ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 543:544.72

АДСОРБЦИЯ 2,4-ДИХЛОРФЕНОЛА И ФЕНОЛА ИЗ ВОДНЫХ РАСТВОРОВ СИЛИКАТНЫМ АДСОРБЕНТОМ

© 2021 г. Г. И. Гусев^{а,*}, А. А. Гущин^а, В. А. Гриневич^а, Д. В. Филиппов^а, Е. А. Москаленко^а, М. А. Шильке^а

^а Ивановский государственный химико-технологический университет, Иваново, Россия

*e-mail: grisha.gusev.05@mail.ru

Поступила в редакцию 14.04.2020 г. После доработки 14.04.2020 г. Принята к публикации 22.04.2020 г.

Изучена адсорбция фенола и 2,4-дихлорфенола из водных растворов на силикатный сорбент диатомит марки СМД-Сорб. Проведены исследования морфологии поверхности и элементного состава диатомита марки СМД Сорб с использованием метода сканирующей электронной микроскопии и энергодисперсионного рентгеновского спектрального анализа. Измерены удельная поверхность и суммарный объем пор адсорбента с помощью динамического метода низкотемпературной адсорбции жидкого азота. Оценены величины сорбционной емкости (по фенолу и 2,4-дихлорфенолу), насыпная плотность, влагосодержание и водопоглощение. Показано, что сорбент обладает достаточно низкой адсорбционной способностью по отношению к исследуемым веществам. Рассчитаны параметры адсорбционных равновесий в поверхностных слоях исследуемого сорбента: коэффициент распределения, предельная адсорбция, константы Генри, изменение энергии Гиббса, коэффициент адсорбции и степень заполнения в зависимости от температуры.

Ключевые слова: адсорбция, диатомит, 2,4-дихлорфенол, фенол, водоочистка

DOI: 10.31857/S0044453721020102

Одна из экологических проблем современности — загрязнение водных объектов и ухудшение качества водных ресурсов, что приводит к сокращению объемов доступной питьевой воды. Уровень загрязнения окружающей среды фенолом и его производными с каждым годом возрастает и приобретает глобальный характер.

Хлорированные углеводороды относятся к одним из наиболее опасных загрязнителей природных вод. Они оказывают прямое токсичное действие на живые организмы, а также обладают канцерогенной активностью и способны концентрироваться при движении по трофическим уровням. К представителям класса хлорированных ароматических углеводородов относится 2,4-дихлорфенол (2,4-ДХФ) – один из наиболее токсичных соединений данного ряда: помимо токсических и канцерогенных эффектов, присутствие 2,4-ДХФ даже в следовых количествах (на уровне 5-10 мкг/л), придает воде специфический запах, что делает ее непригодной для питья. Поэтому актуальна разработка методов и технологий удаления подобных соединений, которые должны отвечать современным требованиям – быть максимально доступными, удобными, экологически безопасными и экономически целесообразными [1, 2].

Одним из эффективных методов очистки сточных вод от органических соединений является адсорбционный метод [3, 4]. Преимуществом метода является его высокая эффективность (до 95%), возможность очистки сточных вод, содержащих несколько веществ, а также рекуперация адсорбированных веществ [5–7].

Традиционно для удаления различных поллютантов из воды, используют природные сорбенты, такие как цеолиты [8] и диатомиты [9], а также промышленные отходы, например, отходы буровых работ [10], валяльного производства [11], опилок [12]. Однако, адсорбционные характеристики природных сорбентов в отношении к фенолу и его производным изучены недостаточно.

Таким образом, цель данной работы — исследование физико-химических закономерностей процесса сорбции фенола и 2,4-ДХФ из водных растворов на природном силикатном сорбенте диатомите.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Были поставлены следующие задачи:

1) изучение поверхности диатомита, а также его состава с помощью сканирующего электронного микроскопа Tescan Vega 3 SBH (Thermo Scientific, США) с EDX анализатором для определения элементного состава;

 измерение удельной поверхности и суммарного объема пор адсорбента с использованием прибора Sorbi MS (ЗАО "Мета", Россия), предназначенного для измерения удельной поверхности и пористости по полной изотерме;

3) изучение физико-химических свойств диатомита (сорбционная емкость, насыпная плотность, влагосодержание и водопоглощение);

4) оценка параметров равновесия адсорбции в поверхностных слоях исследуемого сорбента (коэффициент распределения, значение предельной адсорбции, константы Генри, изменения энергии Гиббса, адсорбционных коэффициентов и степени заполнения в зависимости от температуры).

В качестве объектов исследования выбраны фенол и 2,4-дихлорфенол, а в качестве адсорбента использован промышленный гранулированный силикатный адсорбент — диатомит марки СМД Сорб, из кальцинированной диатомовой земли с сильно развитой внутренней поверхностью, не вступающий в реакцию с поглощаемыми жидкостями и обладающий высокой скоростью адсорбции. СМД-Сорб при нормальных условиях стабилен, химически неактивен, устойчив к воздействию внешней среды и окислению, а высокопрочные гранулы не разрушаются, тем самым надежно капсулируя сорбат внутри своей структуры. При использовании, транспортировании, хранении и утилизации диатомит не представляет опасности для окружающей среды.

Исследования морфологии поверхности и элементного состава диатомита проводились при помощи сканирующего электронного микроскопа Tescan VEGA 3 SBH (Чехия), оснащенного приставкой для проведения энерго-дисперсионного анализа Oxford Instruments X-Act [13].

Микрофотографии поверхности получались при следующих параметрах:

- ускоряющее напряжение U = 5 кB,
- фокусное расстояние l = 15 мм,
- диаметр пучка *D* = 80 нм.

Образцы закреплялись на алюминиевых столиках в камере микроскопа при помощи углеродного скотча, далее камера подвергалась откачке турбомолекулярным насосом до давления ~5 × 10⁻³ Па.

Для определения элементного состава использовался следующий режим работы:

- ускоряющее напряжение: U = 20 кB,
- фокусное расстояние: l = 7 мм,
- диаметр пучка *D* = 120 нм.

Энергодисперсионные рентгеновские спектры регистрировались с площади сканирования 90 × 90 мкм [13].

Исследование удельной поверхности проводилось методом низкотемпературной адсорбции инертного газа на приборе Sorbi MS, позволяющем построить изотермы адсорбции/десорбции жидкого азота на поверхности диатомита, и определить удельную поверхность и суммарный объем пор.

Условия проведения эксперимента: в качестве объектов исследования были выбраны водные растворы, содержащие фенол и 2,4-ДХФ с начальными концентрациями (C_0), варьирующимися в диапазоне 10–100 мг/л; объем раствора (V_0), пропускаемого через сорбент – 100 мл, масса сорбента (*m*) составляла 2 г. Сорбшионный процесс в динамических условиях заключался в фильтровании раствора, содержащего вещество, через слой сорбента. Такой способ имеет большие технологические. эксплуатационные и экономические преимущества перед сорбцией в статических условиях. Сорбшия в линамических условиях позволяет более полно использовать емкость сорбционного материала [14]. Именно поэтому исследования характеристик и свойств сорбентов осуществлялось в динамических условиях.

Сорбционная емкость сорбента оценивалась по формуле:

$$\Gamma, \text{ M}\Gamma/\Gamma = \frac{(C_{\text{ucx}} - C_{\text{конт}})}{m} V_{a} = \frac{V_{0}(C_{\text{ucx}} - C_{\text{конт}})}{m}, \quad (1)$$

где Γ — сорбционная емкость, мг/г; V — объем пробы модельного раствора, пропущенный через сорбент, л; $C_{исх}$ и $C_{конт}$ — концентрация исходного и контактного растворов, мг/л; m — масса образца сорбента, г [14].

Сорбционную емкость по физическому смыслу можно рассматривать в качестве величин избыточной адсорбции Γ_i , которые соответствуют числу молей адсорбата, определяемому избыточной концентрацией вещества в поверхностном слое по сравнению с объемной фазой.

Водопоглощение определялось отношением массы поглощенной воды к массе сорбента, потраченного на сорбцию:

$$B = (m_{\text{погл}} - m_{\text{сорб}})/m_{\text{погл}}, \qquad (2)$$

где $m_{\text{погл}}$ — масса сорбента с поглощенной водой, г; $m_{\text{сорб}}$ — масса сорбционного материала, г; B — водопоглощение, г/г.

Влажность сорбента определяется по методике [15] при высушивании навески продукта в сушильном шкафу до постоянной массы и определении уменьшения массы продукта. Массовая доля воды выражается в процентах.

Рис. 1. Спектры поглощения фенола до (*1*) и после (*2*) адсорбции.

Массовую долю воды (*X*) вычисляют по формуле:

$$X,\% = \frac{m_1 - m_2}{m_1 - m} \times 100,$$
(3)

где m — масса стаканчика с крышкой, г; m_1 — масса стаканчика с крышкой и навеской до высушивания, г; m_2 — масса стаканчика с крышкой и навеской после высушивания, г.

Концентрация 2,4-ДХФ определялась методом газовой хроматографии с использованием хроматограф "Хроматек 5000.2" (СКБ "Хроматэк", Россия) с использованием детектора по электронному захвату [16]. Хроматографическая система была откалибрована с использованием утвержденного стандартного образца 2,4-ДХФ. Относительная погрешность определения составляла 30% при доверительной вероятности 0.95. Концентрация фенола в водных растворах определялась флуориметрическим методом на флуориметре марки "Флюорат 2-М" (Люмэкс, Россия) [17], а также спектрофотометрическим методом [18]. Градуировка проводилась с использованием утвержденного стандартного образца фенола. При доверительной вероятности 0.95 относительная погрешность измерений составляла 25%. При доверительной вероятности 0.95 относительная погрешность измерений составляла 25%. UV-Vis спектры исследуемых водных растворов были получены с помощью спектрофотометра "Unico 2802" (UnicoSys, USA) (рис. 1).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Снимки поверхности сорбента, полученные с помощью сканирующего электронного микроскопа Tescan VEGA3 SBH, представлены на рис. 2. Результаты сканирующей электронной микроскопии показывают, что сорбент состоит из практически неповрежденных окаменелых останков диатомовых водорослей, относящихся к типу твердых водорослей. Поверхность образцов имеет сложную упорядоченную структуру, характерную для кизельгуровых пород, с множеством макропор со средним диаметром от 0.1 до 1.5 мкм.

Элементный состав исследуемого сорбента, определенный с помощью энергодисперсионной рентгеновской спектроскопии (рис. 3), представлен следующими основными соединениями: SiO₂ (76–88%), Al₂O₃ (3.5–9.75%), CaO (0.45–0.85%) и MgO (0.61–1.71%). Полученные результаты хорошо согласуются с данными о морфологии диатомита и подтверждают, что для исследования были взяты активированные образцы сорбента [19].

Результаты оценки водопоглощения и влагосодержания сорбента позволяют сделать вывод, что сорбент является гидрофобным, т.е. практически не поглощает воду (влагосодержание —

Рис. 2. Поверхность сорбента диатомита марки СМД Сорб.

Рис. 3. Элементный состав диатомита (с использованием энергодисперсионной рентгеновской спектроскопии).

0.06%, водопоглощение 1.63 г/г). Насыпная плотность сорбента составляет ~420 кг/м³. Таким образом, можно сделать вывод, что сорбент подходит для очистки воды от органических соединений, растворенных в воде [20], а его насыпная плотность соответствует заявленной производителем (не более 480 кг/м³).

Результаты исследования сорбционных свойств диатомита, оцененные по удельной поверхности методом низкотемпературной адсорбции инертного газа, позволили построить изотермы адсорбции/десорбции жидкого азота на поверхности диатомита (рис. 4), обработка которых по методу БЭТ показала, что удельная поверхность сорбента и объем пор составляют 8.1 м²/г и 0.016 см³/г соответственно – достаточно низкие значения по сравнению с полученными для активированных углей (540–580 м²/г и 0.4–0.7 см³/г соответственно) [21, 22].

Для нахождения термодинамических параметров равновесия необходим переход от избыточных к полным величинам адсорбции *a_i*. Переход осуществлялся по стандартному уравнению, связывающему данные величины с учетом объема пористого пространства адсорбента [23]. Обработка полученных изотерм осуществлялась в рамках модели Ленгмюра, поскольку данная модель хорошо подходит для описания адсорбции ароматических соединений на поверхности материалов различного состава и типа [24, 25]. Кроме того, экспериментальные данные были обработаны в рамках теории объемного заполнения пористого пространства по линейным координатам уравнения Дубинина-Радушкевича [23]. По величинам адсорбции а_i и определенной предельной адсорбции *а_m* для сорбента были рассчитаны максимальные степени заполнения поверхности θ_i . По известным термодинамическим соотношениям было

Рис. 4. Изотерма адсорбции азота на диатомите (метод БЭТ).

определено изменение энергии Гиббса $\Delta_a G^{\circ}(\theta)$ в ходе адсорбции в условиях проведения эксперимента.

Результаты экспериментов по влиянию начальной концентрации фенола и 2,4-ДХФ в модельном растворе на сорбционную емкость исследуемого сорбента показывают, что увеличение концентрации, а также температуры, при которой протекает процесс адсорбции, приводит к росту сорбционной емкости диатомита по отношению как к 2,4-ДХФ (рис. 5), так и к фенолу (рис. 6). Так, наибольшая сорбционная емкость в условиях эксперимента наблюдается для концентрации 2,4-ДХФ, равной 100 мг/л, и температуры 50°С и составляет 13.25 мкмоль/г, что соизмеримо с адсорбцией 2,4-ДХФ на монтмориллонитсодержащей глине, где величина a_m составляла ~0.8 мкмоль/г [26].

Полученные изотермы имеют практически идентичный характер с ярко выраженным линейным участком в области невысоких концентраций, соответствуют изотермам мономолекулярной адсорбции и удовлетворительно описываются уравнением Ленгмюра, а также уравнением Дубинина—Радушкевича. Аналогичные изотермы, описывающие адсорбцию 2,4-ДХФ, были получены авторами [26] для адсорбции 2,4-ДХФ на активированном угле.

Наибольшая сорбционная емкость в условиях эксперимента наблюдается при концентрации фенола, равной 100 мг/л, и температуре 50°С, она составляет ~52 мкмоль/г. Подобный результат при адсорбции фенола с различными температурами описывается авторами в [27], где в качестве адсорбента авторы используют плодовые оболочки овса, а процесс осуществляется за счет физической сорбции. Столь небольшая величина адсорбции фенола на диатомите была также подтверждена авторами [28].

Полученные изотермы имеют также практически идентичный характер и соответствуют изо-

Рис. 5. Зависимости сорбционной емкости диатомита от начальной концентрации 2,4-ДХФ при различных температурах: 1 - 25, 2 - 35, $3 - 50^{\circ}$ C.

термам мономолекулярной адсорбции (рис. 6) и удовлетворительно описываются уравнением Ленгмюра, как и в случае с 2,4-ДХФ. Результаты формальной обработки полученных изотерм адсорбции для всех температур представлены в табл. 1.

Результаты расчетов адсорбционных величин для 2,4-ДХФ свидетельствуют о том, что коэффициенты распределения в исследуемом температурном интервале составляют 0.004–0.0024, что гораздо меньше, чем коэффициент распределения по нефтепродуктам (НП), найденный в прошлых исследованиях по адсорбции диатомитом [29]. Интересен и тот факт, что аналогичная закономерность прослеживается при анализе максимальной степени заполнения поверхности сорбентов. При увеличении температуры от 25 до 50°С снижение степени заполнения поверхности наблюдается практически в 2 раза. Это можно объяснить изменением структуры поверхностного слоя с изменением температуры.

Рис. 6. Зависимости сорбционной емкости диатомита от начальной концентрации фенола при различных температурах: *1* – 25, *2* – 35, *3* – 50°С.

Величины предельной адсорбции, рассчитанные в линейных координатах изотермы Ленгмюра, варьируются в интервале от 1.56 до 13.54 мкмоль/г сорбента. Следует отметить, что предельные адсорбции, рассчитанные по линейным координатам изотермы Дубинина-Радушкевича, имеют большие значения, чем найденные по уравнению Ленгмюра, очевидно, вследствие развитой пористой структуры использованных сорбентов. Полученные значения согласуются с экспериментальными данными по сорбционной емкости. Однако они в ~5 раз меньше по сравнению с величиной предельной адсорбции для диатомита по НП [29] при температуре адсорбции 25°С. Интересен тот факт, что с ростом температуры величины адсорбции растут, что нехарактерно для процесса физической адсорбции, для которой наблюдаются обратные корреляции. Характер подобной зависимости адсорбции от температуры можно связать с

t, °C	Вещество	K _d	a_m (I), мкмоль/г	a_m (II), мкмоль/г	b	Н	$\Delta_{\rm a}G^{\circ}$	θ
25	НП [29]	0.5650	67.85	_	0.0060	0.1230	12.67	0.70
25	ДХФ	0.0040	1.56	1.22	0.0378	0.0096	8.11	0.52
35	ДХФ	0.0240	15.64	28.42	0.0194	0.0495	10.09	0.18
50	ДХФ	0.0210	13.54	9.88	0.0118	0.0261	11.55	0.21
25	фенол	0.0055	564.0	18.61	0.0055	0.0061	12.88	0.66
35	фенол	0.0480	881.0	82.93	0.0004	0.0495	10.09	0.05
50	фенол	0.0482	892.0	88.06	0.0048	0.0261	11.55	0.55

Таблица 1. Результаты обработки полученных изотерм адсорбции 2,4-ДХФ и фенола

Обозначения: K_d – коэффициент распределения, $a_m(I)$ и $a_m(II)$ – предельная адсорбция по линейным координатам уравнения Ленгмюра и уравнения Дубинина–Радушкевича, b – адсорбционный коэффициент Ленгмюра, H – константа Генри, $\Delta_a G^\circ$ – изменение энергии Гиббса, θ – максимальная степень заполнения.

изменением структуры поверхностного слоя, что подтверждается рядом работ [30, 31].

Таким образом, анализируя только адсорбционные характеристики диатомита, можно сделать вывод, что адсорбция 2,4-дихлофенола и фенола протекает с достаточно низкой эффективностью. о чем свидетельствуют как величина адсорбционной емкости данного сорбента, так и результаты расчетов коэффициентов распределения, предельной адсорбции, адсорбционных коэффициентов, констант Генри, изменения энергии Гиббса и максимальной степени заполнения. Олнако. необходимо отметить, что полученные величины предельной адсорбции существенно выше, чем в работах [18, 26-28]. Отметим, что низкая стоимость диатомита может быть существенным фактором при выборе сорбентов для очистки стоков, особенно в тех случаях. когда не требуются высокие требования к эффективности очистки. например, при локализации аварийных ситуаций.

Работа выполнена в рамках государственного задания на выполнение НИР. Тема № FZZW-2020-0010. Авторы также благодарят РФФИ за финансовую поддержку исследований (код проекта № 18-08-01239).

СПИСОК ЛИТЕРАТУРЫ

- 1. Марченко Л.А., Боковикова Т.Н., Белоногов Е.А., Марченко А.А. // Сорбционные и хроматографические процессы. 2009. Т. 9. № 6. С. 877.
- 2. Исмагилов Р.Р. // Молодой ученый. 2012. № 11. С. 127.
- 3. Хаскельбере М.Б., Шиян Л.Н., Корнев Я.И. // Вестн. Томск. политехн. ун-та. 2011. Т. 319. № 3. С. 32.
- Митрюшкина К.П. Охрана природы. Справочник. М.: Агропромиздат, 1987. 267 с.
- 5. *Смирнов А.Д.* Сорбционная очистка воды. Л.: Химия, 1982. 168 с.
- Каменщиков Ф.А., Богомольный Е.И. Нефтяные сорбенты. Ижевск: Институт компьютерных исследований, 2003. 268 с.
- Собгайда Н.А. // Вестн. Харьков. нац. автомобил.дорожн. ун-та. 2011. № 52. С. 120.
- Зубков А.А., Багров В.В., Камруков А.С. и др. // Водоочистка. Водоподготовка. Водоснабжение. 2020. Т. 2. С. 36.
- 9. *Комендантова Е.А., Кваша Д.Ю.* // Синергия наук. 2017. № 11. С. 913.
- Алыков Н.М., Абуова Г.Б., Менкеев О.А., Зуй Н.К. Адсорбция из воды органических веществ сорбентом ОБР-1. НМ Алыков, 2009.
- Фасхутдинова З.Т., Шайхиев И.Г., Абдуллин И.Ш. // Вестн. Казан. технологич. ун-та. 2014. Т. 17. № 21. С. 220.

- Cambiella E., Ortea E., RHos G. et al. // J. Hazard. Materials. 2006. V. 131. № 1–3. P. 195. https://doi.org/10.1016/j.jhazmat.2005.09.023
- 13. *Goldstein J., Newbury D.E., Joy D.C. et al.* Scanning Electron Microscopy and X-ray Microanalysis. New York: Kluwer Academic Plenum Publishers, 2003.
- 14. Домрачева В.А., Трусова В.В. // Вестн. Иркутск. гос. техн. ун-та. 2012. № 7. С. 66.
- 15. ГОСТ 12597-67. Сорбенты. Метод определения массовой доли воды в активных углях и катализаторах на их основе.
- ГОСТ Р 51209-98. Вода питьевая. Метод определения содержания хлорорганических пестицидов газожидкостной хроматографией.
- ПНД Ф 14.1:2:4.182-02. Методика выполнения измерений массовой концентрации фенолов в пробах питьевых, природных и сточных вод флуориметрическим методом на анализаторе жидкости "Флюорат-02".
- Мамлеева Н.А., Лунин В.В. // Журн. физ. химии. 2016. Т. 90. № 3. С. 436. https://doi.org/10.1134/S0036024416030249
- Selim A.Q., El-Midany A.A., Ibrahim S.S. // Microscopy: Science, Technology Applications and Education. 2010. V. 3. P. 2174. https://doi.org/10.1134/S2070205118010227
- Убаськина Ю.А. // Вестн. БГТУ им. В.Г. Шухова. 2017. № 7. С. 92.
- Yang K. et al. // Environmental Science & Technology. 2010. V. 44. № 8. P. 3021. https://doi.org/10.1021/es100018a
- 22. Половнева С.И., Елшин В.В., Носенко А.А. // Фундаментальные исследования. 2015. Т. 6. № 2.
- Дадашев Р.Х. Термодинамика поверхностных явлений: монография / Р.Х. Дадашев. М.: Физматлит, 2008. 279 с.
- Meng X., Foston M., Leisen J. et al. // (2013). Determination of Porosity of Bioresource Technology. 2013. V. 144. P. 467.
- Нгуен Д.Т., Везенце А.И., Перистая Л.Ф., Михайлюкова М.О. // Вестн. технологич. ун-та. 2019. Т. 22 (7). С. 61.
- 26. *Alam M.Z., Muyibi S.A., Toramae J.* // J. Environmental Sci. (China). 2007. V. 19. № 6. P. 674. https://doi.org/10.1016/s1001-0742(07)60113-2
- Denisova T.R., Galimova R.Z., Shaikhiev I.G., Mavrin G.V. // Res. J. Pharm., Biol. and Chem. Sci. 2016. V. 7. № 5. P. 1765.
- Gao B., Jiang P., An F. et al. // Appl. Surf. Sci. 2005. V. 250 (1–4). P. 273.
- Gusev G.I., Gushchin A.A., Grinevich V.I. et al. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. № 7. P. 137. https://doi.org/10.6060/ivkkt.20186107.5686
- 30. Яковлева А.А., Нам Ч.С., Линь Л.М. // Вестн. Иркутск. гос. техн. ун-та. 2011. № 1. С. 48.
- Алыков Н.М., Абуова Г.Б., Менкеев О.А., Зуй Н.К. Адсорбция из воды органических веществ сорбентом ОБР-1. НМ Алыков, 2009.