ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2021, том 95, № 12, с. 1917–1921

– ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 544.344.3

ИОННАЯ ЖИДКОСТЬ С ИМИДАЗОЛИНИЕВЫМ КАТИОНОМ – ЭФФЕКТИВНЫЙ РАЗДЕЛЯЮЩИЙ АГЕНТ ДВОЙНЫХ АЗЕОТРОПНЫХ СИСТЕМ

© 2021 г. А. Н. Евдокимов^{*a*,*}, А. В. Курзин^{*a*}, М. А. Феофанова^{*b*}, Ю. И. Софронова^{*b*}, В. Б. Франчук^{*c*}

^а Санкт-Петербургский государственный университет промышленных технологий и дизайна, Санкт-Петербург, Россия

^b Тверской государственный университет, Тверь, Россия ^c Российский научный центр "Прикладная химия", Санкт-Петербург, Россия *e-mail: eanchem@mail.ru Поступила в редакцию 08.03.2021 г. После доработки 07.05.2021 г. Принята к публикации 17.05.2021 г.

Одним из методов экстрактивной дистилляции — солевой ректификацией, при использовании ионной жидкости с имидазолиниевым катионом, разделены на компоненты двойные азеотропные системы метилацетат—метанол и этилацетат—этанол. В качестве имидазолиниевой соли использован бромид 1,3-диметил-2-фенилимидазолиния. Влияние органической соли на равновесие жидкость—пар и разрушение азеотропов в системах исследовано в модифицированном приборе Отмера при 101.3 кПа с использованием газохроматографического метода анализа. Установлено, что для разделения азеотропных систем метилацетат—метанол и этилацетат—этанол необходима концентрация бромида 1,3-диметил-2-фенилимидазолиния (в мольных долях) не менее 0.2 и 0.25 соответственно.

Ключевые слова: равновесие жидкость—пар, метилацетат—метанол, этилацетат—этанол, бромид 1,3диметил-2-фенилимидазолиния, двойные азеотропные системы, солевая ректификация **DOI:** 10.31857/S0044453721120086

Процессы экстрактивной дистилляции позволяют разделить неидеальные смеси, включая азеотропы с минимальной или максимальной температурой кипения, а также смеси с низкой относительной летучестью, например, системы, состоящие из целевых и побочных продуктов тонкого и основного органического синтеза [1]. Одним из видов экстрактивной дистилляции, в котором в качестве разделяющих агентов используются соли, является солевая ректификация [2]. Опубликованы многочисленные данные о влиянии неорганических солей на равновесие жидкость-пар в двойных и тройных азеотропных системах, в том числе для разрушения соответствующих азеотропов [2]. С начала 2000-х годов в лабораторной практике разделения азеотропных смесей экстрактивной дистилляцией наиболее часто стали использоваться имидазолиевые, пиридиниевые, пирролидиниевые и фосфониевые соли с различными анионами, относящиеся к так называемым "ионным жидкостям при комнатной температуре", при этом наиболее распространенными в применении яв-

1917

ляются имидазолиевые соли. Одними из продуктов органического синтеза является другой тип азотсодержащих гетероциклических соединений — производные имидазолина и его четвертичные соли — соли имидазолиния. Известно, что некоторые имидазолины и имидазолиниевые соли являются промышленными продуктами и широко используются в различных отраслях, например, в качестве ингибиторов кислотной коррозии, а также поверхностно-активных и антибактериальных веществ.

Ранее нами установлена возможность использования хлорида 1,3-бис (2,4,6-триметилфенил)имидазолиния ($T_{пл} = 283-284^{\circ}$ С), который не может быть отнесен к ионным жидкостям, для разделения двойной азеотропной системы ацетон-метанол [3]. Кроме того, нами также определены минимальные концентрации 1-гидроксиэтил-2-алкенил-2-имидазолина (на основе жирных кислот таллового масла) и его четвертичных солей – хлорида и тетрафторбората 1-гидроксиэтил-2-алкенил-3-бензил-2-ими дазолиния для разрушения азеотропов в системах ацетон-метанол, метилацетат-метанол, этилацетат-этанол и хлороформ-метанол [4].

Цель работы — изучение возможности применения имидазолиниевой соли, на примере бромида 1,3-диметил-2-фенилимидазолиния

для разделения двойных неводных азеотропных систем и определение минимальных концентраций этой соли для разрушения азеотропов. В качестве азеотропных смесей выбраны метилацетат—метанол и этилацетат—этанол, которые применяются в процессах основного и тонкого органического синтеза, а именно при получении компонентов указанных систем, при их исполь-

Таблица 1. Равновесие жидкость-пар в системе метилацетат (1)-метанол (2)-бромид 1,3-диметил-2-фенилимидазолиния (3) при 101.3 кПа

<i>x</i> ₃	x_{l}	y_1	<i>Т</i> , К	<i>x</i> ₃	x_{l}	y_1	<i>Т</i> , К
0	0.000	0.000	337.65	0.05	0.893	0.879	329.25
0	0.196	0.368	330.70	0.05	0.911	0.888	329.45
0	0.296	0.450	328.95	0.1	0.195	0.394	332.20
0	0.395	0.518	327.95	0.1	0.290	0.491	330.25
0	0.496	0.574	327.30	0.1	0.399	0.581	329.05
0	0.598	0.628	327.05	0.1	0.499	0.642	328.30
0	0.669	0.668	327.00	0.1	0.591	0.695	328.20
0	0.701	0.682	327.10	0.1	0.696	0.756	328.40
0	0.801	0.759	327.30	0.1	0.800	0.825	328.75
0	0.902	0.850	328.20	0.1	0.906	0.908	329.85
0	1.000	1.000	330.15	0.2	0.199	0.401	344.95
0.05	0.198	0.395	331.20	0.2	0.297	0.513	341.60
0.05	0.292	0.481	329.40	0.2	0.388	0.611	339.10
0.05	0.395	0.554	328.35	0.2	0.493	0.701	336.20
0.05	0.491	0.610	327.65	0.2	0.599	0.776	334.75
0.05	0.601	0.679	327.60	0.2	0.661	0.815	334.95
0.05	0.692	0.726	327.70	0.2	0.802	0.881	335.20
0.05	0.796	0.799	328.15	0.2	0.910	0.924	335.90

зовании в качестве реагентов и растворителей, либо образовании в качестве побочных продуктов, например, в синтезе поливинилового спирта. Неорганические соли и ионные жидкости с имидазолиевым катионом неоднократно использовались для разделения этих смесей [5-20]. Выбор в качестве разделяющего агента бромида 1.3-диметил-2-фенилимидазолиния объясняется тем, что его температура плавления, по данным [21], много меньше температуры используемой нами ранее имидазолиниевой соли – 1,3-бис(2,4,6-триметилфенил)имидазолиния для разделения азеотропной смеси ацетон-метанол [3], а также другим, не менее важным обстоятельством - доступностью реагентов и относительной простотой его синтеза [21].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Абсолютизацию растворителей проводили по стандартным техникам [22]: этилацетат ("ч.д.а.", 99.5%) и метилацетат ("х.ч.", 99.9%) перегоняли над P₂O₅, а метанол ("х.ч.", 99.6%) и этанол ("х.ч.", 96%) сушили кипячением в присутствии магния и йода. После абсолютизации растворители хранили над молекулярными ситами ЗА. Синтез имидазолиниевой соли осуществляли по методу, опубликованному в [21]. На первой стадии из *N*,*N*-диметилэтилендиамина и бензальдегида был синтезирован 1,3-диметил-2-фенилимидазолидин, из которого, на второй стадии, окислением *N*-бромсукцинимидом в глиме, получен бромид 1,3-диметил-2-фенилимидазолиния, который представлял собой жидкость – масло с желтоватым оттенком (как и в [21] при содержании воды 0.13%). Структура и чистота синтезированной имидазолиниевой соли доказана методом ¹Н ЯМР-спектроскопии (спектр ЯМР ¹Н, δ, м. д.: 7.25–7.35 м (5Н, Н_{Аг}), 4.35 с (4Н, СН₂), 3.1 с (6Н, СН₃)), а также элементным анализом (Найдено, %: С 51.69; Н 6.04; N 31.26. С₁₁Н₁₅N₂Вг. Вычислено, %: С 51.78; Н 5.93; N 31.32; Вг 10.98). Спектр ЯМР ¹Н зарегистрирован на приборе Bruker Avance DRX500 (500 МГц) в растворе CDCl₃. Имидазолиниевую соль перед использованием сушили в вакууме в течение 24 ч при температуре 343.15 К. Содержание воды в растворителях (менее 0.1%) и бромиде 1,3-диметил-2-фенилимидазолиния (менее 0.06%) определяли титрованием по методу Карла Фишера. Составы исследуемых тройных систем готовили весовым методом, как показано нами для ранее изученной смеси ацетон-метанол-хлорид 1,3-бис(2,4,6-триметилфенил)имидазолиния [3]. Влияние имидазолиниевой соли на парожидкостное равновесие и разрушение азеотропов в рассматриваемых системах исследовано при 101.3 кПа в модифицированном приборе Отмера, использованном нами ранее

Таблица 2. Равновесие жидкость-пар в системе этилацетат (1)-этанол (2)-бромид 1,3-диметил-2-фенилимидазолиния (3) при 101.3 кПа

<i>x</i> ₃	x_1'	<i>y</i> ₁	<i>Т</i> , К	<i>x</i> ₃	x'i	<i>y</i> ₁	<i>Т</i> , К
0	0.000	0.000	351.45	0.20	0.142	0.309	349.25
0	0.150	0.247	347.45	0.20	0.253	0.437	347.40
0	0.251	0.375	346.15	0.20	0.348	0.508	346.25
0	0.349	0.445	345.55	0.20	0.444	0.572	346.35
0	0.450	0.499	345.10	0.20	0.543	0.627	346.30
0	0.547	0.549	344.95	0.20	0.656	0.679	346.80
0	0.650	0.605	345.15	0.20	0.739	0.735	347.20
0	0.741	0.665	345.60	0.20	0.844	0.825	347.85
0	0.850	0.773	346.80	0.20	0.951	0.936	348.15
0	0.949	0.907	348.75	0.25	0.147	0.359	352.75
0.05	0.144	0.289	348.25	0.25	0.257	0.495	350.35
0.05	0.247	0.410	347.00	0.25	0.351	0.577	348.60
0.05	0.353	0.489	345.80	0.25	0.454	0.644	348.55
0.05	0.452	0.549	345.75	0.25	0.541	0.682	348.90
0.05	0.545	0.597	345.80	0.25	0.649	0.731	349.20
0.05	0.652	0.655	345.95	0.25	0.742	0.786	349.90
0.05	0.736	0.692	346.70	0.25	0.856	0.878	350.40
0.05	0.845	0.785	347.05	0.25	0.956	0.958	351.75
0.05	0.956	0.923	348.00				

при изучении равновесия жидкость—пар и при определении давления пара в двойных и тройных системах, содержащих нитрат тетрабутиламмония [23], хлорид 1,3-бис(2,4,6-триметилфенил)имидазолиния [3], а также 1-гидроксиэтил-2-алкенил-2-имидазолин и его четвертичные соли [4]. Мольные доли растворителей в газовой и жидкой фазах определяли с помощью газовой хроматографии (объем пробы пара 0.5 мкл) на хроматографе Agilent 7890A (условия: пламенноионизационный детектор, капиллярная колонка DB-WAX (30 м \times 0.25 мм $\times \times$ 0.25 мкм); газ-носитель — аргон, скорость потока 30 см³/мин). Калибровку газового хроматографа проводили по приготовленным гравиметрически смесям растворителей.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и 2 и на рис. 1 и 2 приведены экспериментальные данные о парожидкостном равновесии в тройных системах бромид 1,3-диметил-2-фенилимидазолиния—метилацетат—метанол и бромид 1,3-диметил-2-фенилимидазолиния этилацетат—этанол.

Установлено, что для разделения азеотропных систем метилацетат-метанол и этилацетат-этанол необходима концентрация бромида 1,3-диметил-2-фенилимидазолиния (в мольных долях) не менее 0.2 и 0.25, соответственно. В табл. 3 для сравнения приведены также литературные данные о минимальных концентрациях ионных жилкостей на основе имидазолиевых солей для разрушения азеотропов в исследуемых системах. Из данных табл. 3 видно, что бромид 1,3-диметил-2-фенилимидазолиния показал большую эффективность разделения рассматриваемых азеотропных систем на компоненты по сравнению с некоторыми имидазолиевыми солями (с точки зрения минимальной концентрации соли для разрушения азеотропов). Как правило, эффективность разделения

Рис. 1. Равновесие жидкость-пар в системе метилацетат (1)-метанол (2)-бромид 1,3-диметил-2-фенилимидазолиния (3) при 101.3 кПа: - \blacklozenge -, $x_3 = 0; -\bigcirc$ -, $x_3 = 0.05; -+-, x_3 = 0.1; -<math>\blacksquare$ -, $x_3 = 0.2$. Мольная доля метилацетата (x'_1) в пересчете на бессолевую основу.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 12 2021

Рис. 2. Равновесие жидкость—пар в системе этилацетат (1)—этанол (2)—бромид 1,3-диметил-2-фенилимидазолиния (3) при 101.3 кПа: - ϕ -, $x_3 = 0$; - \bigcirc -, $x_3 = 0.05$; -+-, $x_3 = 0.2$; - \blacksquare -, $x_3 = 0.25$. Мольная доля этилацетата (x'_1) в пересчете на бессолевую основу.

объясняется не столько размерами катиона и аниона разделяющего агента, сколько сродством к одному из компонентов азеотропной смеси, высаливающим эффектом (в данном случае по отношению к метилацетату и этилацетату), а также преимущественным образованием за счет водородных связей соответствующих комплексов на основе сольватированных ионов разделяющего агента со спиртом, а не с высаливаемым компонентом азеотропной смеси [5, 12, 17]. Таким образом, впервые для разделения компонентов азеотропных смесей метилацетат—метанол и этилацетат—этанол был использован бромид 1,3-диметил-2-фенилимидазолиния.

	Азеотропная смесь			
Ионная жидкость (разделяющий агент)	EtOAc – EtOH	MeOAc –MeOH		
	Мольная доля ионной жидкости			
Бис(трифторметилсульфонил)имид 1-этил-3-метилимидазолия	0.5 [13]			
Бис(трифторметилсульфонил)имид 1-гексил-3-метилимидазолия	0.5 [13]			
Бис(трифторметилсульфонил)имид 1,2-диметил-3-октилимидазолия		>0.4 [9]		
Бис(трифторметилсульфонил)имид 1-метил-3-октилимидазолия		>0.4 [9]		
Диметилфосфат 1,3-диметилимидазолия		0.034 [8]		
Диэтилфосфат 1-этил-3-метилимидазолия		0.039 [8]		
Дибутилфосфат 1-бутил-3-метилимидазолия		0.041 [8]		
Ацетат 1-этил-3-метилимидазолия	>0.1 [14]	>0.087 [10]		
Трифторметансульфонат 1-этил-3-метилимидазолия	>0.20 [16]	>0.129 [7]		
Гексафторфосфат 1-октил-3-метилимидазолия		>0.28 [12]		
Бромид 1,3-диметил-2-фенилимидазолиния	0.25	0.2		

Таблица 3. Минимальные концентрации некоторых ионных жидкостей с имидазолиевыми и имидазолиниевым катионами для разрушения азеотропных смесей этилацетат-этанол и метилацетат-метанол

СПИСОК ЛИТЕРАТУРЫ

- 1. Gerbaud V., Rodriguez-Donis I., Hegely L. et al. // Chem. Eng. Res. Des. 2019. V. 141. P. 229. https://doi.org/10.1016/j.cherd.2018.09.020
- 2. Ципарис И.Н., Добросердов Л.Л., Коган В.Б. Солевая ректификация. Л.: Химия, 1969. 164 с.
- Евдокимов А.Н., Курзин А.В., Феофанова М.А. и др. // Журн. физ. химии. 2021. Т. 95. № 6. С. 958.
- Феофанова М.А., Софронова Ю.И., Евдокимов А.Н., Курзин А.В. // Вестн. ТвГУ. Сер.: Химия. 2020. № 4. С. 63.
- Dhanalakshmi J., Sai P.S.T., Balakrishnan A.R. // J. Chem. Eng. Data. 2013. V. 58. № 3. P. 560. https://doi.org/10.1021/je300886k
- Dhanalakshmi J., Sai P.S.T., Balakrishnan A.R. // Fluid Phase Equilib. 2014. V. 379. P. 112. https://doi.org/10.1016/j.fluid.2014.07.005
- Orchilles A.V., Miguel P.J., Vercher E., Martinez-Andreu A. // J. Chem. Eng. Data. 2007. V. 52. № 3. P. 915. https://doi.org/10.1021/je600518s
- Cao J., Yu G., Chen X. et al. // J. Chem. Eng. Data. 2017. V. 62. № 2. P. 816. https://doi.org/10.1021/acs.jced.6b00852
- 9. *Shang W., Cui X., Yu X. et al.* // Fluid Phase Equilib. 2018. V. 473. P. 90.
- https://doi.org/10.1016/j.fluid.2018.05.031
 10. Cai J., Cui X., Zhang Y. et al. // J. Chem. Eng. Data. 2011. V. 56. № 2. P. 282.
- https://doi.org/10.1021/je100932m
- 11. Winnert J.M., Janakey Devi V.K.P., Brennecke J.F. // Ind. Eng. Chem. Res. 2019. V. 58. № 50. P. 22633. https://doi.org/10.1021/acs.iecr.9b05760
- Cai J., Cui X., Zhang Y. et al. // J. Chem. Eng. Data. 2011. V. 56. № 6. P. 2884. https://doi.org/10.1021/je2000588

- 13. Andreatta A.A., Charnley M.P., Brennecke J.F. // ACS Sustainable Chem. Eng. 2015. V. 3. № 12. P. 3435. https://doi.org/10.1021/acssuschemeng.5b01175
- Li R., Cui X., Zhang Y. et al. // J. Chem. Eng. Data. 2012. V. 57. № 3. P. 911. https://doi.org/10.1021/je200869q
- 15. Xu Y., Li T., Peng C., Liu H. // Ind. Eng. Chem. Res. 2015. V. 54. № 36. P. 9038. https://doi.org/10.1021/acs.jecr.5b01325
- 16. Orchilles A.V., Miguel P.J., Vercher E., Martinez-Andreu A. // J. Chem. Eng. Data. 2007. V. 52. № 6. P. 2325. https://doi.org/10.1021/je700322p
- Dhanalakshmi J., Sai P.S.T., Balakrishnan A.R. // Ind. Eng. Chem. Res. 2013. V. 52. № 46. P. 16396. https://doi.org/10.1021/ie402854k
- Li Q., Zhang J., Lei Z. et al. // J. Chem. Eng. Data. 2009. V. 54. № 2. P. 193. https://doi.org/10.1021/je800175s
- Li Q., Zhang J., Lei Z. et al. // Ind. Eng. Chem. Res. 2009. V. 48. № 19. P. 9006. https://doi.org/10.1021/ie8017127
- Zhang Z., Wu K., Zhang Q. et al. // Fluid Phase Equilib. 2017. V. 454. P. 91. https://doi.org/10.1016/j.fluid.2017.09.016
- Jurcik V., Wilhelm R. // Green Chem. 2005. V. 7. № 12. P. 844. https://doi.org/10.1039/b511062a
- Гордон А., Форд Р. Спутник химика. Физико-химические свойства, методики, библиография. М.: Мир, 1976. 541 с. [А. J. Gordon and R. A. Ford, *The Chemist's Companion: A Handbook of Practical Data, Techniques, and References* (Wiley, New York, 1972)].
- Kurzin A.V., Evdokimov A.N., Antipina V.B. et al. // J. Chem. Eng. Data. 2008. V. 53. № 1. P. 207. https://doi.org/10.1021/je700512a