____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 544.35+544.344

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МНОГОКОМПОНЕНТНЫХ ВОДНЫХ РАСТВОРОВ НИТРАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

© 2021 г. А. В. Дзубан^{а,*}, А. А. Галстян^b, Н. А. Коваленко^a, И. А. Успенская^a

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия ^b Московский государственный университет имени М.В. Ломоносова, Факультет наук о материалах, Москва, Россия *e-mail: dzuban@td.chem.msu.ru

Поступила в редакцию 29.05.2021 г. После доработки 29.05.2021 г. Принята к публикации 01.06.2021 г.

Определены константы растворимости кристаллогидратов нитратов редкоземельных элементов (P3Э) в широком интервале температур ($-30-120^{\circ}$ С), рассчитана растворимость солей и построены фазовые диаграммы систем вода—нитраты P3Э. Показано, что на основе полученных результатов можно рассчитывать и предсказывать свойства растворов и фазовые диаграммы многокомпонентных (n > 5) растворов нитратов P3Э в пределах экспериментальной погрешности. Для смесей нитратов P3Э с близкими гидродинамическими радиусами ионов параметрами межчастичного взаимодействия P3Э1–P3Э2 можно пренебречь без потерь в точности термодинамического моделирования.

Ключевые слова: термодинамическое моделирование, растворы электролитов, нитраты РЗЭ, электролитная обобщенная модель локального состава (eGLCM) **DOI:** 10.31857/S0044453721120074

Объемы производства и потребления редкоземельных элементов (РЗЭ) в различных областях науки и техники – одни из важнейших показателей экономического развития промышленно развитых стран. Особый интерес представляют индивидуальные РЗЭ высокой чистоты, активно использующиеся в качестве катализаторов на нефтеперерабатывающих заводах, люминесцентных активаторов, в высокотемпературных сверхпроводниках, постоянных магнитах, кристаллах для лазеров и т.д. Тем не менее существующих ныне производственных мощностей постепенно становится недостаточно, чтобы удовлетворить растуший спрос на высокочистые РЗЭ. Чаше всего для их получения используют технологию жидкофазной экстракции из водно-органических кислых растворов с последующим осаждением продукта из рафината или водного реэкстракта [1]. Традиционно условия проведения этих многоступенчатых процессов подбирают эмпирически, получая большое количество экспериментальных данных для каждого типа сырья, что является довольно трудоемкой задачей. Разумная альтернатива, позволяющая существенно уменьшить время и трудозатраты при подборе оптимальных условий процессов разделения РЗЭ, – термодинамическое моделирование. Поэтому цель данной работы – построить термодинамическую модель для описания свойств фаз и их равновесий в многокомпонентных системах, образованных водой и нитратами РЗЭ, в широком интервале температур.

Бинарные системы, т.е. водные растворы нитратов отдельных РЗЭ, наиболее широко изучены в цикле работ [2-10], где, в основном, определены осмотический коэффициент и активность растворителя изопиестическим методом (относительно хлоридов калия и кальция) при температуре 25°С. Для растворов нитратов иттрия, церия, самария, европия, гадолиния, тербия, диспрозия, гольмия, туллия и лютеция рабочий диапазон моляльностей соли доходил до насыщенных растворов (~4-5 моль/кг), а для лантана, празеодима. неодима, эрбия и иттербия удалось изучить и пересыщенные смеси. Калориметрические свойства водных растворов нитратов лантаноидов рассмотрены в [11, 12]. Авторы [11] измеряли теплоты разбавления, на основании которых определяли зависимости парциальных энтальпий компонентов от состава раствора и ионного радиуса

n	Y	Nd	Sm	Eu	Gd	Tb	Dy	Но	Yb	Lu
4	+	-	+	+	_	_	_	+	+	+
5	+	+	+	+	+	_	_	+	+	+
6	+	+	+	+	+	+	+	+	+	+

Таблица 1. Подтвержденные кристаллогидраты в системах $nH_2O-RE(NO_3)_3$

Примечание. Для RE = La, Ce, Pr, Er и Tm известны гидраты $RE(NO_3)_3 \cdot nH_2O$ (n = 3, 4, 5, 6).

Таблица 2. Экспериментальные данные для систем вода-нитрат РЗЭ

Система	ф (25°C), моль/кг	ΔT [13, 14]
$H_2O-Y(NO_3)_3$	0.991-5.156 [9]	-20-120°C
$H_2O-La(NO_3)_3$	0.125-4.537 [10]	-26-122°C
$H_2O-Ce(NO_3)_3$	0.991-5.156 [8]	-20-110°C
$H_2O-Pr(NO_3)_3$	0.126-4.977 [10]	-30-127°C
$H_2O-Nd(NO_3)_3$	0.126-4.977 [10]	-28-90°C
$H_2O-Sm(NO_3)_3$	0.005-4.277 [9]	-34-135°C
$H_2O-Eu(NO_3)_3$	1.099–4.063 [9]	-28-90°C
$H_2O-Gd(NO_3)_3$	0.005-4.370 [2]	0-50°C
$H_2O-Tb(NO_3)_3$	0.005-4.532 [2]	0-50°C
$H_2O-Dy(NO_3)_3$	0.185-4.664 [6]	0-50°C
$H_2O-Ho(NO_3)_3$	0.184-5.020 [6]	25°C
$H_2O-Er(NO_3)_3$	0.005-5.358 [2]	0-50°C
$H_2O-Tm(NO_3)_3$	0.005-5.953 [2]	25°C
$H_2O-Yb(NO_3)_3$	0.005-6.561 [2]	0-50°C
$H_2O-Lu(NO_3)_3$	0.182-6.717 [6]	25°C

Обозначения: ϕ — осмотический коэффициент, ΔT — температурный интервал растворимости соли.

РЗЭ. Наиболее полный обзор экспериментальных данных о растворимости нитратов РЗЭ в широком интервале температур (от –25 до 120°С) и образовании их кристаллогидратов проведен в справочнике [13] (табл. 1, 2). Также несколько позже авторы [14] выполнили измерения температур ликвидуса в водных растворах нитрата иттрия методом ДСК, дополнив информацию о равновесиях твердое-жидкость в этой системе.

В работах [15—17] дополнительно изучен ликвидус льда и определены температуры кипения для систем вода—нитрат лантана, церия, празеодима, неодима, самария и европия. Также рассмотрены границы существования кристаллогидратов и проведено сравнение с опубликованными ранее результатами. В [18] показано, что экспериментальное изучение растворимости пяти- и четырехводных нитратов РЗЭ не всегда возможно, так как они метастабильны по отношению к гексагидрату. На основании этих данных были построены фазовые диаграммы систем вода—нитрат P3 \Im (P3 \Im = La, Ce, Pr, Nd, Sm, Eu) от температур эвтектики до кипения. Сводка литературных экспериментальных данных для бинарных систем H₂O–RE(NO₃)₃ представлена в табл. 2.

Попытки термодинамического моделирования систем $H_2O-RE(NO_3)_3$, где RE = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, опираются, в основном, на данные о парожидкостных равновесиях и используют модель Питцера [20]. Авторам [2-4] удалось описать полученные ими данные с приемлемой погрешностью только в узком диапазоне концентраций – максимум до 1.9 моль/кг. Использование модификаций модели Питцера позволило моделировать растворы электролитов в более широком концентрационном интервале. Так, авторы [19] смогли описать свойства систем H₂O-RE(NO₃)₃ вплоть до содержания соли 6 моль/кг с погрешностью не более 1%, а в [20] с использованием пятипараметрического варианта модели Питцера рассчитаны не только осмотические коэффициенты выше точки насыщения, но и растворимость соли при 25°C, а также параллельно оценены мольные энергии Гиббса образования кристаллогидратов $RE(NO_3)_3 \cdot nH_2O$, где *n* = 5 и 6. Следует отметить, что в [2, 19, 20] предполагалась полная диссоциация нитратов РЗЭ в воде без образования промежуточных частиц или ассоциатов.

Авторы [21], работая с теми же объектами, ошибочно предположили, что используемая ими модель Питцера хорошо описывает только осмотические коэффициенты и неудачно – среднеионные коэффициенты активности при ионной силе свыше 4 моль/кг. Тем не менее, позднее в [22] показано, что в [21] была допущена расчетная ошибка – не учтена зависимость параметра C_{сх} модели Питцера от концентрации. Если ее ввести, то станет возможным описание коэффициентов активности вплоть до ионной силы 20 моль/кг. Также в работе [21] была выявлена корреляция между параметрами модели Питцера и ионным радиусом РЗЭ, которая может быть использована для оценки неизвестных параметров системы $H_2O-Pm(NO_3)_3$.

Моделирование растворов РЗЭ не ограничивается моделью Питцера, к примеру, авторы [21] также для сравнения обратились к расширенному варианту полуэмпирической модели Бромли [23], а в работе [24] была использована разработанная в лаборатории химической термодинамики химического факультета МГУ имени М.В. Ломоносова электролитная обобщенная модель локального состава (eGLCM), которая с хорошей точностью описывает бинарные и многокомпонентные системы в широком интервале температур и концентраций. Экспериментальные данные по *трехкомпонентным системам* вода – нитрат P3Э1 – нитрат P3Э2 фрагментарны (табл. 3). Например, в справочнике [13] приведены взаимные растворимости нитратов нескольких P3Э при 20°C в следующих комбинациях: La³⁺–Pr³⁺–NO₃⁻–H₂O, La³⁺– Nd³⁺–NO₃⁻–H₂O, La³⁺–Sm³⁺–NO₃⁻–H₂O, Pr³⁺– Nd³⁺–NO₃⁻–H₂O, Nd³⁺–Sm³⁺–NO₃⁻–H₂O. Указывается также, что равновесной твердой фазой в смесях оказываются твердые растворы состава (RE1_xRE2_{1-x})(NO₃)₃ · 6H₂O, причем лишь некоторые из них, а именно (Pr_xNd_{1-x})(NO₃)₃ · 6H₂O, (Nd_xSm_{1-x})(NO₃)₃ · 6H₂O являются непрерывными.

В работах [25-27] изучали термодинамические свойства трехкомпонентных систем, содержащих нитрат анион и два катиона РЗЭ: H₂O-Y(NO₃)₃- $H_2O H_2O-Y(NO_3)_3-Pr(NO_3)_3$, $La(NO_3)_3$, $Y(NO_3)_3 - Nd(NO_3)_3$, $H_2O - La(NO_3)_3 - Pr(NO_3)_3$, $H_2O-La(NO_3)_3-Nd(NO_3)_3, H_2O-Pr(NO_3)_3 Nd(NO_3)_3$, $H_2O-Er(NO_3)_3-La(NO_3)_3$, $H_2O Er(NO_3)_3 - Pr(NO_3)_3$, $H_2O - Er(NO_3)_3 - Nd(NO_3)_3$, $H_2O-Er(NO_3)_3-Y(NO_3)_3$. Экспериментально определяли осмотические коэффициенты изопиестическим методом при температуре 25°С в широком концентрационном интервале: от предельно разбавленных до насыщенных растворов. Аналогичная ситуация наблюдалась и в четырех- и пятикомпонентных системах вода-нитраты РЗЭ с катионами Y³⁺, La³⁺, Pr³⁺, Nd³⁺, Er³⁺ [27–29] (табл. 4). В [25] отмечено, что отсутствие взаимодействий между солями позволяет применять эмпирическое правило Здановского [30-33] с достаточно высокой точностью. Для более строгого моделирования авторы [25-29] использовали семипараметрическую модель Питцера, модифицируя параметр С.

Таким образом, при изучении свойств многокомпонентных водных растворов нитратов РЗЭ, как правило, ограничиваются температурой 25°С (за исключением бинарных систем), а основной тип получаемых данных — осмотические коэффициенты и растворимость соли, в редких случаях — термохимические свойства. Термодинамическое моделирование проводят при одной температуре (25°С) с использованием, как правило, различных вариантов модели Питцера.

МЕТОДИКА РАСЧЕТОВ

Термодинамическое моделирование свойств водных растворов нитратов РЗЭ и фазовых равновесий в рассматриваемых системах проводили при помощи модели eGLCM [24]. Ранее она показала свою перспективность в приложении к экстракционным системам, используемым в процессе получения высокочистых РЗЭ, а именно

Таблица 3. Экспериментальные данные для трехкомпонентных систем, содержащих воду и два нитрата РЗЭ

Соль 1 Соль 2 $a_{H_2O}(25^\circ C)$ Границы твердого раствора при 20°С Y(NO_3)_3 La(NO_3)_3 [25] – Pr(NO_3)_3 [25] – Nd(NO_3)_3 [25] – Er(NO_3)_3 [25] – Nd(NO_3)_3 [25] – Er(NO_3)_3 [26] – La(NO_3)_3 [25] 9–55 Nd(NO_3)_3 [25] 14.7–87.8 Sm(NO_3)_3 [26] – Pr(NO_3)_3 [26] – Pr(NO_3)_3 [26] – Nd(NO_3)_3 [26] – Pr(NO_3)_3 [26] – Pr(NO_3)_3 [26] – Nd(NO_3)_3 [26] –					
Солв 1 Солв 2 и _{Н2} (C25 C) растворимость [13] Y(NO ₃) ₃ La(NO ₃) ₃ [25] – Pr(NO ₃) ₃ [25] – Nd(NO ₃) ₃ [25] – Er(NO ₃) ₃ [26] – La(NO ₃) ₃ [25] 9–55 Nd(NO ₃) ₃ [25] 14.7–87.8 Sm(NO ₃) ₃ [26] – Pr(NO ₃) ₃ [26] – Nd(NO ₃) ₃ [26] –	Соль 1	Com 2	a (25°C)	Границы твердого раствора при 20°С	
Y(NO3)3La(NO3)3[25] $-$ Pr(NO3)3[25] $-$ Nd(NO3)3[25] $-$ Er(NO3)3[26] $-$ La(NO3)3Pr(NO3)3[25]9-55Nd(NO3)3[25]Nd(NO3)3[25]14.7-87.8Sm(NO3)3 $-$ 14.1-97Er(NO3)3[26] $-$ Pr(NO3)3Nd(NO3)3[25]Henpepibenbilтвердый растворEr(NO3)3[26] $-$ Nd(NO3)3[26] $-$ Nd(NO3)3Sm(NO3)3 $-$ Henpepibenbilтвердый растворEr(NO3)3[26] $-$	CONBI		u _{H2} O(25 C)	растворимость [13]	
Рг(NO ₃) ₃ [25] – Nd(NO ₃) ₃ [25] – Er(NO ₃) ₃ [26] – La(NO ₃) ₃ Pr(NO ₃) ₃ [25] 9–55 Nd(NO ₃) ₃ [25] 14.7–87.8 Sm(NO ₃) ₃ - 14.1–97 Er(NO ₃) ₃ [26] – Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] HenpepuBhuň TBepduň pactBop – Nd(NO ₃) ₃ [26] – Nd(NO ₃) ₃ [26] –	$Y(NO_3)_3$	$La(NO_3)_3$	[25]	_	
Nd(NO ₃) ₃ [25] - Er(NO ₃) ₃ [26] - La(NO ₃) ₃ Pr(NO ₃) ₃ [25] 9-55 Nd(NO ₃) ₃ [25] 14.7-87.8 Sm(NO ₃) ₃ - 14.1-97 Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] Henpepubhbbiti твердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] -		$Pr(NO_3)_3$	[25]	_	
Er(NO ₃) ₃ [26] - La(NO ₃) ₃ Pr(NO ₃) ₃ [25] 9-55 Nd(NO ₃) ₃ [25] 14.7-87.8 Sm(NO ₃) ₃ - 14.1-97 Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] HenpepuBhuй Tвердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] -		$Nd(NO_3)_3$	[25]	_	
La(NO ₃) ₃ Pr(NO ₃) ₃ [25] 9-55 Nd(NO ₃) ₃ [25] 14.7-87.8 Sm(NO ₃) ₃ - 14.1-97 Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] La(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] HenpepuBhuй твердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ Sm(NO ₃) ₃ - HenpepuBhuй твердый раствор		$Er(NO_3)_3$	[26]	_	
Nd(NO ₃) ₃ [25] 14.7-87.8 Sm(NO ₃) ₃ - 14.1-97 Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] непрерывный твердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ Sm(NO ₃) ₃ - Heпрерывный твердый раствор твердый раствор	$La(NO_3)_3$	$Pr(NO_3)_3$	[25]	9–55	
Sm(NO ₃) ₃ - 14.1–97 Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] непрерывный твердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ Sm(NO ₃) ₃ -		$Nd(NO_3)_3$	[25]	14.7-87.8	
Er(NO ₃) ₃ [26] - Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] непрерывный твердый раствор Er(NO ₃) ₃ [26] - Nd(NO ₃) ₃ [26] - Nd(NO ₃) ₃ Sm(NO ₃) ₃ - Heпрерывный твердый раствор -		$Sm(NO_3)_3$	_	14.1–97	
Pr(NO ₃) ₃ Nd(NO ₃) ₃ [25] непрерывный твердый раствор Er(NO ₃) ₃ [26] – Nd(NO ₃) ₃ Sm(NO ₃) ₃ – непрерывный твердый раствор –		$Er(NO_3)_3$	[26]	_	
Er(NO ₃) ₃ [26] – Nd(NO ₃) ₃ Sm(NO ₃) ₃ – непрерывный твердый раствор	$Pr(NO_3)_3$	Nd(NO ₃) ₃	[25]	непрерывный твердый раствор	
Nd(NO ₃) ₃ Sm(NO ₃) ₃ – непрерывный твердый раствор		$Er(NO_3)_3$	[26]	_	
твердый раствор	$Nd(NO_3)_3$	$Sm(NO_3)_3$	-	непрерывный	
				твердый раствор	
Er(NO ₃) ₃ [26] –		$Er(NO_3)_3$	[26]	_	

Примечание. Границы существования твердого раствора указаны в мол. % соли 1.

Таблица 4. Экспериментальные данные по осмотическим коэффициентам многокомпонентных водных растворов нитратов РЗЭ при 25°С

Соль 1	Соль 2	Соль 3	Источник	
Че	тырехкомпон	ентные систе	мы	
$Y(NO_3)_3$	$La(NO_3)_3$	$Pr(NO_3)_3$	[27]	
		$Nd(NO_3)_3$	[27]	
	$Er(NO_3)_3$	[26]		
	$Pr(NO_3)_3$	$Nd(NO_3)_3$	[27]	
		$Er(NO_3)_3$	[26]	
	Nd(NO ₃) ₃	$Er(NO_3)_3$	[26]	
$La(NO_3)_3$	$Pr(NO_3)_3$	$Er(NO_3)_3$	[28]	
	$Nd(NO_3)_3$	$Er(NO_3)_3$	[28]	
$Pr(NO_3)_3$	$Nd(NO_3)_3$	$Er(NO_3)_3$	[28]	
Пятикомпонентная система				
$Y(NO_3)_3 - I$	[29]			
$Nd(NO_3)_3 -$				

позволила рассчитать бинарную диаграмму системы вода—трибутилфосфат (экстрагент), чего не удавалось добиться, используя любые другие модели [34].

Термодинамическая модель жидкой фазы

Выражение для мольной избыточной энергии Гиббса в модели eGLCM содержит три вклада:

$$G^{\rm ex} = G_{\rm LR}^{\rm ex} + G_{\rm MR}^{\rm ex} + G_{\rm SR}^{\rm ex},$$

где G_{LR}^{ex} — вклад дальнодействующих взаимодействий, G_{MR}^{ex} — вклад среднедействующих и G_{SR}^{ex} — вклад близкодействующих взаимодействий.

Для нормировки свойств использована симметричная система сравнения, концентрацию выражали в мольных долях; коэффициент активности $\gamma_k \rightarrow 1$ при $x_k \rightarrow 1$ для любой частицы в растворе (для ионов такое состояние является гипотетическим). Также предполагалась полная диссоциация электролитов в растворе.

Мольная доля для *k*-й частицы рассчитывалась как:

$$x_k = \frac{n_k}{\sum_i n_i},$$

где суммирование ведется по всем существующим частицам в растворе.

Для учета дальнодействующих взаимодействий в модели eGLCM используется уравнение Питцера–Дебая–Хюккеля в симметричной системе сравнения для каждого составляющего:

$$\frac{G_{\text{LR}}^{\text{ex}}}{RT\sum_{i}^{n} n_{i}} = -\frac{4A_{x}I_{x}}{\rho} \ln\left(\frac{1+\rho I_{x}^{1/2}}{\sum_{i}^{n} (x_{i}[1+\rho (I_{x,i}^{0})^{1/2}])}\right)$$

где $I_x = \frac{1}{2} \sum_i x_i z_i^2$ – ионная сила, выраженная в

шкале мольных долей, $I_{x,i}^0 = z_i^2/2$ – ионная сила в гипотетической однокомпонентной системе из *i*-го составляющего; ρ – параметр наибольшего сближения ионов с диаметром $a = 5.4671 \times 10^{-10}$ м:

$$\rho = a \sqrt{\frac{2e^2 N_{\rm A} d_s}{M_s \varepsilon_0 \varepsilon_s k_{\rm B} T}}.$$

Параметр Дебая Хюккеля А_х равен:

$$A_x = \frac{1}{2} \left(\frac{2\pi N_A d_s}{M_s} \right)^{1/2} \left(\frac{e^2}{4\pi \varepsilon_0 \varepsilon_s k_B T} \right)^{3/2}$$

где $N_{\rm A} = 6.022141 \times 10^{23}$ моль⁻¹ – число Авогадро, $e = 1.602177 \times 10^{-19}$ Кл – элементарный заряд, $\varepsilon_0 = 8.8541878 \times 10^{-12}$ Ф/м – диэлектрическая проницаемость вакуума, $k_{\rm B} = 1.38065 \times 10^{-23}$ Дж/К – константа Больцмана, T – температура [K], d_s – плотность раствора [кг/м³], M_s – молярная масса раствора [кг/моль] и ε_s — относительная диэлектрическая проницаемость раствора [Φ /м].

Обычно плотность и диэлектрическая проницаемость разбавленного раствора принимаются равными соответствующим величинам растворителя, однако в данной работе для лучшего описания указанные величины определяли с помощью эмпирически подобранных уравнений (правил смешения):

$$d_s = \sum_i v'_i d_i,$$
$$\varepsilon_s = \sum_i v'_i \varepsilon_i,$$

где $v'_i = \frac{x_i v_i}{\sum_j x_j v_j}$, $v_i = \frac{M_i}{d_i}$ — молярный объем со-

ставляющих [м³/моль].

Молярная масса раствора рассчитывается с учетом молярных масс компонентов:

$$M_s = \sum_i x_i M_i,$$

где x_i и M_i – мольная доля и молярная масса компонента *i* соответственно.

Вклад дальнодействующих взаимодействий в коэффициент активности представляется следующим образом:

$$\ln \gamma_k^{\text{LR}} = -\frac{4A_x I_x}{\rho} \ln \left(\frac{1 + \rho I_x^{1/2}}{\sum_i (x_i [1 + \rho (I_{x,i}^0)^{1/2}])} \right) \times ((\ln A_x)'_k - (\ln \rho)'_k) - \frac{2A_x z_k^2}{\rho} \times ((\ln A_x)'_k - (\ln \rho)'_k) - \frac{2A_x I_x^2}{\rho} \times \ln \left(\frac{1 + \rho I_x^{1/2}}{\sum_i (x_i [1 + \rho (I_{x,i}^0)^{1/2}])} \right) - \frac{A_x I_x^{1/2} (z_k^2 - 2I_x)}{1 + \rho I_x^{1/2}} - \frac{4A_x I_x^2}{1 + \rho I_x^{1/2}} (\ln \rho)'_k + \frac{4A_x I_x}{\sum_i (x_i [1 + \rho (I_{x,i}^0)^{1/2}])} \times (((\ln \rho)'_k - 1) \sum_i (x_i (I_{x,i}^0)^{1/2}) + (I_{x,k}^0)^{1/2}),$$

где

$$(\ln \rho)'_{k} = \frac{1}{2} \left(\frac{(d_{s})'_{k}}{d_{s}} - \frac{(M_{s})'_{k}}{M_{s}} - \frac{(\varepsilon_{s})'_{k}}{\varepsilon_{s}} \right),$$
$$(\ln A_{x})'_{k} = \frac{1}{2} \left(\frac{(d_{s})'_{k}}{d_{s}} - \frac{(M_{s})'_{k}}{M_{s}} - \frac{3(\varepsilon_{s})'_{k}}{\varepsilon_{s}} \right),$$

$$(M_s)'_k = M_k - M_s, \quad (d_s)'_k = \frac{v_k (d_k - d_s)}{\sum_i x_i v_i}$$
$$(\varepsilon_s)'_k = \frac{v_k (\varepsilon_k - \varepsilon_s)}{\sum_i x_i v_i}.$$

Под среднедействующими в модели eGLCM понимаются взаимодействия, в которых участвуют заряженные частицы, и которые при этом не учитываются теорией Питцера—Дебая—Хюккеля. Избыточная энергия Гиббса для них записывается в виде:

$$\frac{G_{\rm MR}^{\rm ex}}{RT\sum_{i}n_i} = \sum_{i}\sum_{j}x_ix_jB_{ij}(I_x),$$

где $B_{ij}(I_x)$ — параметр взаимодействий *i*-й и *j*-й частиц, зависящий от ионной силы и представляющий собой симметричную матрицу:

 $B_{ij}(I_x) = B_{ji}(I_x), \quad B_{ii}(I_x) = B_{jj}(I_x) = 0.$ Также $B_{ij} = 0$ при условии, что *i*-я и *j*-я частицы не заряжены. Параметр $B_{ij}(I_x)$ описывается эмпирической зависимостью:

$$B_{ij}(I_x) = b_{ij} + c_{ij} \exp(\alpha_1 \sqrt{I_x} + \alpha_2 I_x),$$

где b_{ij} и c_{ij} — матрицы взаимодействий составляющих, значения элементов которых оптимизированы в данной работе, $\alpha_1 = -1.2$ при взаимодействии незаряженных частиц и -1 при взаимодействии ионов друг с другом, $\alpha_2 = 0.13$.

Выражение для соответствующего вклада в коэффициент активности имеет вид:

$$\ln \gamma_k^{\text{MR}} = 2\sum_i x_i B_{ik}(I_x) - \sum_i \sum_j x_i x_j B_{ij}(I_x) + \sum_i \sum_j x_i x_j (B_{ij})'_k,$$

где

$$(B_{ij})'_{k} = c_{ij} \exp(a_{1}\sqrt{I_{x}} + a_{2}I_{x}) \left(\frac{a_{1}}{2\sqrt{I_{x}}} + a_{2}\right) \left(\frac{z_{k}^{2}}{2} - I_{x}\right).$$

Избыточная энергия Гиббса для *близкодействующих* взаимодействий в модели eGLCM представляется как:

$$\frac{G_{SR}^{ex}}{RT\sum_{i}n_{i}} = \sum_{i}x_{i}\ln\frac{\varphi_{i}}{x_{i}} + \frac{z}{2}\sum_{i}q_{i}x_{i}\ln\frac{\theta_{i}}{\varphi_{i}} - \sum_{i}q_{i}x_{i}\ln\left(\sum_{j}\theta_{j}\tau_{ji}\right) + \sum_{i}x_{i}\ln\left(\sum_{j}x_{j}\rho_{ji}\right),$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

Таблица 5. Индивидуальные параметры частиц для систем вода-нитрат РЗЭ [24, 35, 36]

Компо- нент	<i>М</i> × 10 ³ , кг/моль	$d imes 10^3,$ kg/m ³	ε	r	q
H ₂ O	18.016	0.997048	78.38	0.92	1.40
NO_3^-	62	2.468	12.17	0.9222	0.9485
Y^{3+}	88.906	44.453	3.34	0.1518	0.2848
La ³⁺	138.91	21.437	3.92	0.2464	0.3934
Ce ³⁺	140.12	26.741	3.99	0.2596	0.4074
Pr^{3+}	140.91	21.36	3.96	0.2529	0.4004
Nd^{3+}	144.24	31.086	3.72	0.2095	0.3531
Sm ³⁺	150.36	63.983	3.65	0.1981	0.3402
Eu ³⁺	151.96	101.307	3.65	0.1981	0.3402
Gd^{3+}	157.25	137.939	3.44	0.1663	0.3027
Tb ³⁺	158.93	131.347	3.48	0.1713	0.3088
Dy^{3+}	162.5	120.37	3.37	0.1565	0.2908
Ho ³⁺	164.93	79.293	3.37	0.1565	0.2908
Er ³⁺	167.26	49.194	3.34	0.1518	0.2848
Tm ³⁺	168.93	71.885	3.34	0.1518	0.2848
Yb^{3+}	173.05	30.792	3.3	0.1471	0.2970
Lu ³⁺	174.97	29.606	3.27	0.1426	0.2732

где

$$\begin{aligned} \boldsymbol{\theta}_i &= \frac{x_i q_i}{\sum_j x_j q_j}, \quad \boldsymbol{\phi}_i &= \frac{x_i r_i}{\sum_j x_j r_j} \\ \boldsymbol{\tau}_{ij} &= \boldsymbol{\rho}_{ij} \exp\left(-\frac{a_{ij}}{T}\right), \end{aligned}$$

причем q_j и r_i – структурные параметры (относительная площадь и ван-дер-ваальсов объем) *i*-й частицы, a_{ij} и ρ_{ij} – температурно-зависимые параметры бинарных взаимодействий между *i*-й и *j*-й частицами ($a_{ij} \neq a_{ji}, \rho_{ij} \neq \rho_{ji}, a_{ii} = 0, \rho_{ii} = 1$).

Вклад близкодействующих взаимодействий в коэффициент активности имеет вид:

$$\ln \gamma_k^{\text{SR}} = 1 - \frac{\varphi_k}{x_k} + \ln \frac{\varphi_k}{x_k} - \frac{zq_k}{2} \left(1 - \frac{\varphi_k}{\theta_k} + \ln \left(\frac{\varphi_k}{\theta_k} \right) \right) + q_k \left(1 - \ln \left(\sum_i \theta_i \tau_{ik} \right) - \sum_i \frac{\varphi_i \tau_{ki}}{\sum_j \theta_j \tau_{kj}} \right) - \left(1 - \ln \left(\sum_i x_i \rho_{ik} \right) - \sum_i \frac{x_i \rho_{ki}}{\sum_j x_i \rho_{ji}} \right).$$

	*		
RE ³⁺	$c_{ij} = c_{ji}$	$b_{ij} = b_{ji}$	$c_{ij} = c_{ji}$
	H_2O-RE^{3+}	RE ³⁺ -	$-NO_3^-$
Y ³⁺	-2.49822	24.35075	-77.33070
La ³⁺	-2.33658	18.95212	-80.475570
Ce ³⁺	0	17.51729	-68.19000
Pr ³⁺	-3.52711	23.60510	-92.33609
Nd ³⁺	-3.80824	24.58369	-94.61446
Sm ³⁺	-0.28875	20.31439	-69.86688
Eu ³⁺	0	21.28268	-69.58433
Gd^{3+}	-1.45599	25.39504	-81.70711
Tb ³⁺	-2.49447	26.76369	-87.30551
Dy^{3+}	-2.64580	25.34267	-83.98603
Ho ³⁺	-2.52565	23.65161	-78.91915
Er ³⁺	-1.59695	20.86985	-67.93636
Tm ³⁺	0	17.04240	-52.56535
Yb ³⁺	2.40368	13.03395	-33.65642
Lu ³⁺	4.18675	10.23258	-20.01694

Таблица 6. Параметры модели eGLCM для бинарных системы вода—нитрат РЗЭ при 25°С [24]

Примечание. Для взаимодействия $H_2O-NO_3^-$: $c_{ij} = c_{ji} = 0$, $b_{ij} = b_{ji} = -4.80115$; для взаимодействия H_2O-RE^{3+} : $b_{ij} = b_{ji} = 0$. Количество значащих цифр параметров приведено с избытком, чтобы добиться воспроизводимости результатов расчетов. Погрешности параметров указаны в [24].

Свойства чистой воды были взяты из [35, 36], структурные параметры q и r — из [24] (табл. 5).

Определение параметров модели и расчеты фазовых диаграмм бинарных и многокомпонентных систем

Оптимизацию параметров модели eGLCM проводили методом наименьших квадратов с использованием алгоритма Левенберга—Марквардта [37], реализованного в программном пакете MATLAB[®] R2017a. Минимизировали сумму квадратов отклонений между экспериментальными и расчетными величинами. В общем виде целевая функция выглядела следующим образом:

$$\sum_{i=1}^{n} f_i^2 = \sum_{i=1}^{n} \left(\frac{x_i^{\text{reop}}(a) - x_i^{\text{эксп}}}{x_i^{\text{эксп}}} \right)^2,$$

где $x_i^{3\kappa cn}$ — экспериментальная величина, $x_i^{\text{теор}}$ — рассчитанная из модели, a — вектор параметров модели, n — число экспериментальных точек. Стандартную ошибку регрессии оценивали как:

$$\sigma^2 = \frac{1}{n-m} \sum_{i=1}^n f_i^2,$$

где *n* – число экспериментальных точек, *m* – число параметров модели.

Стандартные отклонения параметров модели затем рассчитывали по формуле:

$$s_{\beta}^{2} = \sigma^{2} \operatorname{diag}[(J^{\mathrm{T}}J)^{-1}]; \quad J_{ij} = \frac{\partial x_{i}^{\mathrm{reop}}(a)}{\partial a_{i}}$$

где diag – главная диагональ, *J* – матрица Якоби.

Бинарные системы вода – нитрат РЗЭ

Ранее в работе [24] были оптимизированы параметры среднедействующих взаимодействий *b*_{ij} и *c*_{ij} для температуры 25°С и комбинаций частиц

RE³⁺-H₂O, H₂O-NO₃⁻, RE³⁺-NO₃⁻ (табл. 6). В настоящей работе их использовали без изменения.

При расчетах равновесий твердое—жидкое процесс растворения кристаллогидрата нитрата РЗЭ представляли в виде реакции:

$$RE(NO_3)_3 \cdot nH_2O_{(s)} = RE_{(aq)}^{3+} + 3NO_{3(aq)}^{-} + nH_2O_{(liq)},$$

где (s) — твердая фаза, (liq) — жидкость, (aq) — водный раствор. Этой реакции соответствует следующая константа равновесия:

$$K = a_{\rm RE^{3+}} a_{\rm NO_3^{-}}^3 a_{\rm H_2O}^n \,.$$

Общепринято приводить свойства ионов относительно бесконечно разбавленного раствора, поэтому здесь $a_{\text{RE}^{3+}}$ и $a_{\text{NO}_3^-}$ – гипотетические активности иона РЗЭ и нитрата в асимметричной системе сравнения, $a_{\text{H}_2\text{O}}$ – активность воды в симметричной системе сравнения. Поскольку модель eGLCM по умолчанию оперирует симметричной системой сравнения, для определения активностей при бесконечном разбавлении ($\gamma_k \rightarrow 1$ при $x_k \rightarrow 0$) было использовано следующее выражение:

$$\ln \gamma_k^* = \ln \gamma_k - (\ln \gamma_k)_{x_k \to 0, x_{\text{HoO}} \to 1},$$

где γ_k^* — коэффициент активности *k*-го составляющего в асимметричной системе сравнения, γ_k — коэффициент активности *k*-го составляющего в симметричной системе сравнения, $(\gamma_k)_{x_k \to 0, x_{H_{20}} \to 1}$ — коэффициент активности в симметричной системе сравнения, при бесконечном разбавлении в воде составляющего *k*, т.е. при $x_k = 0$, $x_{H_{20}} = 1$.

Константы диссоциации кристаллогидратов солей описывали трехпараметрическими эмпирическими зависимостями вида:

$$\ln K = A + \frac{B}{T} + C \ln T,$$

где *А*, *В* и *С* – коэффициенты, определяемые методом наименьших квадратов на основе отклоне-

ний точек ликвидуса, измеренных экспериментально и рассчитанных по модели eGLCM.

В случае льда соответствующая константа равновесия была определена на основе известных параметров стабильности чистой воды:

$$-RT \ln K = \Delta_m G = \Delta_m H + \Delta_m C_p (T - T_m) - T\left(\frac{\Delta_m H}{T_m} + \Delta_m C_p \ln \frac{T}{T_m}\right),$$

где $\Delta_m H = 6010$ Дж/моль и $T_m = 273.15$ К — значения энтальпии и температуры плавления воды, $\Delta_m C_p = 38.21$ Дж/(моль К) — изменение теплоем-кости воды при температуре плавления [38].

Многокомпонентные системы

Согласно [13], из водных растворов двух и более нитратов РЗЭ осаждаются не чистые кристаллогидраты, а их твердые растворы. При этом в зависимости от сочетания, они могут быть либо непрерывными, либо ограниченными. Первые мы принимали идеальными, а для описания свойств остальных использовали модель Маргулеса. Для твердого раствора состава (RE1_xRE2_{1-x})(NO₃)₃ · $\cdot nH_2O$ энергия Гиббса выглядит следующим образом:

$$G = (1 - x)\Delta G_{s1} + x\Delta G_{s2} + + RT(x \ln x + (1 - x) \ln(1 - x)) + + x(1 - x)(g_0 + g_1x),$$

где G_{s1} и G_{s2} – параметры стабильности кристаллогидратов индивидуальных РЗЭ, n – количество воды в кристаллогидрате, x – мольные доли, g_0 и g_1 – параметры модели Маргулеса.

Параметр стабильности кристаллогидрата определяли как энергию Гиббса реакции диссоциации:

$$RE(NO_{3})_{3} \cdot nH_{2}O_{(s)} = RE_{(aq)}^{3+} + 3NO_{3(aq)}^{-} + nH_{2}O_{(liq)},$$
$$\Delta G_{s}^{0} = -RT \ln K = -RT(\ln a_{RE^{3+}} + 3\ln a_{NO_{3}^{-}} + n\ln a_{H_{2}O}),$$

где $a_{\text{RE}^{3+}}$, $a_{\text{NO}_3^-}$ и $a_{\text{H}_2\text{O}}$ – активности ионов РЗЭ и нитрата, а также воды.

Параметры модели Маргулеса рассчитывали, решая следующую систему уравнений с известными значениями температуры T, при которой изучали равновесия, и координат границ существования растворов x_{s1} и x_{s2} :

$$\begin{cases} RT \ln \frac{1-x_{s1}}{1-x_{s2}} = RT \ln \gamma_{1,s2} - RT \ln \gamma_{1,s1} = \\ = x_{s2}^2(g_0 - (2x_{s2} - 1)g_1) - x_{s1}^2(g_0 - (2x_{s1} - 1)g_1), \\ RT \ln \frac{x_{s1}}{x_{s2}} = RT \ln \gamma_{2,s2} - RT \ln \gamma_{2,s1} = \\ = (1-x_{s2})^2(g_0 + 2x_{s2}g_1) - (1-x_{s1})^2(g_0 + 2x_{s1}g_1) \end{cases}$$

Расчеты и построение сечений фазовых диаграмм проводили в программе TernAPI, разработанной в лаборатории химической термодинамики МГУ [39].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Двухкомпонентные системы

Оптимизация констант диссоциации кристаллогидратов РЗЭ была проведена на основе литературных данных по их растворимостям. Полученные параметры температурных зависимостей приведены в табл. 7. Значения констант при 25°С совпадают с указанными в [24]. Из рассмотрения исключены бинарные системы с Но, Тт и Lu, поскольку измерения при температурах, отличных от 25°С, для них отсутствуют. Далее остановимся более подробно лишь на тех системах, которые исследованы наиболее полно, а также входят в состав изученных многокомпонентных, т.е. содержащих Y, La, Pr, Nd и Sm [13–16] (рис. 1а–д).

Отметим, что нам удалось описать имеющиеся экспериментальные данные, введя температурную зависимость лишь для констант диссоциации кристаллогидратов РЗЭ, сохраняя при этом параметры b_{ij} и c_{ij} модели eGLCM постоянными. Поскольку экспериментально изучены лишь осмотические коэффициенты, теплоты разбавления и теплоемкости растворов при 25°С, мы посчитали избыточным введение температурной зависимости для b_{ij} и c_{ij} , которое приводило также к существенному увеличению числа оптимизируемых параметров.

Рассматривая линии кристаллизации льда, можно заметить, что практически во всех случаях расчетная кривая идет несколько круче экспериментальной. Введение температурной зависимости для b_{ij} и c_{ij} здесь также не приводило к видимым улучшениям. Мы связываем такое отклонение с особенностями метода дифференциального термического анализа, который использовали авторы [15–17]. В частности, отсутствие должных коррекций сигнала ДТА может приводить к завышенным результатам для температуры плавления из-за запаздывания измеряемого отклика системы. Тем не менее, для окончательного выяснения причин отклонений требуются дополнительные экспериментальные исследования.

Добавим, что для низших кристаллогидратов РЗЭ информации о растворимости практически

Таблица 7. Рассчитанные значения параметров стабильности кристаллогидратов РЗЭ ($\ln K = A + B/T + C \ln T$)

Кристаллогидраты	A	<i>B</i> /300	С
$Y(NO_3)_3 \cdot 6H_2O$	-318.2 ± 30	31.4 ± 4	49 ± 5
$Y(NO_3)_3 \cdot 5H_2O$	-104 ± 12	15 ± 2	15 ± 2
$Y(NO_3)_3 \cdot 4H_2O$	33 ± 8	-14 ± 2	-4 ± 1
$La(NO_3)_3 \cdot 6H_2O$	-321 ± 60	32 ± 9	50 ± 9
$La(NO_3)_3 \cdot 5H_2O$	2500 ± 500	372 ± 70	370 ± 70
$La(NO_3)_3 \cdot 4H_2O$	6 ± 1	25 ± 4	2 ± 0.2
$La(NO_3)_3 \cdot 3H_2O$	1 ± 0.2	8 ± 1	0.4 ± 0.03
$Ce(NO_3)_3 \cdot 6H_2O$	-389 ± 40	42 ± 5	60 ± 6
$Ce(NO_3)_3 \cdot 5H_2O$	-1212 ± 170	177 ± 27	181 ± 26
$Ce(NO_3)_3 \cdot 4H_2O$	-1757 ± 260	267 ± 40	181 ± 20
$Ce(NO_3)_3 \cdot H_2O$	-1633 ± 450	250 ± 80	243 ± 60
$Pr(NO_3)_3 \cdot 6H_2O$	-391 ± 40	41.7 ± 6	59 ± 6
$Pr(NO_3)_3 \cdot 5H_2O$	-497 ± 240	60.6 ± 40	75 ± 40
$Nd(NO_3)_3 \cdot 6H_2O$	-428 ± 40	46 ± 6	65 ± 6
$Nd(NO_3)_3 \cdot 5H_2O$	-1710 ± 270	242 ± 40	255 ± 40
$Sm(NO_3)_3 \cdot 6H_2O$	-437 ± 26	48.6 ± 4	67 ± 4
$Sm(NO_3)_3 \cdot 5H_2O$	-347 ± 180	35.9 ± 28	54 ± 26
$Eu(NO_3)_3 \cdot 6H_2O$	-487 ± 160	56 ± 22	75 ± 24
$Eu(NO_3)_3 \cdot 5H_2O$	-1361 ± 190	192 ± 30	204 ± 28
$Eu(NO_3)_3 \cdot 4H_2O$	-2530 ± 1000	400 ± 260	370 ± 130
$Gd(NO_3)_3 \cdot 6H_2O$	-417 ± 80	46 ± 12	64 ± 11
$Tb(NO_3)_3 \cdot 6H_2O$	-368 ± 80	40 ± 12	56 ± 12
$Dy(NO_3)_3 \cdot 6H_2O$	0	-16 ± 12	0
$Er(NO_3)_3 \cdot 5H_2O$	-317 ± 24	30 ± 3	50 ± 4
$Yb(NO_3)_3 \cdot 5H_2O$	-220 ± 90	17 ± 12	36 ± 16

Примечание. Количество значащих цифр параметров приведено с избытком. Из-за особенностей построения модели eGLCM они коррелируют между собой, и корректные округления могут приводить к значительному ухудшению описания экспериментальных данных.

Таблица 8. Рассчитанные параметры межчастичных взаимодействий модели eGLCM в трехкомпонентных системах H₂O-RE₁(NO₃)₃-RE₂(NO₃)₃

RE ₁	RE ₂	$b_{23} (\mathrm{RE}_1^{3+} - \mathrm{RE}_2^{3+})$
La	Er	-2.26938 ± 1.4
La	Nd	0
La	Pr	0
Nd	Er	-4.54651 ± 1.9
Pr	Er	-1.46467 ± 1.1
Pr	Nd	0
Y	La	-1.86966 ± 0.6
Y	Nd	0
Y	Er	0
Y	Pr	-0.81177 ± 0.5

Примечание. Количество значащих цифр параметров приведено с избытком.

нет, по-видимому, вследствие высоких температур, отвечающих этим равновесиям. В тех случаях, где известна растворимость в метастабильных состояниях, модель eGLCM с оптимизированными параметрами хорошо их предсказывает (пунктирные линии на рис. 1а–д).

Трехкомпонентные системы

Термодинамическую модель трехкомпонентных систем, содержащих воду и два нитрата РЗЭ (а именно Y, La, Pr, Nd, Er, Sm) строили на основе бинарных подсистем с использованием уже определенных параметров b_{ii} и c_{ii}. Оптимизацию параметров межчастичных взаимодействий RE₁³⁺-RE2³⁺ проводили на основе экспериментальных данных об активности воды. В случае H₂O- $H_2O-Er(NO_3)_3-La(NO_3)_3$ $Y(NO_3)_3$ -La $(NO_3)_3$, $H_2O-Nd(NO_3)_3-Er(NO_3)_3$, $H_2O-Pr(NO_3)_3-$ Er(NO₃)₃ и H₂O-Y(NO₃)₃-Pr(NO₃)₃ они оказались статистически значимыми и позволили лучше описать свойства растворов (рис. 2а,б). Скорее всего, необходимость их учета связана с сильным различием гидродинамических радиусов ионов RE³⁺ (а именно средних расстояний между ионом и центром ближайшей молекулы воды) [40].

В табл. 8 указаны оптимизированные значения параметров для всех изученных тройных систем. Во всех случаях $c_{23} = 0$, что можно интерпретировать как независимость межчастичных взаимодействий $RE_1^{3+} - RE_2^{3+}$ от ионной силы раствора. Отклонения результатов термодинамического моделирования и экспериментально измеренных значений активности воды приведены в табл. 9. Среднеквадратическая ошибка не превышает 0.25%, а в подавляющем большинстве случаев не выходит за пределы 0.09%.

На основе оптимизированных бинарных и тернарных значений параметров межчастичных взаимодействий были предсказаны совместные растворимости нитратов РЗЭ. Поскольку в литературе нет информации о фазовых равновесиях между низшими кристаллогидратами РЗЭ, в настоящей работе ограничились построением сечений фазовых диаграмм до ~70 мас.% солей. Результаты моделирования представлены на рис. 2. Значения параметров модели Маргулеса для неидеальных твердых растворов приведены в табл. 10. В остальных случаях можно наблюдать высокую предсказательную способность модели eGL-СМ с приближением идеального твердого раствонапример, в системе $H_2O-Pr(NO_3)_3$ pa, Nd(NO₃)₃ (рис. 2а).

Рис. 1. Результаты термодинамического моделирования бинарных систем $H_2O-RE(NO_3)_3$ (RE = Y, La, Pr, Nd, Sm). Символы – экспериментальные данные, линии – расчет.

Многокомпонентные системы

Для расчетов многокомпонентных систем использовали определенные на предыдущих этапах параметры модели, считая, что никаких взаимодействий более высокого порядка в растворах нескольких солей не наблюдается или ими можно пренебречь по сравнению с остальными. К сожалению, в литературе отсутствует информация о равновесиях жидкость—твердое для многокомпо-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

Рис. 2. Сечения фазовых диаграмм $H_2O-Pr(NO_3)_3-Nd(NO_3)_3$ (а) и $H_2O-La(NO_3)_3-Pr(NO_3)_3$ (б) при 20°С; символы – экспериментальные данные [13], сплошная линия – расчет; L – жидкий раствор, ss – непрерывный твердый раствор состава ($Pr_{l-x}Nd_x$)(NO_3)₃ · 6 H_2O , I и II – твердый раствор ($La_{1-x}Pr_x$)(NO_3)₃ · 6 H_2O , x > 0.91 и x < 0.45 соответственно.

нентных смесей нитратов РЗЭ. Зависимости активности воды от суммарной моляльности солей в *четырех- и пятикомпонентных* системах получа-

Таблица 9. Точность описания активности воды в растворах нитратов РЗЭ моделью eGLCM (δ – средне-квадратичная ошибка)

Система	δ, %
$H_2O-La(NO_3)_3-Er(NO_3)_3$ [26]	0.18
H ₂ O-La(NO ₃) ₃ -Nd(NO ₃) ₃ [25]	0.20
$H_2O-La(NO_3)_3-Pr(NO_3)_3$ [25]	0.09
$H_2O-Nd(NO_3)_3-Er(NO_3)_3$ [26]	0.25
$H_2O-Pr(NO_3)_3-Er(NO_3)_3$ [26]	0.16
$H_2O-Pr(NO_3)_3-Nd(NO_3)_3$ [25]	0.11
$H_2O-Y(NO_3)_3-La(NO_3)_3$ [25]	0.07
$H_2O-Y(NO_3)_3-Nd(NO_3)_3$ [25]	0.08
$H_2O-Y(NO_3)_3-Er(NO_3)_3$ [25]	0.05
$H_2O-Y(NO_3)_3-Pr(NO_3)_3$ [25]	0.06
$H_2O-Y(NO_3)_3-Pr(NO_3)_3-Nd(NO_3)_3$ [27]	0.08
$H_2O-Y(NO_3)_3-La(NO_3)_3-Pr(NO_3)_3$ [27]	0.08
$H_2O-Y(NO_3)_3-La(NO_3)_3-Nd(NO_3)_3$ [27]	0.09
$H_2O-Y(NO_3)_3-La(NO_3)_3-Er(NO_3)_3$ [26]	0.06
$H_2O-Y(NO_3)_3-Pr(NO_3)_3-Er(NO_3)_3$ [26]	0.05
$H_2O-Y(NO_3)_3-Nd(NO_3)_3-Er(NO_3)_3$ [26]	0.08
$H_2O-La(NO_3)_3-Nd(NO_3)_3-Er(NO_3)_3$ [28]	0.08
$H_2O-Pr(NO_3)_3-Nd(NO_3)_3-Er(NO_3)_3$ [28]	0.08
$H_2O-Y(NO_3)_3-La(NO_3)_3-Pr(NO_3)_3-$	0.08
Nd(NO ₃) ₃ [29]	

ется предсказать весьма хорошо, что свидетельствует о прогнозирующей способности и качестве построенной модели eGLCM. Как и ожидалось, при увеличении размерности системы точность описания ее свойств возрастает. Сравнение результатов моделирования с экспериментальными данными для всех изученных систем приведено в табл. 9. Среднеквадратическая ошибка не превышает 0.09%.

ЗАКЛЮЧЕНИЕ

Построенная в данной работе модель eGLCM для многокомпонентных растворов P3Э позволяет при достаточно небольшом наборе параметров рассчитывать с высокой точностью одновременно фазовые равновесия различных типов и свойства водных растворов нитратов P3Э от -30 до 120°C в пределах экспериментальных погрешностей. Использование параметров только бинарных взаимодействий позволяет расширять круг применимости модели eGLCM на системы, содержащие три и более P3Э. Для смесей нитратов P3Э с близкими размерами ионов в растворе параметрами взаимодействия $RE_1^{3+} - RE_2^{3+}$ можно пренебречь без потерь в точности термодинамического моделирования.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания "Химическая термодинамика и теоретическое материаловедение" (№ 121031300039-1) при частичной

Таблица 10. Параметры модели Маргулеса для твердых растворов в тройных системах $H_2O-La(NO_3)_3 - RE(NO_3)_3$

RE	g_0	g_1
Pr	1457	-5113
Nd	6391	-998
Sm	9116	-3653

финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 18-29-24167 мк).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Zhang J., Zhao B., Schreiner B.* Separation Hydrometallurgy of Rare Earth Elements. Cham: Springer, Cham, 2016.
- Rard J.A., Shiers L.E., Heiser D.J. et al. // J. Chem. Eng. Data. 1977. V. 22. № 3. P. 337.
- Rard J.A., Weber H.O., Spedding F.H. // Ibid. 1977. V. 22. № 2. P. 187.
- 4. Rard J.A. // Ibid. 1987. V. 32. № 1. P. 92.
- 5. Rard J.A. // Ibid. 1987. V. 32. № 3. P. 334.
- 6. *Rard J.A., Spedding F.H.* // Ibid. 1981. V. 26. № 4. P. 391.
- Libuś Z., Sadowska T., Trzaskowski J. // J. Chem. Thermodyn. 1979. V. 11. № 12. P. 1151.
- Ruas A., Simonin J.-P., Turq P. et al. // J. Phys. Chem. B. 2005. V. 109. № 48. P. 23043.
- Rard J.A., Spedding F.H. // J. Chem. Eng. Data. 1982. Vol. 27. № 4. P. 454.
- Rard J.A., Miller D.G., Spedding F.H. // Ibid. 1979.
 V. 24. № 4. P. 348.
- 11. Spedding F.H., Derer J.L., Mohs M.A. et al. // Ibid. 1976. V. 21. № 4. P. 474.
- 12. *Hakin A.W., Liu J.L., Erickson K. et al.* // J. Chem. Thermodyn. 2005. V. 37. № 2. P. 153.
- Scandium, Yttrium, Lanthanium and Lanthanide Nitrates (IUPAC Solubility Data Series, Vol. 13). 1st ed. Ed. by *Siekierski S., Salomon M., Mioduski T.* Pergamon Press, 1983.
- 14. Bouchet R., Tenu R., Counioux J. // Thermochim. Acta. 1994. V. 241. P. 229.
- Mironov K.E., Popov A.P. // Rev. Roum. Chim. 1966.
 V. 11. P. 1373.
- Popov A.P., Mironov K.E. // Ibid. 1968. V. 13. № 6. P. 765.

- 17. *Миронов К.Е., Попов А.П., Воробьева В.Я. и др. //* Журн. неорган. химии. 1971. Т. 16. № 10. С. 2769.
- Попов А.П., Миронов К.Е. // Там же. 1971. Т. 16. № 2. С. 464.
- Pérez-Villaseñor F., Bedolla-Hernández M.L., Iglesias-Silva G.A. // Ind. Eng. Chem. Res. 2007. V. 46. № 19. P. 6366.
- Guignot S., Lassin A., Christov C. et al. // J. Chem. Eng. Data. 2019. V. 64. № 1. P. 345.
- Chatterjee S., Campbell E.L., Neiner D. et al. // Ibid. J. Chem. Eng. Data. 2015. V. 60. № 10. P. 2974.
- 22. Moiseev A.E., Dzuban A.V., Gordeeva A.S. et al. // Ibid. 2016. V. 61. № 9. P. 3295.
- 23. Bromley L.A. // AIChE J. 1973. V. 19. № 2. P. 313.
- 24. Maksimov A.I., Kovalenko N.A., Uspenskaya I.A. // Calphad. 2019. V. 67. 101683.
- 25. *Wang Z.-C., He M., Wang J. et al.* // J. Solution Chem. 2006. V. 35. № 8. P. 1137.
- 26. He M., Dong L., Li B. // J. Chem. Eng. Data. 2011. V. 56. № 11. P. 4068.
- 27. *He M., Wang Z.-C.* // J. Sol. Chem. 2006. V. 35. № 12. P. 1607.
- 28. *Li B., He M.* // J. Chem. Eng. Data. 2012. V. 57. № 2. P. 513.
- He M., Wang Z.-C. // J. Sol. Chem. 2007. V. 36. № 11– 12. P. 1547.
- Здановский А.Б. // Труды соляной лаборатории. 1936. № 6. С. 5–70.
- Stokes R.H., Robinson R.A. // J. Phys. Chem. 1966. Vol. 70. № 7. P. 2126.
- Clegg S.L., Seinfeld J.H., Edney E.O. // J. Aerosol Sci. 2003. V. 34. № 6. P. 667.
- Clegg S.L., Seinfeld J.H. // J. Phys. Chem. A. 2004. V. 108. № 6. P. 1008.
- Maksimov A.I., Kovalenko N.A. // J. Chem. Eng. Data. 2016. V. 61. № 12. P. 4222.
- Wagner W., Pruβ A. // J. Phys. Chem. Ref. Data. 2002. Vol. 31. № 2. P. 387.
- 36. *Abrams D.S., Prausnitz J.M.* // AIChE J. 1975. V. 21. Nº 1. P. 116.
- Moré J.J. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis. Lecture Notes in Mathematics, V. 630. Ed. by Watson G.A. Springer, Berlin, Heidelberg, 1978. P. 105–116.
- CRC Handbook of Chemistry and Physics. 90th ed. Ed. by *Lide D.R.* CRC Press: Boca Raton, FL, 2009.
- 39. Voskov A.L., Dzuban A.V., Maksimov A.I. // Fluid Phase Equilib. 2015. V. 388. P. 50.
- 40. *Смирнов П.Р., Тростин В.Н.* // Журн. общ. химии. 2012. Т. 82. № 3. С. 366.