= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 547.853: 547.791:544.362

КИСЛОТНО-ОСНОВНОЕ РАВНОВЕСИЕ НОВОГО ЗАМЕЩЕННОГО 1,2,3-ТРИАЗОЛЬНЫМ ФРАГМЕНТОМ ПРОИЗВОДНОГО 6-МЕТИЛУРАЦИЛА В ВОДНЫХ РАСТВОРАХ

© 2021 г. А. А. Ахияров^{*a*}, Л. М. Губайдуллина^{*b*}, Л. Ф. Сайфина^{*b*}, В. Э. Семенов^{*b*}, Л. А. Рамазанова^{*c*}, А. Н. Лобов^{*a*}, И. С. Файзрахманов^{*c*}, И. Е. Алехина^{*c*}, С. П. Иванов^{*a*,*}

^a Российская академия наук, Уфимский федеральный исследовательский центр, Уфимский институт химии, Уфа, Россия ^b Российская академия наук, Казанский научный центр, Институт органической и физической химии им. А.Е. Арбузова, г. Казань, Россия ^c Башкирский государственный университет, г. Уфа, Россия *e-mail: ivanov_sp@anrb.ru Поступила в редакцию 09.04.2020 г. После доработки 09.04.2020 г. Принята к публикации 26.05.2020 г.

Методом потенциометрического титрования определены константы и термодинамические характеристики кислотно-основного равновесия синтезированного впервые производного 6-метилурацила, несущего при C(5) урацилового кольца 1,2,3-триазольный цикл – 5-(1-пентил-4-метил-1,2,3триазол-4-ил)-6-метилурацила (1) и его модельного соединения – 5,6-диметилурацила в водных растворах. Показано, что 1,2,3-триазольный цикл существенно не влияет на кислотно-основные свойства урацильного фрагмента в составе соединения 1. Предположены места депротонирования соединения 1 в водных щелочных растворах и растворах в ДМСО. Структура соединения 1 доказана методами ЯМР- и ИК-спектроскопии, элементного анализа.

Ключевые слова: 6-метилурацил, 1,2,3-триазолы, 5,6-диметилурацил, кислотно-основное равновесие, р*К* **DOI:** 10.31857/S0044453721020035

Известно, что в щелочных водных растворах производные урацила выступают как слабые двухосновные кислоты [1]. В зависимости от природы заместителей в положениях 5 и 6 пиримидинового кольца, диссоциация может происходить как от азота N(1), так и N(3) [2].

Диссоциацию по первой ступени можно представить следующими равновесиями:

если отрывается протон от N(1) или

при диссоциации по N(3) положению.

Термодинамической характеристикой равновесий (1) и (2) является константа диссоциации pK_{a1} . Для 5- и 6-замещенных производных урацила величины pK_{a1} в водных растворах при 298 К составляют от 5.3 у 5-нитроурацила [3] до 9.8 у тимина [4]. Наиболее распространенными экспериментальными методами определения pK_a производных урацила в растворах являются спектрофотометрия (СФ) и потенциометрическое титрование (ПТ). В последние десятилетия также эффективно применяются квантово-химические методы расчета pK_a [1, 2].

Часто в щелочных водных растворах диссоциация наблюдается одновременно как от азота N(1), так и N(3). Например, для 5-галогенурацилов методами ЯМР-спектроскопии было показано, что в щелочной водной среде одновременно существуют анионы с отрывом протона от N1(AN(1)) и N3 (AN(3)) [5, 6]. Мольное соотношение AN(1): AN(3) в водных щелочных растворах составляет 0.35: 0.65 для 5-фторурацила [5] и

Схема 1.

0.72: 0.28 для 5-бромурацила [6]. При этом в щелочных диметилсульфоксидных растворах существует только форма AN(1) для всех исследованных 5-галогенурацилов [5, 6].

1,2,3-Триазольный цикл обладает высокой химической устойчивостью (инертность к окислению, восстановлению, гидролизу), ароматическим характером, высоким дипольным моментом. способностью выступать в качестве акцептора при образовании водородных связей [7]. В свою очередь урациловый цикл способен выступать и как донор, и как акцептор при образовании водородных связей, участвовать в $\pi - \pi$ контактах. Ковалентное связывание урацилового и 1,2,3-триазольного циклов в единую структуру, и в частности, в соединение 1 представляется перспективным в плане создания нового мотива, несущего нуклеотидное основание, и который может быть использован в создании новых супрамолекулярных систем, а также новых комплексообразователей. Механизм комплексообразования зависит, в большинстве случаев, от кислотно-основных свойств исходных лигандов в используемых растворителях.

В данной работе синтезирован 5-(1-пентил-4метил-1,2,3-триазол-4-ил)-6-метилурацил (1) и изучено его кислотно-основное равновесие в воде методами УФ- и ЯМР-спектроскопии и потенциометрического титрования, исследовано влияние триазольного заместителя на р K_a урацилового фрагмента с использованием модельных соединений – 6-MeU и 5,6-diMeU.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты ЯМР (¹H, ¹³C, δ , м.д., *J*, Гц) соединения (1) проводились на фурье-спектрометре AVANCE-500 (Bruker) с рабочей частотой 500.13 МГц (¹H) и 125.77 МГц (¹³C) при температуре 30°С, внешний стандарт тетраметилсилан. ИК-спектры соединений (v_{max}, см⁻¹) записаны в таблетке в КВг на фурье-спектрометре Vector 22 (Bruker) при стандартных условиях в диапазоне 4000–400 см⁻¹ при разрешении 4 см⁻¹. Элементный анализ проводили на C, H, N-анализаторе EA3000 (EuroVector). Производное урацила 1:

где R = H - 6-метилурацил (6-MeU)

$$R = \sqrt{N=N}_{N-C_5H_{11}} - 5$$
-(1-пентил-4-метил-

синтезировали в условиях реакции диполярного 1,3-циклоприсоединения Хьюсгена-Мельдаля-Шарплесса (CuAAC) производного урацила 2 с диазидом 3 (*схема 1*). В условиях этой реакции специфично образуются 1,4-дизамещенные 1,2,3триазолы [8–10]. Поскольку производное урацила 2 и целевой продукт 1 имеют весьма ограниченную растворимость, реакцию проводили в ДМСО.

(5-(1-Пентил-4-метил-1,2,3-триазол-4-ил)-6метил-1,2,3,4-тетрагидропиримидин-2,4-дион (1)) К раствору 1 г (6.5 ммоль) 5-пропаргил-6-метилурацила (2) [11] в 30.0 мл ДМСО добавляли раствор 0.90 г (3.6 ммоль) н-пентилазида (3) [12], 0.24 г (1.20 ммоль) аскорбата натрия и 0.90 г (8.0 ммоль) пентагидрата сульфата меди в 3.0 мл воды. Реакционную смесь перемешивали при комнатной температуре 16 ч. В раствор добавляли 30.0 мл воды, выпавший осадок отфильтровывали, промывали водой, сушили на воздухе. Выход составил 1.41 г (78%). Порошок кремового цвета, т. пл. 223°С. ИК-спектр, v, см⁻¹: 3044, 2952, 2862, 1703, 1679, 1652, 1454, 1416, 1324, 1219, 1049, 848, 798, 758, 536. Спектр ЯМР ¹Н (ДМСО-d₆), δ, м.д. (J, Гц): 10.05, 10.81 оба с (по 1H, $N_{yp}^{1}H$, $N_{yp}^{3}H$), 7.77 с (1H, C^{5'}_{тр}H), 4.26 т (2H, 2N¹_{тр}CH₂, ³J_{HH} 7.0), 3.61 с (2H, $2C_{rp}^{4}CH_{2}C_{yp}^{5}$), 2.13 c (3H, $C_{yp}^{6}CH_{3}$), 1.80–1.72 m (2H, CH₂), 1.37–1.04 m (4H, 2CH₂), 0.84 T (3H, СН₃, ³*J*_{НН} 7.1). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м.д.: 164.3, 150.8, 149.6, 145.7, 122.2, 106.8, 49.2, 29.2, 27.9, 21.4, 20.3, 16.2, 13.7. Спектр ЯМР ¹⁵N

(ДМСО-d₆), δ, м.д.: 137.06, 155.30, 250.34, 359.82. Найдено, %: С 56.26; Н 6.93; N 25.36. С₁₃Н₁₉N₅O₂. Вычислено, %: С 56.30; Н 6.91; N 25.25.

В работе использовались коммерчески доступные соединения без дополнительной очистки.

Величины р*K*_{a1} определяли по стандартной методике [13] методом потенциометрического титрования (ПТ) в одногорлом термостатируемом реакторе объемом 25 мл с обратным холодильником при четырех температурах: 20, 25, 35 и 45°С. Температуру поддерживали с точностью ±0.1°С термостатом LOIP LT-205. Титрование проводили на pH-метре pH-150MИ с использованием комбинированного стеклянного электрода ЭСК-10307. Калибровку электрода проводили с помощью стандартных буферных растворов. Для поддержания постоянной ионной силы в титруемом растворе использовали 0.1 М раствор KNO₃. В качестве растворителя применяли свежеперегнанную бидистиллированную воду. Концентрацию свежеприготовленного раствора КОН устанавливали титрованием раствором 0.01 M HCl с индикатором фенолфталеином.

Также были определены величины р K_{a1} спектрофотометрическим методом (СФ) по методике [13]. УФ-спектры регистрировали на спектрофотометре Shimadzu UV-1800 в диапазоне длин волн 200–350 нм. Раствором сравнения служила вода. Использовали кварцевые кюветы с толщиной поглощающего слоя 1 см. Для поддержания постоянного значения рН использовали буферную систему в диапазоне 5.8–9.2 (КН₂PO₄–Na₂B₄O₇) и 9.2–11.0 (Na₂B₄O₇–NaOH) в соответствующих соотношениях. Концентрация полученных растворов составляет 5.0 × 10⁻⁵ моль/л.

В связи с малой растворимостью **1** в воде, для потенциометрического титрования готовили его растворы с концентрацией 0.01 моль/л следующим образом: навеску соединения **1** массой 0.1454 г помещали в мерную колбу объемом 500 мл, добавляли 25 мл ацетонитрила, после полного растворения добавляли навеску KNO₃ массой 5.0539 г и доводили до метки дистиллированной водой. Доля ацетонитрила в полученном растворе составляла 5%. Растворы 6-МеU и 5,6-diMeU готовили аналогично растворением навесок соответствующих соединений в воде без добавления ацетонитрила.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

С целью изучения влияния pH на кислотноосновное равновесие 1, 6-MeU и 5,6-diMeU в растворах записывали УФ-спектры их водных растворов при различных pH (рис. 1).

Как видно из рис. 1 в УФ-спектрах всех трех соединений в кислой и нейтральной среде на-

блюдаются максимумы поглощения в близких областях и примерно одинаковой интенсивности: 260 нм ($\epsilon = 9980$ л моль⁻¹ см⁻¹) у 6-MeU, 268 нм $(\varepsilon = 9702 \text{ л моль}^{-1} \text{ см}^{-1}) \text{ у 5,6-diMeU и 266 нм } (\varepsilon =$ = 8575 л моль⁻¹ см⁻¹) у **1**, обусловленный поглощением сопряженной группы -C₆=C₅-C₄=O урацильного фрагмента. При увеличении рН более 9.0 наблюдается батохромное смещение максимумов данных полос поглощения примерно на 17-20 нм. Аналогичные изменения в УФ-спектрах при увеличении рН водных растворов наблюдаются у урацила [14], тимина [15] и большинства других 5- и (или) 6-замещенных производных урацила [16]. Наличие триазольного кольца не влияет на спектр поглощения, о чем свидетельствуют спектры модельных соединений 6-MeU (рис. 1а) и 5,6-diMeU (рис. 1б) в водных растворах при различных рН. Такие изменения, по мнению [17], обусловлены смещением кислотно-основного равновесия в сторону образования анионной формы:

$$H_2U + OH^- \rightarrow HU^- + H_2O. \tag{3}$$

Методом потенциометрического титрования определены константы и термодинамические характеристики кислотно-основного равновесия (3) вещества 1, а также 6-MeU и 5,6-diMeU в качестве соединений сравнения в водных растворах (табл. 1).

Значения р K_{a1} , полученные нами, хорошо согласуются с приведенными в литературных источниках значениями (9.68 [18] и 9.45 [19] при 25°С для 6-MeU) и 9.8 для 5,6-diMeU [20].

Также значения pK_{a1} были получены спектрофотометрическим методом. Как видно из результатов (табл. 1), значения pK_a , полученные спектрофотометрически при 25°С для 6-MeU и 5,6-di-MeU, хорошо согласуются со значениями, полученными методом потенциометрического титрования. Различия, в значениях, полученных двумя методами для 1 можно объяснить наличием небольшого количества ацетонитрила в исходном растворе при потенциометрическом титровании при определении pK_a .

Присутствие в молекуле 6-метилурацила 1-пентил-4-метил-1,2,3-триазол-4-илного заместителя у пятого углеродного атома приводит к увеличению р K_a примерно на 0.5 единицы по сравнению с 6-метилурацилом, причем термодинамические характеристики кислотно-основного равновесия обоих веществ имеют близкие значения. Влияние 1,2,3-триазольного цикла на величину р K_{a1} не существенно, о чем свидетельствуют константы и термодинамические характеристики кислотно-основного равновесия 5,6-diMeU (табл. 1).

Рис. 1. УФ-спектры 6-метилурацила (а), 5,6-диметилурацила (б) и 5-(1-пентил-4-метил-1,2,3-триазол-4-ил)-6-метилурацила (в) в водных растворах при различных рН.

С целью изучения структурных изменений **1** в щелочных растворах были записаны ЯМР-спектры **1** и образца **1** + КОН в диметилсульфоксидных и водно-диметилсульфоксидных растворах

(табл. 2). Отнесение сигналов произведено на основании корреляционных спектров.

При добавлении к раствору 1 гидроксида калия в мольном соотношении 1:1 в диметилсуль-

Соединение	<i>T</i> , °C	p <i>K</i> _{a1}		ΔG^{298} ,	ΔH ,	ΔS^{298} ,
		(ПT)	(CФ)	кДж/моль	кДж/моль	Дж/(моль К)
6-MeU	15	9.85 ± 0.04		55.0 ± 0.2	13.3 ± 0.4	-140 ± 1
	25	9.65 ± 0.03	9.53 ± 0.05			
	35	9.62 ± 0.03				
	45	9.61 ± 0.03				
5,6-diMeU	15	10.33 ± 0.04		58.5 ± 0.2	11.6 ± 0.3	-158 ± 1
	25	10.26 ± 0.03	10.28 ± 0.11			
	35	10.20 ± 0.04				
	45	10.13 ± 0.03				
1	15	10.14 ± 0.07		57.5 ± 0.9	12.9 ± 0.4	-150 ± 2
	25	10.09 ± 0.07	9.59 ± 0.10			
	35	9.98 ± 0.05				
	45	9.93 ± 0.05				

Таблица 1. Константы диссоциации и термодинамические характеристики кислотно-основного равновесия 6-MeU, 5,6-diMeU и **1** в водных растворах (0.1M KNO₃)

фоксидных растворах наблюдается существенное смещение сигналов углерода С(2), С(6), С(7) и N(1) (нумерацию атомов см. схему 2) в слабое поле относительно спектра исходного 1. Смещение сигналов углеродов пентильного радикала практически не наблюдается. Подобные изменения в спектрах ЯМР наблюдаются в щелочных диметилсульфоксидных растворах 5-галогенурацилов и, вероятно, обусловлены образованием анионной формы AN(1) [5, 6]. В ЯМР-спектрах щелочных водно-диметилсульфоксидных растворов 1 наблюдается похожая картина, что и в диметилсульфоксидных. При этом, более выражено смещение в слабое поле сигналов атомов С(4), С(5) и N(1), что может свидетельствовать о содержании в шелочных водно-диметилсульфоксидных растворах 1 кроме основного AN(1), некоторого количества аниона AN(3). К сожалению, из-за плохой растворимости соединения 1 в воде, нам не удалось растворить в чистом D₂O достаточного количества 1 для записи ЯМР-спектров исходного соединения до добавления КОН.

Несмотря на это, полученные методом ЯМРспектроскопии данные свидетельствуют, видимо, о преимущественном образовании анионной формы с отрывом протона от азота N(1) пиримидинового кольца в щелочных растворах **1** в воде и диметилсульфоксиде (схема 2).

Таким образом, синтезировано новое производное урацила, несущее при C(5) урацилового цикла 1,2,3-триазольный цикл, и доказана его структура различными физико-химическими методами. Определены константы и термодинамические характеристики кислотно-основного равновесия синтезированного соединения и модельного соединения — 5,6-diMeU в водных растворах. Показано, что 1,2,3-триазольный цикл существенно не влияет на кислотно-основные свойства урацильного фрагмента в составе целевого соединения.

Исходя из полученных результатов можно предположить координацию соединения $\mathbf{1}$ с *d*-металлами через азот N(1) урацильного фрагмента. При этом, наличие атомов азота в триазольном кольце, а также три ненасыщенных связи, пространственно близко расположенных относительно атома N(1) пиримидинового фрагмента, выделяют соединение $\mathbf{1}$ как перспективный лиганд при взаимодействии с ионами *d*- и *f*-металлов. Присутствие в данном соединении пентильной группы способствует увеличению его растворимости, по сравнению с другими урацилами и 1,2,3-триазолами, в менее полярных, чем вода и диметилсульфоксид, растворителях, что, без-

аблица 2. Данные спектров ЯМР (м.д.) 5-(1-пентил-
-метил-1,2,3-триазол-4-ил)-6-метилурацила в диме-
илсульфоксидных и водно-диметилсульфоксидных
астворах

_			_		
	ДМСО- <i>d</i>	ДМСО- <i>d</i> ₆ + + D ₂ O (1 : 1)			
δ	δ	Δδ	δ	Δδ	
1	1 + KO	H (1 : 1)	1 + KOH (1 : 1)		
150.84	158.15	7.31	160.72	9.88	
164.25	166.48	2.23	171.13	6.88	
106.84	103.36	-3.48	108.48	1.64	
149.55	161.15	11.6	161.74	12.19	
16.15	20.71	4.56	21.45	5.3	
20.31	21.24	0.93	23.15	2.84	
145.69	147.46	1.77	149.31	3.62	
122.2	121.56	-0.64	125.1	2.9	
49.24	48.99	-0.25	52.28	3.04	
29.24	29.37	0.13	31.55	2.31	
27.89	27.97	0.08	30.22	2.33	
21.39	21.42	0.03	23.76	2.37	
13.67	13.69	0.02	15.94	2.27	
137.06	164.27	27.21	182.36	45.3	
155.3	_	_	_	_	
250.34	248.79	-1.55	252.2	1.86	
359.82	360.29	0.47	353.79	-6.03	
_	349.93	_	340.64	_	
10.81	_	_	_	_	
11.05	_	_	_	_	
2.13	1.98	-0.15	2.25	0.12	
3.61	3.59	-0.02	3.83	0.22	
7.77	7.56	-0.21	7.82	0.05	
4.26	4.23	-0.03	4.43	0.17	
1.77	1.75	-0.02	1.93	0.16	
1.17	1.17	0	1.29	0.12	
1.27	1.27	0	1.39	0.12	
0.83	0.83	0	0.95	0.12	
	δ 150.84 164.25 106.84 149.55 16.15 20.31 145.69 122.2 49.24 29.24 27.89 21.39 13.67 137.06 155.3 250.34 359.82 - 10.81 11.05 2.13 3.61 7.77 4.26 1.77 1.27 0.83	λ λ δ λ 150.84 158.15 164.25 166.48 106.84 103.36 149.55 161.15 16.15 20.71 20.31 21.24 145.69 147.46 122.2 121.56 49.24 48.99 29.24 29.37 27.89 27.97 21.39 21.42 13.67 13.69 137.06 164.27 155.3 - 250.34 248.79 359.82 360.29 - 349.93 10.81 - 11.05 - 2.13 1.98 3.61 3.59 7.77 7.56 4.26 4.23 1.77 1.75 1.17 1.17 1.27 0.83	JMCO-d6δΔδ11+KO+(1:1)150.84158.157.31164.25166.482.23106.84103.36-3.48149.55161.1511.616.1520.714.5620.3121.240.93145.69147.461.77122.2121.56-0.6449.2448.99-0.2529.2429.370.1327.8927.970.0821.3921.420.0313.6713.690.02137.06164.2727.21155.3250.34248.79-1.55359.82360.290.47-349.93-10.8111.052.131.98-0.0153.613.59-0.027.777.56-0.214.264.23-0.031.771.75-0.021.171.1701.271.2700.830.830	JMCO-d ₆ ΔAδ JMCO-d ₁ δ Δδ δ 1 1+KO-I(1:1) 1+KO 150.84 158.15 7.31 160.72 164.25 166.48 2.23 171.13 106.84 103.36 -3.48 108.48 149.55 161.15 11.6 161.74 16.15 20.71 4.56 21.45 20.31 21.24 0.93 23.15 145.69 147.46 1.77 149.31 122.2 121.56 -0.64 125.1 49.24 48.99 -0.25 52.28 29.24 29.37 0.03 31.55 27.89 27.97 0.08 30.22 21.39 21.42 0.03 23.76 13.67 13.69 0.02 15.94 137.06 164.27 27.21 182.36 155.3 - - - 250.34 248.79 -1.55 252.2	

Схема 2.

условно, увеличит диапазон условий для синтеза комплексных соединений с металлами.

Спектры записаны с использованием оборудования ЦКП "Химия" УфИХ УФИЦ РАН и РЦКП "Агидель" УФИЦ РАН.

Работа выполнена в рамках государственного задания Министерства образования и науки (№ АААА-А20-120012090029-0 и АААА-А18-118040390114-8).

СПИСОК ЛИТЕРАТУРЫ

- Ilyina M.G., Khamitov E.M., Ivanov S.P. et al. // J. Phys. Chem. A. 2018. V. 122. № 1. P. 341. https://doi.org/10.1021/acs.jpca.7b09330
- Ilyina M.G., Khamitov E.M., Ivanov S.P. et al. // Comput. Theor. Chem. 2016. V. 1078. P. 81. https://doi.org/10.1016/j.comptc.2015.12.024
- 3. *Privat E.S., Sowers L.C.* // Mutat. Res. 1996. V. 354. P. 151. https://doi.org/10.1016/0027-5107(96)00005-X
- 4. *Wittenburg E.* // Chemische Berichte. 1966. V. 99. P. 2391. https://doi.org/10.1002/cber.19660990737
- Abdrakhimova G.S., Ovchinnikov M.Yu., Lobov A.N. et al. // J. Phys. Org. Chem. 2014. V. 27. P. 876. https://doi.org/10.1002/poc.3350
- Abdrakhimova G.S., Ovchinnikov M.Yu., Lobov A.N. et al. // J. Mol. Struct. 2018. V. 1158. P. 51. https://doi.org/10.1016/j.molstruc.2018.01.013
- Tome A.C. Product class 13: 1,2,3-triazoles, Eds. Storr R.C., Gilchrist T.L. (In: Science of Synthesis, Stuttgart-N.-Y. Thieme, 2004), p. 415.
- Huisgen R. // Angew. Chem. Int. Edit. 1963. V. 2. P. 565. https://doi.org/10.1002/anie.196305651

- 9. Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. // Angew. Chem. Int. Ed. 2002. V. 41. № 14. P. 2596. https://doi.org/10.1002/1521-3773(20020715)41
- 10. *Tornoe C.W., Christensen C., Meldal M.* // J. Org. Chem. 2002. V.67. № 9. P. 3057. https://doi.org/10.1021/jo011148j
- 11. Semenov V.E., Voloshina A.D., Kulik N.V. et al. // Russ. Chem. Bull. 2015. V. 64. № 12. P. 2885. https://doi.org/10.1007/s11172-015-1243-5
- Yan F., Lartey V., Jariwala K. et al. // J. Phys. Chem. B. 2014. V. 118. № 47. P. 13609. https://doi.org/10.1021/jp506972w
- 13. *Albert A., Serjeant E.P.* Ionization constants of acids and bases; a laboratory manual (London, Methuen; New York, Wiley. 1962) p. 179.
- 14. Billinghurst B.E., Oladepo S.A., Loppnow G.R. // J. Phys. Chem. B. 2009. V. 113. № 20. P. 7392. https://doi.org/10.1021/jp811327w
- 15. *Stimson M.M.* // J. Am. Chem. Soc. 1949. V. 71. № 4. P. 1470.
- https://doi.org/10.1021/ja01172a093 16. Иванов С.П., Муринов Ю.И. // Башкирский хим.
- журнал. 2006. V. 13. № 1. Р. 22.
- 17. *Clark L.B.* // J. Am. Chem. Soc. 1965. V. 87. № 1. P. 11. https://doi.org/10.1021/ja01079a003
- Jonas J., Gut J. // Coll. Czech. Chem. Commun. 1962.
 V. 27. № 27. P. 716. https://doi.org/10.1135/cccc19620716
- Blagoy Yu.P., Sheina G.G., Luzanov A.V. et al. // Int. J. Quant. Chem. 1980. V. 18. P. 913. https://doi.org/10.1002/qua.560180402
- Luke T.L., Mohan H., Jacob T.A. et al. // J. Phys. Org. Chem. 2002. V. 15. P. 293–305. https://doi.org/10.1002/poc.478