблюдается очень хорошее согласие между расчетными и экспериментальными данными, при этом систематическое различие увеличивается с повышением температуры и достигает 20% при 320 К. Последний факт связан с существенным вкладом ангармонизма при высоких температурах. Показано, что различные изомеры не влияют на величину теплоемкости.

В работе [88] электронная структура производного C_{70} и L-треонина (C_{70} -Thr) рассчитывалась методом DFT, реализованным в модуле DMol³ (программный пакет Materials Studio) с использованием функционала PW91 с базисом *dnp* (4.4) в полноэлектронном подходе. После полной оптимизации геометрии молекул заряды атомов оценивались по схеме Малликена. Динамические и структурные характеристики C_{70} , Thr и C_{70} -Thr определялись классическим методом молекуляр-

Рис. 1. Структурные формулы некоторых аддуктов C_{60} с аминокислотами.

ной динамики с использованием модуля Forcite с силовым полем UFF и рассчитанными на предыдущем этапе значениями атомных зарядов. Время моделирования составляло 500 пс. Бинарные системы C_{70} - H_2O и C_{70} -Thr- H_2O моделировались с использованием 1500 молекул воды на одну молекулу фуллерена и производного фуллерена. Моделирование бинарной системы, содержащей L-треонин, проводили с использованием двух молекул Thr и такого же количества молекул воды. Указанные выше бинарные системы исследованы с помощью ансамбля NVT с МД-моделированием при T = 293.15 К с использованием термостата Нозе.

N⁰	Аминокислота, аддукт	Синтез	Идентификация. Методы и условия	Ссылка
1	аргинин, С ₆₀ (С ₆ Н ₁₃ N ₄ O ₂) ₈ Н ₈ , (рис. 1а)	производитель — ЗАО ИЛИП	чистота 99.5 мас. % ИК- и УФ- спектроскопия, масс-спектромет- рия, элементный анализ	[42, 43]
2	аланин и аланил- аланин, С ₆₀ (С ₃ H ₆ NO) и С ₆₀ (С ₆ H ₁₂ N ₂ O ₃)	в [16] изучено модифицирующее дей- ствие водорастворимых производных C ₆₀ с DL-аланином и DL-аланил-DL- аланином на структуру и проницае- мость липидного бислоя фосфатидил- холиновых липосом	отсутствует; ссылка на работы [16] и [45]	[44]
3	β-аланин, цистин и аргинин (рис. 1в, г, д)	аддукты готовились для других производных; аминокислота (10 ммоль) и гидроксид натрия (20 ммоль) растворяли в 3 мл воды, а затем в этаноле (10–20 мл), полученный раствор добавляли в толуольный раствор С ₆₀ (0.1 ммоль, 60 мл) по каплям, затем опять добавляли капли 10% гидроксида тетрабутиламмония при перемешивании; раствор перемешивали при комнатной температуре 60 ч в атмосфере азота; водный слой отделяли от органического слоя, фильтровали, затем добавляли воду (3 мл), этанол (40 мл), чтобы вызвать осаждение продукта, который в дальнейшем переосаждался с $H_2O/EtOH$ 3 раза. Потом продукт очищали гель-эксклюзионной хроматографией с использованием декстрана (G25, Pharmaceutical Biotech)колонка с H_2O . Продукт элюировали, затем элюировали непрореагировавшую аминокислоту и гидроксид натрия	не описана, ссылка на более ранние работы [46]	[46]
4	β-аланин (рис. 1в)	получение производного β -аланина C_{60} [23] 1.5 г β -аланина и 0.85 г гидроксида натрия растворяли в 3 мл воды, а затем добавляли 20 мл этанола; полученный раствор добавляли в C_{60} (раствор толуола) (55 мг, 35 мл) по каплям. Раствор переме- шивали при комнатной температуре в атмосфере азота; чтобы убедиться, что реакция была полной, раствор переме- шивали 48 ч. Водный слой отделяли от бесцветного органического слоя, филь- тровали, разбавляли 3 мл воды; затем добавляли 40 мл этанола, чтобы вызвать осадок продукта, который затем повторно осаждали с H ₂ O/EtOH трижды. Затем продукт дополнительно очищали ме- тодом ВЭЖХ с использованием декстрана (G-25, Pharmacia Biotech), колонка с H ₂ O. Сначала элюировали продукт, затем непрореагировавший β -аланин и гидрок- сид натрия элюировали. Тест с нингидри- ном не показал наличия свободного β -аланина в продукте	Продукт охарактеризован мето- дом ИК-фурье-спектроскопия, 1Н ЯМР, ¹³ С ЯМР, ВЭЖХ и элемент- ный анализ. Аналитические данные синтезиро- ванного и очищенного соединения: ИК (КВг) υ : 3384 (NH), 2963 (Ce-H), 1575, 1407 (COO ⁻), 1258, 1048 (C-N), 599, 528 см ⁻¹ (кор С ₆₀); ¹ Н ЯМР (D ₂ O) δррт: 2.27 (d, CH ₂), 2.80 (д, CH ₂), 3.56, 3.12, 1.08 (m, C ₆₀ -H); ¹³ С ЯМР (D ₂ O) δррт: 180.7 (s, COOH), 165.0 (m, C ₆₀), 37.5 (s, CH ₂), 38.5(s, CH ₂); ESI-MS <i>m/z</i> (%): 1343 (M ⁺ , 18.8), 1252 (30.0), 1165 (23.7), 1076 (31.3), 985 (13.7), 898 (17.9), 809 (7.95), 720 (100). Рассчитано для C ₈₁ H ₄₉ N ₇ O ₁₄ : C 72.38, H 3.65, N 7.30; найдено C 72.01, H 3.59, N 7.34. Результаты показывают: на молекулу C ₆₀ при- ходится семь β-аланиновых фрагментов	[46-48]

Таблица 1. Синтез и идентификация аддуктов легких фуллеренов (C_{60}) с аминокислотами

Таблица 1. Продолжение

N⁰	Аминокислота, аддукт	Синтез	Идентификация. Методы и условия	Ссылка
5	цистеин (рис. 1б)	цистеин (2.3 г) и гидроксид натрия (0.85 г) растворяли в 5 мл воды, а затем добавляли 20 мл этанола, полученный раствор добавляли к толуолу C_{60} (раствор) (60 мг, 60 мл) по каплям, затем 5 капель 10%-го гидроксида тетрабутиламмония добав- ляли при перемешивании. Раствор пере- мешивали при комнатной температуре в течение 48 ч, азотная атмосфера; чтобы убедиться, что реакция завершена, рас- твор перемешивали 60 ч. Водный слой отделяли от органического слоя клена, фильтровали, разбавили 10 мл воды, затем добавили 60 мл этанола чтобы вызвать осаждение продукта, который в дальнейшем повторно осаждают смесью $H_2O/EtOH$ трижды. Затем продукт допол- нительно очищали гель-эксклюзионной хроматографией с использованием колонки с декстраном (G-25, Pharmaceu- tical Biotech) с H_2O . Продукт элюировали, а затем элюировали цистин и гидроксид натрия	Соединение анализировали мето- дами ИК-фурье-спектроскопии, ¹ Н ЯМР, ¹³ С ЯМР, LC-MS и эле- ментного анализа IR(KBr) v: 3425 (NH), 1623 (С–С), 1586 (СОО ⁻), 1405 (С–N), 1194 (N–C60), 656 (С–S), 541 (S–S), 527 (C60 core), cm ⁻¹ ; 1H NMR (D ₂ O) δ ppm: 4.75 (s), 3.91 (s), 3.22 (s), 3.27 (s), 3.0 (m); ¹³ C NMR (D ₂ O) δ ppm: 172.8, 137–155, 77.4–76.8, 52.2, 51.4, 49.7, 32.7, 32.5; ESI-MS <i>m/z</i> (%): 1801 (<i>M</i> ⁺ –C ₃ H ₆ NO ₂ S, 14.4), 1783 (86.4), 1642 (10.3), 1440 (13.8), 1328 (22.7), 1154 (21.7), 915 (9.63), 840 (21.8), 720 (100). Рассчитано для С ₉₀ H ₆₀ N ₁₀ O ₂₀ S ₁₀ : С 56.25, Н 3.13, N 7.29; найдено С 56.13, Н 3.19, N 7.34 (мас.%). Согласно результа- там, существует пять цистеиновых фрагментов на молекулу C ₆₀ .	[49]
6	лизин (рис. 1е)	N-защищенный фуллеро-пирролидин (30 мг, 0.03 ммоль) растворяли в смеси 1 : 1 толуол/трифторуксусная кислота и перемешивали 12 ч. За реакцией сле- дили с помощью ВЭЖХ (SiO ₂ ; толуол/пропанол, 9:1). После заверше- ния снятия защиты растворители выпа- ривали и добавляли немного MeOH и снова упаривали. Остаток был погло- щен CH ₂ C ₁₂ , и раствор по каплям добав- ляли к избытку гексана. Выпавшее в осадок твердое вещество отделяли центрифугированием, промывали небольшим количеством Et ₂ O, а затем сушили в глубоком вакууме до получе- ния коричневатого твердого продукта. Выход 25 мг (83.3%), т. пл. 251°C.	Охарактеризованы с помощью элементного анализа, ИК-фурье- спектроскопии, ¹ Н ЯМР, ¹³ С ЯМР и масс-спектроскопии. ИК-фурье- спектры показали пики соответ- ствующие фрагменту фуллерена, азометиновой связи и карбониль- ной группы. Два широких пика, соответствующих N–H-растяже- нию, получены для продукта, что указывает на снятие защиты с аминогруппы. По расчету: C ₇₈ O ₄ H ₂₄ N ₃ F ₃ : C, 83.35; H, 2.15; N, 3.74. найдено: C, 83.26; H, 2.14; N, 3.76 (мас. %); ИК (KBr; см ⁻¹) 528(C ₆₀), 1600 (CH=N), 1659 (C=O stretching), 3257 (NH stretching), 3497 (NH stretching); ¹ H ЯМР (400 МГц, DMSO-d6, Me ₄ Si, 298 K) δ 1.50– 1.97(m, 8H,-CH ₂ –), 2.82 (3H, s, N–CH ₃), 4.1(s, 1H, –CH–), 4.45 (d, ² J = 9.3 Гц, 1H, HHC–N–), 4.90 (s, 1H, HC–N–), 5.25 (δ , ² J = 9.3 Гц, 1H, HHC–N–), 7.16 (δ , 3J = 8.0 Гц, 2H,ArH), 7.57(δ , 3J = 8.0 Гц, 2H, ArH), 7.80 (s, 3H, NH ₃), 8.23 (s, 1H, CH=N), 12.1(s, ¹ H, –COOH) ppm.	[50]

Таблица 1. Окончание

N⁰	Аминокислота, аддукт	Синтез	Идентификация. Методы и условия	Ссылка
7	глицин (рис. 1ж)	Глицин (0.3–5.0 г) и гидроксид натрия (2.2 г) растворяли в 8 мл воды, добав- ляли 40 мл этанола, полученный рас- твор добавляли к раствору 35–150 мг С ₆₀ в 30–100 мл толуола или 1,2-дихлорбен- зола (или диоксана) по каплям. Раствор перемешивали при комнатной темпера- туре, его цвет постепенно менялся от пурпурного до темно-коричневого. После перемешивания в течение 1 ч органический слой становился почти бесцветным. Убедившись, что реакция завершилась, раствор перемешивали 7 суток. Изменение цвета с фиолетового (характерного для С ₆₀ в толуоле) до красно-коричневого. Водный слой отделяли от бесцветного; органический слой, профильтрованный, разбавлен- ный водой до 8.60 мл затем добавляли этанол, чтобы вызвать осаждение про- дукта, который далее переосаждали из $H_2O/EtOH$. Нингидрин-тест показал отсутствие свободного глицина в про- дукте. После высыхания в вакууме был получен окончательный образец.	ИК-спектры записаны на спек- трофотометре Perkin-Elmer FT-IR с использованием дисков KBr – ИК-фурье-спектроскопия (KBr): m 3429, 2924, 1598, 1492, 1407, 1316, 1119, 670, 520 (C_{60}) см ⁻¹ . Спектры ЯМР ¹ Н записаны в D ₂ O при 20°C на аппарате Bruker AM 300 МГц. Спектры ЯМР ¹³ С записаны в CDCl ₃ при 20°C. Прибор Bruker AM 75 МГц. ¹ Н ЯМР (300 МГц, D ₂ O, TMS): δ = 3.90–4.10 (CH ₂ COO), 5.80–6.10 (C_{60} –H) ppm; ¹³ C NMR (75 МГц, CDCl ₃ , TMS): δ = 45 (CH ₂), 140–150 (C_{60}), 176 (CO) ppm. (УФ–видимая) спектры поглощения записывали на спектрофотометр Hitachi U-3900. Термогравиметрический анализ (ТГА) проводили в атмосфере азота с ТА. Приборы термогравиметрического анализатора Q500 при 25–1000°C; скорость нагрева 10 К/мин (метод HiRes).	[51]
8	гидроксипролин (рис. 13)	Производитель – ЗАО ИЛИП, Санкт-Петербург	Чистота 99.8 мас. % Идентификация: ИК- и УФ-спек- троскопия, масс-спектрометрия, элементный анализ	[52]

Таблица 2. Комплексный термический анализ производного C_{60} с L-лизином ($C_{60}(C_6H_{14}N_2O_2)_2$)

N⁰	$T^{\mathrm{m}}, {}^{\mathrm{o}}\mathrm{C}$ $(T_b - T_e), {}^{\mathrm{o}}\mathrm{C}$	$\Delta m_i/m_0^{ m calc},\%$	$\Delta m_i/m_0^{\exp},\%$	Процесс
1	343.15	8.2	8.2	$C_{60}(C_6H_{14}N_2O_2)_2 \cdot 5H_2O \rightarrow C_{60}(C_6H_{14}N_2O_2)_2 + 5H_2O$
	303.15-433.15			
2	483.15 443.15–578.15	11.6	11.1	$C_{60}(C_6H_{14}N_2O_2)_2 + O_2 \rightarrow C_{60}(NH(CH_2)_4CH_3)_2 + 2CO_2 + N_2 + 2H_2O$
3	673.15 593.15–793.15	11.2	10.6	$C_{60}(NH(CH_2)_4CH_3)_2 + 14O_2 \rightarrow C_{60}(NHCH=O)_2 + 8CO_2 + 10H_2O$
4	863.15 833.15–903.15	2.4	2.5	$C_{60}(NHCH=O)_2 \rightarrow C_{60}NH_2(NHCH=O) + CO$
5	963.15 903.15–1033.15	2.9	2.5	$C_{60}NH_2(NHCH=O) \rightarrow C_{60}(NH_2)_2 + CO$
6	1073.15 1053.15–1093.15	2.8	2.8	$C_{60}(NH_2)_2 + O_2 \rightarrow C_{60} + 2H_2O + N_2$
7	1203.15 109.15–1323.15	>14	>14	Частичное окисление С ₆₀

Обозначения: $T^{\rm m}$ — температура максимума термоэффекта, T_b и T_e — температуры начала и окончания термического эффекта, $\Delta \, m_i/m_0$ — потеря массы, m_0 — начальная масса [87].

Рис. 2. Фотография кристаллов производного C_{60} с L-лизином ($C_{60}(C_6H_{14}N_2O_2)_2$).

Распределения электронной плотности для молекул C_{70} , Thr и C_{70} —Thr, рассчитанные методом DFT, представлены на рис. 8. Рассчитанные заряды атомов в молекулах Thr и C_{70} —Thr представлены в табл. 3. Основные особенности полученных результатов связаны с зарядами атомов азота в аминокислоте и в производном фуллерена. Вероятно, электронная система фуллерена притягивает электронную пару атома азота и приводит к уменьшению всех зарядов атомов в аминокислоте. Функция радиального распределения (ФРР) между молекулами воды и атомами азота из аминокислоты (Thr) и производного C_{70} —Thr представлена на рис. 9. Хорошо видно, что оба атома азота в производных фуллерена защищены ядром фуллерена и аминокислотными остатками, в то время как отдельные аминокислоты более доступны для воды молекулы. На рис. 9 представлена РФР между атомами углерода ядра фуллерена и молекулами воды. Функционализация фуллерена двумя L-треониновыми группами недостаточна для существенного изменения распределения молекул воды вокруг ядра фуллерена. Радиальные функции распределения межли молекулами воды и атомами кислорода из гидроксильной, карбоксильной и карбонильной групп представлены на рис. 10. Анализ полученных результатов показывает, что наиболее близкое положение молекул воды наблюдается у атома кислорода в карбонильной группе.

В работе [89] методом DFT с использованием базиса плоских волн в программе CASTEP рассчитаны значения экранирования для всех атомов углерода молекулы C₆₀-Arg для интерпретации спектров ЯМР. Расчеты проведены с использованием функционала РВЕ с набором плоских волн, которые определялись значением cutoff, равным 610 эВ. Спектры ЯМР ¹³С рассчитаны относительно тетраметилсилана. Сравнение экспериментальных и расчетных спектров показывает, что изомер с "сатурноподобным" (рис. 7б) распределением аминокислотных остатков описывает экспериментальный спектр более адекватно (рис. 11). Последний факт подтвержден расчетом полной энергии изомеров. Различие между полными энергиями "сатурноподобного" и изомера с равномерным распределением аминокислотных остатков составляет 6.5 эВ, т.е. "сатурноподобный" изомер более устойчив.

Для расчета динамической структуры использовался метод классической молекулярной динамики

Рис.3. ИК-спектр производного C_{60} с L-гидроксипролином ($C_{60}(C_5H_9NO_3)_2$).

Рис. 4. Электронный спектр производного C_{60} с L-аргинином ($C_{60}(C_6H_{13}N_4O_2)_8H_8$), D – оптическая плотность, λ – длина волны.

в программе FORCITE программного обеспечения Materials Studio. В то же время использовалось силовое поле COMPASS II с соответствующими зарядами. Распределения аминокислотных остатков над ядром фуллерена были однородными и "сатурноподобными" (рис. 76). В расчете использовалась ячейка с периодическими граничными условиями, содержащая одну молекулу производного C_{60} -Arg и 1500 молекул воды. Рассчитана бинарная система C_{60} -Arg—вода при T = 300 K в ансамбле NVT в течение 1000 пс.

По результатам молекулярно-динамических расчетов можно сделать вывод, что наиболее важной характеристикой, влияющей на взаимодействие производного C_{60} -Arg с молекулами воды, является стерический фактор. На рис. 12 пред-

ставлены данные о радиальном распределении между каждым типом атомов изомеров C_{60} -Arg: "сатурноподобное" и равномерное распределения. Можно выделить следующие особенности: (i) в случае "сатурноподобной" структуры молекулы воды располагаются с атомами ядра фуллерена ближе, чем с униформой; (ii) атом кислорода гидроксильной группы обоих изомеров наиболее сильно притягивает молекулы воды; (iii) в случае "сатурноподобного" изомера молекулы воды располагаются ближе ко всем атомам молекулы C_{60} -Arg. Этот факт, вероятно, связан с более высокой степенью ионности "сатурноподобного" изомера.

В работе [90] изомер с полярным расположением аминокислотных остатков гидроксипролина С₆₀-Нур (см. рис. 13) был выбран исходя из минимума полной энергии, рассчитанной методом DFT, реализованным в программе DMol³ с функционалом PBE и атомарным базисом DNP, заряды оценивались по схеме Малликена. Для оценки организации молекул воды в водной среде С₆₀-Нур мы применили метод молекулярной динамики, реализованный в FORCITE, модуль программного комплекса Material Studio. Смоделированная система содержала одну молекулу С₆₀-Нур и 3000 молекул воды. Мы использовали NVT-ансамбль, длительность 5 нс, шаг по времени 1 фс при температуре T = 298.15 K, силовое поле UFF с расчетными зарядами. В табл. 4 представлены заряды атомов *а*-е (рис. 14).

По результатам компьютерного моделирования с использованием метода молекулярной динамики (рис. 13) можно выделить следующие особенности:

молекулы воды расположены ближе всего к атомам кислорода карбоксильной группы (рис. 14, d, e) (3.25 и 3.21 Å), благодаря комбини-

Рис. 5. Жидкостная хроматограмма производного C_{60} с L-треонином ($C_{60}(C_4H_9NO_3)_2$). Колонка: "Phenomenex® NH₂" (150 × 2.0 мм, 5 мкм, 100 A), элюент: ацетонитрил / водный раствор уксусной кислоты (0.1%) (5:95), 0.2 мл/мин, объем дозируемой пробы 20 мкл, детектирование: диодная матрица.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

Рис. 6. Термический анализ кристаллогидрата производного C_{60} с L-лизином ($C_{60}(C_6H_{14}N_2O_2)_2$).

Рис. 7. Производное фуллерена С₆₀—Агд с равномерным (а) и "сатурнообразным" (б) расположением аминокислотных остатков.

Рис. 8. Распределение электронной плотности в фуллерене C_{70} (а), треонине (б) и производном C_{70} -Thr (в).

рованным действиям двух близко расположенных атомов кислорода, чего не наблюдается для более заряженного одиночного атома кислорода гидроксильной группы (рис. 14, *a*) (3.31 Å);

максимальное значение ФРР молекул воды относительно атома углерода ядра фуллерена (рис. 14, *b*), показывает, что молекулы воды приближаются к этому атому намного меньше по сравнению с атомами кислорода аминокислотного остатка;

атомы азота (рис. 14, c) (5.55 Å) практически не имеют контакта с молекулами воды вследствие стерических трудностей.

В ряде работ по компьютерному моделированию аддуктов фуллеренов и аминокислот изучаются соединения, в которых аминокислота не связана с фуллереном химической связью, а устойчивый комплекс образуется посредством невалентных взаимодействий. В рассмотренных работах анализируются только взаимодействия между чистым фуллереном и молекулами аминокислот, хотя в работах и проводятся расчеты с модифицированием фуллеренового кора различными атомами и функциональными группами.

Методом DFT были рассчитаны адсорбционные комплексы фуллерена и фенилаланина в газовой фазе и в воде [91]. Для расчетов применялись функционалы M062X и B3LYP с базисом 6-31G(d). Было показано, что в выбранных четырех вероятных местах адсорбции молекулы фенилаланина энергия связывания аминокислоты с

Таблица 3. Усредненные заряды (в единицах заряда электрона), атомов азота и кислорода из гидроксильных (–OH), карбоксильных (–COOH) и карбонильных (C=O) групп, определенные по схеме Малликена

Система	O(-COOH)	O(-OH)	O(-C = O)	N
Thr	-0.632	-0.660	-0.337	-0.743
C ₇₀ -Thr	-0.420	-0.496	-0.398	-0.268

Таблица 4. Рассчитанные атомные заряды (в зарядах электрона) производного С₆₀-Нур, которые применялись в расчетах методом молекулярной динамики (а-е – см. рис. 13)

Атом	Заряды
O (a)	-0.570
C (b)	0.187
N (c)	-0.561
O (d)	-0.450
O (e)	-0.455

фуллереном зависит от распределения электронной плотности после полной оптимизации геометрии рассчитываемого комплекса. Расстояния молекулы фенилаланина до фуллеренового кора составляли для функционала M062X 3.61 и 3.60 Å в газовой фазе и воде, соответственно, тогда как для функционала B3LYP соответствующие значения составляли 4.38 и 4.45 Å.

Рис. 9. Радиальные функции распределения между молекулами воды и атомами азота в C₇₀-Thr (а) и в отдельной молекуле треонина (б).

Рис. 10. Функции радиального распределения между молекулами воды и атомами кислорода гидроксильной (*1*), карбоксильной (*2*) и карбонильной (*3*) групп.

Рис. 11. Экспериментальный спектр ЯМР ¹³С, полученный с помощью метода СР/MAS (время контакта 2 мс) и рассчитанный с помощью DFT.

Компьютерное моделирование взаимодействия фуллерена С₆₀ с молекулой L-гистидина представлено в работе [92]. Для расчетов элек-

тронной структуры и полной оптимизации геометрии применялся метод RHF с базисом 6-31G*. Оценка энергии взаимодействия молекулы ами-

Рис. 12. Радиальная функция распределения между атомами кислорода воды и различными атомами производного C₆₀-Arg; I – атомы углерода остова фуллерена, II – атомы азота остатков аргинина, III – атомы кислорода остатков аргинина. Верхние графики соответствуют равномерным распределениям функциональных групп, нижние – "сатурноподобным" распределениям; ип – немодифицированный фуллерен.

нокислоты и кора фуллерена проводилась с помощью метода MP2. Расстояние между атомами водорода молекулы аминокислоты, которые имеют слабо положительный заряд, и между атомами молекулы фуллерена определены как 3.0–3.1 Å.

В [93] было изучено невалентное взаимодействие 20 L-аминокислот с фуллереновым кором C_{60} методом DFT (модуль DMol³ из пакета Materials Studio), с применением функционала PBE, базиса DNP и поправки Гримме для невалентных взаимодействий. Полностью оптимизировалась геометрия комплексов в газовой фазе и водной среде и рассчитывалась полная энергия системы. В работе проведен сравнительный анализ энер-

Рис. 13. Изомер С₆₀-Нур с полярным расположением аминокислотных остатков. Буквы а-е соответствуют атомам, представленным в табл. 4.

Рис. 14. Радиальные функции распределения различных типов атомов в С₆₀-Нур; *а* – кислород гидроксильной группы, *b* – углеродные атомы модифицированного остова фуллерена, *c* – атом азота, *d* – атом кислорода карбонильной группы, *e* – атом кислорода карбоксильной группы.

гий образования комплексов в вакууме и воде. Показана ограниченность подхода, объясняющего взаимодействие молекулы аминокислоты с фуллереновым кором только гидрофобным механизмом.

Взаимодействию молекулы пролина с поверхностью фуллеренового кора C_{60} посвящена работа [94]. В расчете методом DFT (реализация в Spartan) применялся функционал B3LYP и базис 6-31G(*d*). Рассчитывались такие показатели, как оптимальная геометрия (длины связей) и ИКспектры в интервале температур 298.15–398.15 К, энергия адсорбции, орбитальные энергии HOMO и LUMO. Показано, что адсорбция пролина на

фуллереновом коре эндотермична и невозможна в реальном эксперименте.

Эффективный подход для расчета р K_a аддукта L-аланин- C_{60} с помощью квантово-химических методов представлен в [95]. Применялись методы HF и DFT (программа Gaussian) с базисом 6-31G(*d*) и функционалом B3LYP для расчета равновесной геометрии и колебательных частот в газовой фазе. Затем рассчитывались энергии гидратации и электронные энергии в воде (континуальная модель PCM). В работе детально рассмотрены изомеры аддукта и найден наиболее энергетически выгодный; показано, что образование цвиттер-ионов COO⁻–CH(Me)–NH⁺₂– C_{60} Н и COOH-CH(Me)-NH $_2^+$ -C $_{60}^-$ с отрицательными зарядами, локализованными на COO⁻ или

С₆₀ очень маловероятно.

В [96] методом DFT были рассчитаны энергии взаимодействий фуллерена и пептидов из аминокислот лизина и аланина с функционалами BLYP и VWN и базисом DNP (модуль DMol³ из пакета Materials Studio). Показано, что функционал BLYP не годится для моделирования такого рода систем, тогда как функционал VWN дает надежные, хотя и несколько заниженные значения. Также в [96] применялся метод молекулярной механики, были исследованы силовые поля AMBER и MM+, входящие в пакет HyperChem. При этом наилучшие результаты относятся к применению силового поля AMBER. Такого рода расчеты наглядно демонстрируют возможности применения расчетных методов и для выяснения природы взаимодействия белковых молекул и фуллерена.

Адсорбция аланина на фуллерене C_{60} моделировалась методом DFT в работе [97]. Модельный комплекс оптимизировался с применением функционала M062X и базиса 6-31G* (программа Gaussian). Рассчитывались энергии адсорбции, индексы реакционной способности, атомные заряды и глобальный перенос электронной плотности (GEDT) в газовой и водной среде. Показано, что устойчивое соединение образуется при расстояниях между молекулой аланина и фуллереновым кором в 3.03–3.07 Å.

Невалентные взаимодействия глицина, инкапсулированного в фуллерен C_{60} , изучены в [98]. Применялся функционал M06-2X и базис 6-311G(*d*,*p*). Результаты расчетов показывают, что фуллереновый кор значительно влияет на структуру и электронные свойства молекулы глицина, находящейся внутри. В частности, несмотря на значительное отталкивание молекулы глицина от атомов углерода фуллерена, молекула аминокислоты деформируется и склонна образовывать цвиттерион, а пространственное расположение молекулы глицина определяется взаимодействием атома азота с электронной системой фуллерена.

Энергия гидратации аддуктов фуллерена аспарагиновой кислоты и метионина рассчитывалась в работе [99]. Рассматривались объекты, состоящие из фуллеренового остова и пяти однородных аминокислотных остатков. Энергия гидратации рассчитывалась методом DFT с применением как UA- и PCM-подходов для континуального учета среды, так и обобщенного метода Борна. Заряды на атомах определялись по схеме Малликена после расчета с применением функционала B3LYP и базисов 6-31G(d) и 6-31+G(d,p). Показано, что с помощью обобщенного метода Борна можно достаточно хорошо воспроизводить энергию гидра-

тации для нейтральных и заряженных аддуктов фуллерена C₆₀ и аминокислот.

В работе [100] моделируется адсорбция аминолевулиновой кислоты с фуллереном C_{60} . Для расчетов применялся метод DFT (программа GAMESS) с функционалом B3LYP и базисом 6-31G*. Расчеты показали, что наибольшую роль в адсорбции аминокислоты играет электростатическая энергия. При этом электронные свойства и геометрическая структура фуллеренового кора меняется незначительно.

Таким образом, современные методы компьютерного моделирования на атомно-молекулярном уровне позволяют глубже понять как электронные и структурные особенности производных фуллеренов с аминокислотами, так и их физико-химические свойства.

Работа была поддержана Российским фондом фундаментальных исследований (код проекта № 20-13-50017 Экспансия).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kroto H.W., Heath J.R., O'Brien S.C. et al.* // Nature. 1985. V. 318. № 6042. P. 162.
- Ruoff R.S., Tse D.S., Malhorta R., Lorents D.S. // J. Phys. Chem. 1993. V. 97. № 13. P. 3379.
- 3. Сидоров Л.Н., Юровская М.А. Фуллерены: учебное пособие. М.: Экзамен, 2005. 688 с.
- Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии: учебное пособие. СПб.: Росток, 1.2006. 336 с.
- Semenov K.N., Charykov N.A., Keskinov V.A. // J. Chem. Eng. Data. 2010. V. 55. P. 13.
- 6. Семенов К.Н., Чарыков Н.А., Кескинов В.А. // Журн. физ. химии. 2013. Т. 87. № 1. С. 62.
- 7. Семенов К.Н., Чарыков Н.А., Кескинов В.А. и др. // Журн. прикл. химии. 2010. Т. 83. № 6. С. 946.
- Andrievsky G.V., Kosevich M.V., Vovk O.M. et al. // J. Chem. Soc. 1995. V. 12. P. 1281.
- 9. Парнес З.Н., Романова В.С., Андреев С.М. и др. Адъюванты. Патент РФ 2129436 // 27.04.1999.
- 10. Andersson T., Nilsson K., Sundahl M. et al. // J. Chem. Soc. Chem. Commun. 1992. P. 604
- 11. Yamakoshi Y.N., Yagami T., Fukuhara K. et al. // Ibid. 1994. P. 517.
- Nakanishi T., Ariga K., Morita M. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006. V. 284–285. P. 607.
- Андреев С.М., Башкатова Е.Н., Башкатова Ю.Н. и др. Способ получения аддуктов фуллерена. Патент РФ 2462474 // 27.09.2012 Бюл. № 27.
- 14. Юровская М.А. // Соросовский образовательный журнал. 2000. № 5. С. 26.
- Hirsch A., Li Q., and Wudi F. // Angew. Chem. Int. Ed. Engl. 1991. V. 30. P. 309.
- 16. Романова В.С., Цыряпкин В.А., Ляховецкий Ю.А. и др. // Изв. РАН. Сер. хим. 1994. № 6. С. 1154.

- 17. *Масалова О.В., Шепелев А.В., Атанадзе С.Н. и др. //* Докл. РАН. 1999. Т. 369. № 3. С. 411.
- Меджидова М.Г., Абдулаева М.В., Федорова Н.Е. и др. // Антибиотики и химиотерапия. 2004. Т. 49 № 8–9. С. 13.
- 19. Андреев С.М., Бабахин А.А., Петрухина А.О. и др. // Докл. РАН. 2000. Т. 390. № 2. Р. 261.
- Friedman S.H., DeCamp D.L., Sijbesma R. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 6506.
- Sijbesma R., Srdanov G., Wudl F. et al. // Ibid. 1993.
 V. 115. P. 6510.
- Schinazi R.F., Sijbesma R., Srdano G. et al. // Antimicrob. Agents Chemother. 1993. V. 37. P. 1707.
- 23. Friedman S.H., Wudl F., Rubin Y., Kenyon G.L. // Proc. Electrochem. Soc. 1994. V. 24. P. 662.
- 24. Schinazi R.F., McMillan A., Juodawlkis A.S. et al. // Ibid. 1994. V. 24. P. 689.
- 25. *Triggle D.J.* // Chemtracts: Org. Chem. 1994. V. 7. P. 57.
- 26. *Schinazi R.F., Bellavia C., Gonzalez R. et al.* // F. Proc. Electrochem. Soc. 1995. V. 10. P. 696.
- Chiang L.Y., Wang L.-Y., Swirczewski J.W. et al. // Org. Chem. 1994. V. 59. P. 3960.
- Wudl F., Hirsch A., Khemani K. et al. // ACS Syrup. Ser. 1992. V. 481. P. 161.
- 29. Андреев С.М., Лаптев В.П., Панферова Н.Г. и др. Фармацевтическая композиция для фотодинамической терапии и способ лечения онкологического заболевания с ее использованием. Патент РФ 2323722 // 10.05.2008 Бюл. № 13.
- 30. Андреев С.М., Башкатова Е.Н., Хаитов М.Р., Пургина Д.Д. Способ получения водных нанодисперсий фуллерена. Патент РФ 2548971 // 20.04.2015 Бюл. № 11.
- Li J., Takeuchi A., Ozawa M. // J. Chem. Soc. Chem. Commun. 1993. V. 23. P. 1784.
- Chiang L.Y., Bhonsle J.B., Wang L. et al. // Tetrahedron. 1996. V. 52. P. 4963.
- Chiang L.Y., Upasani R.B., Swirczewski J.W. // J. Am. Chem. Soc. 1992. V. 114. P. 10154.
- 34. Meier M.S., Kiegiel J. // Org. Lett. 2001. V. 3. P. 1717.
- 35. Szymanska L., Radecka H., Radecki J. et al. // Biosens.Bioelectron. 2001. V. 16. P. 911.
- Mirkov S.M., Djordjevic A.N., Andric N.L. et al. // Nitric Oxide. 2004. V. 11. P. 201.
- 37. Kokubo K., Matsubayashi K., Tategaki H. et al. // ACS Nano. 2008. V. 2. № 2. P. 327.
- Yang J.M., He W., Ping H. et al. // Chinese. J. Chem. 2004. V. 22. № 9. P. 1008.
- 39. *Sheng W., Ping H., Jian Min Z. et al.* // Synthetic Communications. 2005. V. 35. № 13. P. 1803.
- 40. *Chiang Long Y.* Fullerene Derivatives as Free Radical Scavengers. US patent 5648523. July 15, 1997.
- Lamparth I., Hirsch A. // J. Chem. Soc. Chem. Commun. 1994. P. 1727–1728.
- Shestopalova A.A., Keskinov V.A., Klepikov V.V. et al. // J. Mol. Liq. 2015. V. 211. P. 301.
- Шестопалова А.А., Чарыков Н.А., Калачева С.С., Семенов К.Н. // В сб.: Химия и химическое образование XXI века, 2015. С. 96.

- 44. Kotelnikova R.A., Kotelnikov A.I., Bogdanov G.N. et al. // FEBS Letters. 1996. V. 389. № 2. P. 111.
- 45. Vol'pin M.E., Belavtseva E.M., Romanova V.S. et al. // Mendeleev Comm. 1995. V. 4. P. 129.
- Hu Z., Guan W., Wang W. et al. // Carbon. 2008. V. 46.
 P. 99; Cell Biol Int. 2007. V. 31. P. 798.
- 47. Wang I.C., Tai L.A., Lee et al. // J. Med. Chem. 1999. V. 42. № 22. P. 4614. https://doi.org/10.1021/jm990144s
- 48. *Gan L.B., Luo C.P.* // Chinese Chem. Letters. 1994. Vol. 5. № 4. P. 275.
- 49. *Hu Z., Guan W., Wang W. et al.* // Chem-Biol Interact 2007. V. 167. P. 135.
- 50. *Kumar A., Rao M.V., Menon S.K.* // Tetrahedron Lett. 2009. V. 50. P. 6526.
- 51. Jiang G., Yi F., Duan J., Li G. // J. Mater. Sci: Mater. Med. 2015. V. 26. P. 1.
- Semenov K.N., Meshcheriakov A.A., Charykov N.A. et al. // RSC Advances. 2017. № 7. P. 15189.
- Djordjevic A., Srdjenovic B., Seke M. et al. // J. Nanomaterials. Hindawi Publishing Corporation. 2015. Article ID 567073. P. 15.
- 54. Friedman S.H., Schinazi R.F., Wudl F. et al. Method of Treatment of Viral Infection Including HIV Using Water Soluble Fullerenes. Патент США US6613771B2 // 15.11.2001
- 55. Жмак М.Н., Вольпина О.М., Куприянова М.А. и др. Фуллереновое производное гликопептида, обладающее адъювантной активностью. Патент РФ 2124022 // 21.12.1998
- Leon A., Jalbout A.F., Basiuk V.A. // Chem. Phys. Lett. 2008. V. 452. P. 306.
- Dolinina T.Yu., Luzhkov V.B. // Russ. Chem. Bull. 2012.
 V. 61. № 8. P. 1631.
- Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. // J. Mol. Liq. 2015. V. 202. P. 50.
- 59. Семенов К.Н., Иванова Н.М., Чарыков Н.А. и др. // Журн. физ. химии. 2017. Т. 91. № 2. С. 318.
- Noskov B.A., Timoshen K.A., Akentiev A.V. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 529. P. 1.
- 61. Lelet M.I., Semenov K.N., Andrusenko E.V. // J. Chem. Thermodynamics. 2017. V. 115. P. 7.
- Semenov K.N., Charykov N.A., Meshcheriakov A.A. // J. Mol. Liq. 2017. V. 242. P. 940.
- 63. Semenov K.N., Andrusenko E.V., Charykov N.A. et al. // Progress in Solid State Chemistry. 2017. V. 47–48. P. 16.
- 64. Serebryakov E.B., Semenov K.N., Stepanyuk I.V. // J. Mol. Liq. 2018. V. 256. P. 507.
- 65. *Iurev G.O., Lelet M.I., Pochkayeva E.A. et al.* // J. Chem. Thermodynamics. 2018. V. 127. P. 39.
- Burley G.A., Keller P.A., Pyne G.S. // Full. Sci. Techol. 1999. V. 7. P. 973.
- Bianco A., Da Ros T., Prato M., Toniolo C. // J. Pept. Sci. 2011. V. 7. P. 208.
- Gan L., Zhou D., Luo C. et al. // J. Org. Chem. 1996. V. 61. P. 1954.
- 69. *Klemenkova Z.S., Romanova V.S., Tsyryapkin V.A. et al.* // Mend. Comm. 1996. V. 6. № 2. P. 602.

АДДУКТЫ ЛЕГКИХ ФУЛЛЕРЕНОВ И АМИНОКИСЛОТ

- Enes R.F., Tome A.C., Cavaleiro J.A.S. // Tetrahedron. 2005. V. 61. P. 1423.
- 71. *Watanabe L.A., Bruiyan M.P.I., Jose B. et al.* // Tetrahedron Lett. 2004. V. 45. P. 7137.
- Varon A., Naide F // Crit. Rev. Biochem. Mol. Biol. 1993. Vol. 28. P. 31.
- Bianco A., Lucchini, Maggini M. // J. Peptide Sci. 1998. V. 4. P. 364.
- 74. Bianco A., Bertolini T., Crisma M. et al. // Ibid. 1997. V. 50. P. 159.
- 75. Раснецов Л.Д., Шварцман Я.Ю., Лялина И.К. и др. Способ получения водорастворимых аминокислотных производных фуллерена. Патент РФ 2213039 // 27.09.2003 Бюл. № 27.
- Котельников А.И., Романова В.С., Богданов Г.Н. и др. Полифункциональные аминокислотные производные фуллерена С₆₀. Патент РФ 2462473 // 27.09.2012. Бюл. № 27.
- 77. Магдесиева Т.В., Левицкий О.А., Амбарцумян А.А., Кочетков К.А. Способ получения энантиомерно чистых (s) аминокислот на основе комплекса [(s) bpb-gly] ni (ii), напрямую связанных с фуллереновым ядром через α-углеродный атом, в форме хиральных (а) и (c) 1,4-аддуктов [60]фуллерена. Патент РФ 2614247 // 24.03.2017 Бюл. № 9.
- Tat'yanenko L.V., Dobrokhotova O.V., Kotel'nikova R.A., et al. // Pharm. Chem. J. 2011. V. 45. № 6. P. 329.
- 79. Semenov K.N., Charykov N.A., Postnov V. et al. // Russ. Chem. Rev. 2016. V. 85. P. 38.
- 80. *Liu Q., Zhang X., Zhang X. et al.* // ACS Appl. Mater. Interfaces. 2013. V. 5. № 21. P. 11101.
- Liu Q., Zheng J., Guan M. et al. // Ibid. 2013. V. 5. № 10. P. 4328.
- 82. Раснецов Л.Д. Средство для ингибирования репродукции оболоченных вирусов, способ его получения, фармацевтическая композиция и способ ингибирования вирусных инфекций. Патент РФ 2236852 // 27.09.2004. Бюл. № 27.
- ВЗ. Пиотровский Л.Б. // Рос. нанотехнологии. 2007. Т. 2. № 7-8. С. 6.
- Grigoriev V.V., Petrova L.N., Ivanova et al. // Biology Bull. 2011. V. 38. P. 125.

- 85. Kotel'nikova R.A., Faingol'd I.I., Poletaeva D.A. et al. // Russ. Chem. Bull. 2011. V. 6. P. 1172.
- Jensen A.W., Wilson S.R., Schuster D.I. // Bioorg. Med. Chem. 1996. V. 4. P. 767.
- 87. Семенов К.Н. Синтез, идентификация, физико-химические свойства и фазовые равновесия в системах, содержащих легкие фуллерены и их производные: Дис. ... докт. хим. наук. СПб.: СПбГУ. 2016. 338 с.
- Serebryakov E.B., Zakusilo D.N., Semenov K.N. et al. // J. Mol. Liq. 2019. V. 279. P. 687. https://doi.org/10.1016/j.molliq.2019.02.013
- 89. Ageev S.V., Iurev G.O., Podolsky N.E. et al. // Ibid. 2019. V. 291. P. 111256. https://doi.org/10.1016/j.molliq.2019.111256
- Meshcheriakov A.A., Iurev G.O., Luttsev M.D. et al. // Colloids and Surfaces B: Biointerfaces. 2020. V. 196. P. 111338.
- 91. Kaya M.F., Alver Ö., Parlak C. and Ramasami P. // Main Group Met. Chem. 2019. V. 42. P. 135.
- 92. Lal B.// J. Mol. Model. 2007. V. 13. P. 531. https://doi.org/10.1007/s00894-007-0179-6
- Basiuk V.A., González-Luciano E. // Fullerenes, Nanotubes and Carbon Nanostructures. 2016. V. 24. P. 371. https://doi.org/10.1080/1536383X.2016.1163687
- 94. Ahmadi R., Sarvestani M.R.J., Taghavizad R., Rahim N. // Chem. Methodologies. 2020. V. 4. P. 68.
- 95. Luzhkov V.B., Romanova V.S., Kotelnikov A.I. // Russ. Chem. Bull., Intern. Edition. 2014. V. 63. P. 567.
- 96. *Basiuk V.A., Bassiouk M.* // J. Computational and Theoretical Nanoscience. 2011. V. 8. P. 243.
- 97. Khavidaki H.D., Soleymani M. // Phys. Chem. Res. 2020. V. 8. P. 657. https://doi.org/10.22036/pcr.2020.227279.1759
- 98. Shahamirian M., Azami S.M. // Physics Letters A. 2019. V. 383. P. 126004. https://doi.org/10.1016/j.physleta.2019.126004
- Krapivin V.B., Luzhkov V.B. // IOP Conf. Series: Materials Science and Engineering. 2019. V. 525 P. 012033 https://doi.org/10.1088/1757-899X/525/1/012033
- 100. Kiaa M., Golzar M., Mahjoub K., Soltani A. // Superlattices and Microstructures 2013. V. 62. P. 251. https://doi.org/10.1016/j.spmi.2013.07.010