ПАМЯТИ АКАДЕМИКА В.В. ЛУНИНА: ИЗБРАННЫЕ РАБОТЫ УЧЕНИКОВ И КОЛЛЕГ

УДК 544,502,66.03

ВЛИЯНИЕ ПРИРОДЫ НОСИТЕЛЯ НА АКТИВНОСТЬ КАТАЛИЗАТОРОВ НА ОСНОВЕ 1% Cs/Me_{0.1}Co_{2.9}O₄ (Me = Ni, Mg) В РЕАКЦИИ НИЗКОТЕМПЕРАТУРНОГО РАЗЛОЖЕНИЯ N₂O

© 2021 г. Л. А. Исупова^{а,*}, Ю. А. Иванова^а

^а Российская академия наук, Сибирское отделение, Институт катализа им. Г.К. Борескова, Новосибирск, Россия *e-mail: isupova@catalvsis.ru

Поступила в редакцию 20.08.2020 г. После доработки 20.08.2020 г. Принята к публикации 24.08.2020 г.

Методами рентгеновского анализа, адсорбции БЭТ, O_2 -ТПД изучено влияние природы носителя (α -Al₂O₃, Mg₂Al₄Si₅O₁₈, CeO₂, TiO₂) на свойства нанесенных катализаторов на основе Ni,Mg-замещенной кобальтовой шпинели. Исследована их каталитическая активность в реакции разложения закиси азота при температурах 190 -400° С. Показано, что наиболее активным и устойчивым к каталитическим ядам (O_2 , H₂O) является катализатор на основе магний-замещенной кобальтовой шпинели, нанесенной на корундовый носитель -1%Cs/Mg_{0.1}Co_{2.9}O₄/ α -Al₂O₃.

Ключевые слова: замещенная кобальтовая шпинель, нанесенные катализаторы, разложение закиси азота, слабосвязанные формы кислорода, очистка хвостовых газов

DOI: 10.31857/S0044453721030134

Зашита окружающей среды от парникового газа N_2O , в 310 раз более опасного чем CO_2 , концентрирует внимание исследователей на способах его удаления из газовых выбросов в атмосферу. Один из основных поставшиков закиси азота в атмосферу – производство азотной кислоты, в котором закись азота образуется в качестве побочного продукта на стадии окисления аммиака [1, 2]. С учетом технологической схемы производства азотной кислоты рассматриваются три возможных способа реализации процесса удаления закиси азота, различающиеся по условиям [1, 2]: 1) высокотемпературное разложение путем размещения слоя катализатора сразу после катализаторных платиноидных сеток, по аналогии с разработанной ранее в России двухступенчатой системой процесса окисления аммиака использованием блочного высокотемпературного катализатора [3–17]; 2) удаление закиси азота и оксидов азота в реакторе селективного каталитического восстановления (СКВ) оксидов азота [1, 2, 11-15] и 3) низкотемпературное разложение закиси азота в отходящих газах [16-18]. Возможность организации комплексной низкотемпературной каталитической очистки хвостовых газов от NO_x и N_2O в реакторе СКВ, когда в первом слое происходит каталитическое восстановление NO, аммиаком, а во втором слое - каталитическое разложение N2O, на сегодняшний день считается технологическим трендом. Например, компания

Uhde EnviNO_X® для комплексной очистки предложила двухступенчатую систему, основанную на использовании цеолитных катализаторов [11-15, 19-21]. Система работает при температуре выше 400° С и чувствительна к парам воды [22].

Основные проблемы низкотемпературного удаления закиси азота в России - это более низкая температура газов после процесса СКВ (до 300° C), очень низкие концентрации N₂O (1000-3000 ррт) и наличие ингибирующих реагентов (O_2, H_2O, NO_x, NH_4) , что ставит задачу разработки более низкотемпературного катализатора разложения закиси азота, который может использоваться в комбинированной схеме очистки отходящих газов после стадии селективной очистки от NO_x, согласно современным тенденциям [1, 19— 21]. Самыми перспективными низкотемпературными оксидными катализаторами для удаления N₂O на сегодняшний день являются кобальтовые шпинели [23-27]. Увеличение активности кобальтовой шпинели достигается путем ее модифицирования такими элементами как Mg, Ni, Mn, Cu, Cr [28] и легированием щелочными катионами (Na, K, Cs) [29]. Предполагается, что это приводит к образованию вакансий, на которых формируются слабосвязанные формы кислорода, что способствует облегчению лимитирующей стадии процесса – стадии десорбции кислорода, образующегося в ходе реакции разложения закиси азота, согласно существующим представлениям о механизме данной реакции. Разложение закиси азота может протекать по двум основным механизмам: по механизму Ленгмюра—Хиншельвуда (Π —X) в области низких температур, а в области высоких температур — по механизму Или—Ридела (Π —P) [30, 31]:

диссоциативная адсорбция N_2O

$$N_2O + S_{\text{surf}} \rightarrow N_2 + S...O_{\text{surf}}, \tag{1}$$

образование и десорбция O_2 по механизму $J\!-\!X$

$$S...O_{surf} + S...O_{surf} \leftrightarrow 2(S...O_{surf}) \leftrightarrow 2S + O_2,$$
 (2) десорбция O_2 по механизму $M-P$

$$S...O_{surf} + N_2O \rightarrow S + O_2 + N_2,$$
 (3)

где S_{surf} — активный центр.

Использование нанесенных катализаторов позволяет снизить количество активного компонента в катализаторе и его стоимость, при этом увеличить механическую прочность. Носитель может быть представлен в различных геометрических формах: блоки, кольца, гранулы или в виде структурированного материала, что технологически немаловажно. В качестве носителей обычно используются такие оксидные материалы как: TiO₂, Al₂O₃, SiO₂, ZrO₂, CeO₂, цеолиты и другие [25, 32–35].

Выбор носителя зависит от требований, предъявляемых катализатору. Низкотемпературное разложение закиси азота не требует высокой термической устойчивости носителя, но он должен обеспечивать высокую дисперсность активного компонента и не вступать с ним в химическое взаимодействие. Природа носителя в значительной мере влияет на активность. Так, в [36] представлен ряд активности в реакции разложения N_2O для шпинели Co_3O_4 , нанесенной на оксиды: $MgO > ZnO > Mn_xO_y > Al_2O_3 > CeO_2$. Авторы объясняют высокую активность катализатора Со₃О₄/MgO электронными взаимодействиями между носителем и активным компонентом, способствующим десорбции поверхностного кислорода по механизму Ленгмюра—Хиншельвуда (2).

В выполненных нами работах по исследованию влияния модифицирования и промотирования на активность кобальтовой шпинели были определены наиболее перспективные системы на основе кобальтовой шпинели, модифицированной катионами магния или никеля и промотированной 1% цезия -1%Cs/Me_{0.1}Co_{2.9}O₄ (Me = Ni, Mg) [37, 38].

Цель данной работы — исследование влияния носителей разной природы на активность двух нанесенных наиболее активных оксидных систем 1%Cs/Me_{0.1}Co_{2.9}O₄ (Me = Ni, Mg) в реакции низкотемпературного разложения закиси азота. В ка-

честве носителей были выбраны оксиды: CeO_2 , TiO_2 , α - Al_2O_3 (корунд) и $Mg_2Al_4Si_5O_{18}$ (кордиерит).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нанесение активного компонента 1%Cs/Me $_{0.1}$ Co $_{2.9}$ O $_4$ (Me = Ni, Mg) на носители CeO $_2$, TiO $_2$, α -Al $_2$ O $_3$ (корунд), Mg $_2$ Al $_4$ Si $_5$ O $_{18}$ (кордиерит) проводили суспензионным методом осаждения. В качестве носителей использовали CeO $_2$, полученный прокаливанием при 800° C в течение 4 ч Ce(NO $_3$) $_3 \cdot 6$ H $_2$ O ("ч.д.а.", производитель "Союзхимпромом"); TiO $_2$ ("ч", производитель "Вектон"); α -Al $_2$ O $_3$ (корунд), полученный нами по методике [39]; и Mg $_2$ Al $_4$ Si $_5$ O $_{18}$ (кордиерит), полученный нами по методике [40].

Количество активного компонента относительно носителя составляло 50 мас. %. В совместный раствор солей $Co(NO_3)_2 \cdot 6H_2O$ ("ч", "Peaхим") и $Mg(NO_3)_2 \cdot 6H_2O$ ("ч.д.а.", "Реахим") либо $Ni(NO_3)_2 \cdot 6H_2O$ ("ч.д.а.", "Реахим") объемом 100 мл помещали мелкодисперсный носитель. В полученную суспензию при комнатной температуре и постоянном перемешивании добавляли в течение 1 ч (~250 мл) 0.8М раствор (NH_4)₂ CO_3 ("х.ч.", "Реахим") доводя до рН 8-8.5. После осаждения солей карбонатов в смесь добавляли Cs-NO₃, лимонную кислоту и этиленгликоль (по методике "Pechini"). Полученную суспензию далее сушили при температуре 120°C в течение 24 ч. Сухой осадок прокаливали в течение 2 ч при 500°C. Полученные нанесенные катализаторы 1%Cs/Me_{0.1}Co_{2.9}O₄ (Me = Ni, Mg)/носитель обозначены как Cs/Ni-Co/носитель и Cs/Mg-Co/носитель.

Фазовый состав образцов определяли методом рентгенофазового анализа (РФА) на дифрактометре Bruker D8 (Германия) с использованием излучения $\mathrm{Cu}K_{\alpha}$ ($\lambda=1.5418~\mathrm{Å}$). Образцы сканировали по точкам с интервалом 0.05° в диапазоне 2θ от 10 до 70° . Расчет структурных параметров проводили с помощью программы Powder Cell 2.4. Методом БЭТ по термодесорбции аргона определяли удельную поверхность (S_{yx} , $\mathrm{M}^2/\mathrm{\Gamma}$) образцов.

Исследование образцов методом термопрограммируемой десорбции кислорода (O_2 -ТПД) выполняли в проточной установке, анализ смеси на выходе из реактора проводили с помощью масс-спектрометра QMS 100 SRS RGA. Предварительно образцы обрабатывали в смеси 20% O_2 в Не в течение 60 мин при 450°С, после чего охлаждали до комнатной температуры. Навеска образцов составляла 400 мг, скорость подачи Не — 3.6 л/ч, скорость нагрева — 30 К/мин до 450°С. Количество десорбируемых атомов кислорода в монослоях рассчитывали в предположении, что в монослое содержится 1×10^{19} атомов O/M^2 .

Каталитическую активность в реакции разложения закиси азота определяли для фракции (0.5-0.25 мм) катализаторов в проточном реакторе при температурах $190-400^{\circ}\text{C}$, объемной нагрузке 9000 ч^{-1} и составе реакционной смеси $0.15\% \text{ N}_2\text{O}$ в Не. Длительные испытания на устойчивость к ингибиторам проводили при температуре 300°C добавлением в исходную газовую смесь либо $3\% \text{ O}_2$, либо $2.5-3\% \text{ H}_2\text{O}$. Определение концентрации закиси азота на входе и выходе из реактора проводили в режиме on-line при температуре 120°C с помощью ИК-фурье-спектрометра " Φ T-801". Степень конверсии рассчитывали по формуле:

$$x_{\rm N_2O},\%=C_{\rm N_2O}$$
(разложившегося газа)/ $C_{\rm N_2O}$ (исходная конц. газа) $\times 100\%$.

Скорость реакции разложения закиси азота оценивали в предположении реакции первого порядка по формуле:

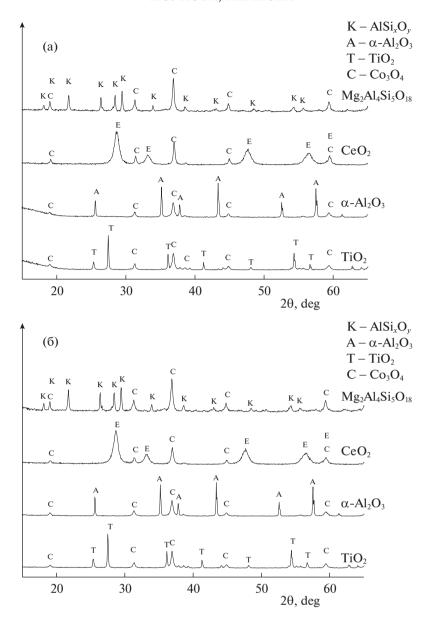
$$r_{N_2O}$$
, молекул/(м² c) = = $(UN_a)/(mS_{BET})\ln(1/(1-x))$,

где U — скорость реакционной смеси, моль/с; $N_{\rm a}$ — постоянная Авогадро; m — масса, г; $S_{\rm BET}$ — удельная поверхность, м²/г; x — конверсия $N_{\rm 2}$ О.

Температура, при которой конверсия N_2O достигала 50% (обозначена как T_{50} — температура полупревращения закиси азота), служила мерой активности катализаторов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты выполненных исследований приготовленных катализаторов и образцов сравнения представлены на рис. 1-4 и в табл. 1. На рентгенограммах (рис. 1) всех приготовленных образцов присутствуют интенсивные рефлексы, соответствующие пространственной группе Fd-3M, которая типична для Co_3O_4 , и рефлексы соответствующего носителя: α - Al_2O_3 (R-3CH) корунд, TiO_2 (P42/MNM) рутил, CeO_2 (FM-3M) флюорит и $Mg_2Al_4Si_5O_{18}$ (CCCM) кордиерит.


Рассчитанные параметры кристаллической ячейки кобальтовой шпинели в нанесенных катализаторах и величины областей когерентного рассеяния (ОКР), приведенные в табл. 1, свидетельствуют о том, что параметры кристаллической ячейки Co_3O_4 для всех нанесенных катализаторов близки к литературным значениям 8.08 Å [41]. Размеры ОКР кобальтовой шпинели для катализаторов Cs/Ni-Co/носитель изменялись в узком интервале 220—270 Å для всех носителей. Для катализаторов Cs/Mg-Co/носитель размеры ОКР частиц кобальтовой шпинели в нанесенных катализаторах изменялись в более широком интервале 210—340 Å.

Величины удельной поверхности приготовленных образцов ($S_{\rm БЭТ}$) различаются и зависят от природы носителя (табл. 1). Низкими значениями $S_{\rm БЭТ}$ (5–6 м²/г) обладают образцы на основе $\rm Mg_2Al_4Si_5O_{18}$, средние значения (11–18 м²/г) демонстрируют образцы на основе α -Al $_2O_3$ и $\rm TiO_2$ и самые высокие значения — на основе $\rm CeO_2$ (45–50 м²/г).

Исследование катализаторов методом термопрограммируемой десорбции кислорода (O_2 - $T\PiД$) показало, что десорбция также зависит от природы носителя (рис. 2, табл. 1). Согласно данным O_2 - $T\PiД$, десорбция кислорода в образце $1\%\text{Cs/Co}_3O_4$ происходит при температуре 295°C . Авторы [42] считают, что слабосвязанная поверхностная форма кислорода Co_3O_4 удаляется в интервале $200-350^\circ\text{C}$, а выше 350°C происходит удаление кислорода из оксидной структуры. При модифицировании Co_3O_4 никелем или магнием формируются более слабосвязанные поверхностные формы кислорода, которые удаляются в интервале $70-200^\circ\text{C}$ [37, 38, 43].

Профили десорбции кислорода для нанесенных на носители СеО2 и ТіО2 катализаторов характеризуются наличием двух низкотемпературных пиков, что указывает на существование двух форм поверхностного кислорода: низкотемпературной (56 и 94°C) и высокотемпературной (258 и 300°C), соответственно (рис. 2). Согласно данным [33], чистый СеО₂ также характеризуется наличием двух форм кислорода, удаление которых происходит при температурах выше 100 и 200°C. Десорбция кислорода для чистого TiO₂ – рутил [44] должна происходить при температуре выше 350°С. Для приготовленных нанесенных катализаторов наблюдаются более низкие, чем для носителей TiO₂ и CeO₂, температуры десорбции в двух наблюдаемых низкотемпературных формах кислорода, и, напротив, более высокая температура десорбции кислорода относительно активного компонента во втором низкотемпературном пике десорбции, что, по-видимому, обусловлено взаимным модифицированием носителя и активного компонента. Действительно, известно, например, что модифицирование оксида церия катионами кобальта приводит к усилению окислительно-восстановительных свойств [42]. Таким образом, наблюдаемые для катализаторов на носителях TiO_2 и CeO_2 при температуре более 250°C пики десорбции обусловлены, наиболее вероятно, десорбцией с модифицированного носителем активного компонента и модифицированного активным компонентом носителя.

У катализаторов, нанесенных на высокотемпературные носители α -Al₂O₃ и Mg₂Al₄Si₅O₁₈, первый пик десорбции (в области температур 70— 250°C) отсутствует, и соответственно отсутствует

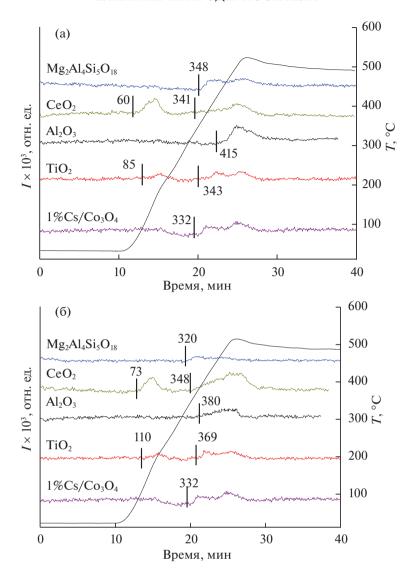


Рис. 1. Рентгенограммы нанесенных катализаторов: а — Cs/Mg—Co/носитель, б — Cs/Ni—Co/носитель. Носители: CeO₂, TiO₂, α -Al₂O₃, Mg₂Al₄Si₅O₁₈ обозначены на рисунках.

наиболее низкотемпературная поверхностная форма кислорода, относящаяся в случае носителей TiO_2 и CeO_2 к носителю. Действительно, согласно данным термопрограмированного изотопного обмена кислорода Martin и Dupre [45], начальные температуры обмена кислорода (в скобках) для α - Al_2O_3 (460°C) и SiO_2 (650°C) достаточно высоки, что не позволяет протекать десорбции в области низких температур. Десорбция кислорода во втором пике протекает при температурах, меньших характерных для этих носителей, и более высоких, чем для оксида кобальта, по-видимому, вследствие модифицирования нанесенной кобальтовой шпинели. Таким образом,

наблюдаемые для катализаторов на носителях α -Al₂O₃ и Mg₂Al₄Si₅O₁₈ при температуре более 300°C пики десорбции относятся, наиболее вероятно, к десорбции с модифицированного носителем активного компонента. Можно отметить, что количество десорбируемого кислорода в целом в \sim 2 раза выше для катализаторов, модифицированных магнием. Рассчитанные данные по количеству десорбированного кислорода представлены в табл. 1. Наибольшее количество десорбируемого кислорода ожидаемо демонстрируют катализаторы на носителе CeO_2 .

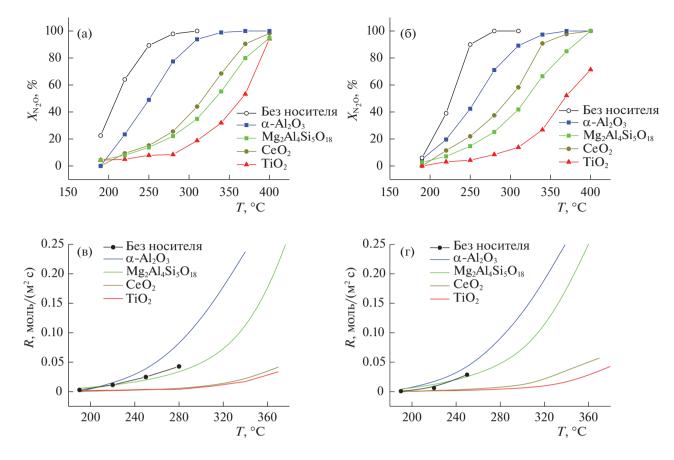
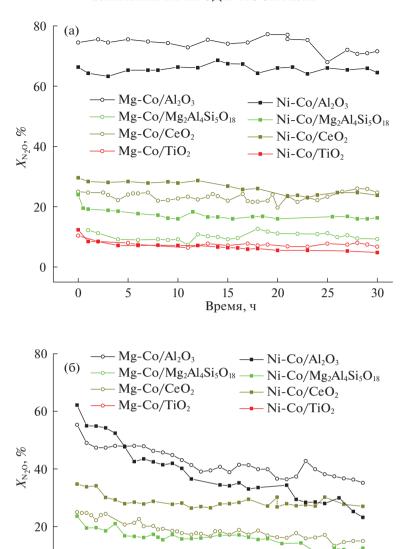

Выполненные исследования каталитической активности катализаторов показали, что величи-

Рис. 2. Результаты ТПД- O_2 для массивных и нанесенных катализаторов; обозначения см. рис. 1.

ны для чистых активных компонентов выше, чем для нанесенных катализаторов (рис. 3, табл. 1). Это может быть обусловлено как меньшим количеством активного компонента в нанесенных катализаторах, составляющим ~50 мас. %, так и влиянием модифицирования активного компонента носителем. Среди нанесенных катализаторов активность зависит от носителя и изменяется для исследуемых составов активного компонента в ряду носителей следующим образом: (без носителя) $> \alpha$ -Al₂O₃ $> \text{CeO}_2 \cong \text{Mg}_2\text{Al}_4\text{Si}_5\text{O}_{18} > \text{TiO}_2$. Наблюдаемый ряд активности не коррелирует с величинами удельной поверхности образцов, что может свидетельствовать о различном характере модифицирования активного компонента в катализаторах. При этом скорость реакции, нормированная на единицу поверхности катализаторов, изменяется в ряду: α -Al₂O₃ > Mg₂Al₄Si₅O₁₈ \cong (без

носителя) > $CeO_2 \cong TiO_2$, что указывает на меньшее модифицирование активного компонента в случае высокотемпературных носителей с низкой удельной поверхностью (корунд и кордиерит) и более значимое - в случае носителей с более высокой удельной поверхностью (CeO_2 и TiO_2). Авторы [46] указывают, что Со₃О₄ может частично внедряться в структуру рутила – ТіО2 после прокаливания при 500°C. Оксид церия также способен взаимодействовать с Со₃О₄ и образовывать смешанные растворы различного состава, а в процессе термического взаимодействия структура CeO_2 может претерпевать изменения, которые влияют на дисперсность частиц, что может приводить к экранированию нанесенного активного компонента [47] и сильно влиять на удельную активность (скорость реакции, нормированная на единицу поверхности).


Рис. 3. Конверсия N_2O (%) и скорость реакции (R) для катализаторов; обозначения см. рис. 1.

Таким образом, высокотемпературные носители (α -Al₂O₃, Mg₂Al₄Si₅O₁₈) с низкой удельной поверхностью в меньшей степени модифицируют и блокируют активный компонент и поэтому более привлекательны, чем носители на основе CeO_2 и TiO_2 , несмотря на присутствие в катализаторах, нанесенных на CeO_2 и TiO_2 , наиболее слабосвязанной поверхностной формы кислорода, которая, по-видимому, обусловлена модифицированным носителем и в условиях реакционной среды, возможно, десорбируется.

Удельные каталитические активности (нормированная на единицу поверхности скорость каталитической реакции) активного компонента и нанесенных катализаторов в случае кордиерита оказались близки, а в случае корунда даже выше (рис. 3), несмотря на модифицирование активного компонента, возможно, вследствие более высокой степени использования активного компонента в нанесенных катализаторах (так что активнормированная на единицу активного компонента, в нанесенном катализаторе выше, чем в ненанесенном оксиде). В случае носителей CeO₂ и TiO₂ удельная каталитическая активность существенно ниже, что согласуется с предположением о более сильном модифицировании активного компонента в этих катализаторах и возможной блокировкой поверхности активного компонента частицами носителя.

Можно отметить отсутствие единой корреляции между активностью катализаторов и данными О₂-ТПД по температурам и количеству десорбируемого кислорода, обычно обсуждаемой в литературе, в том числе и для модифицированных оксидов, для которых такая корреляция наблюдается [37, 38]. Отсутствие корреляции может означать, что скорость определяющей стадией каталитической реакции является стадия образования адсорбированного на поверхности кислорода, зависящая от подвижности поверхностного кислорода, а не стадия десорбции кислорода, определяемая прочностью связи [31]. Таким образом, при нанесении активного компонента на носители вследствие модифицирования активного компонента носителем происходит снижение подвижности кислорода на его поверхности, что может приводить к изменению скорость определяющей стадии процесса [26, 48, 49].

В условиях производств азотной и адипиновой кислот помимо закиси азота в отходящих газах присутствует кислород и пары воды [25], которые могут оказывать ингибирующее действие на ката-

Рис. 4. Конверсия N_2O (%) при 300° С при длительных испытаниях нанесенных катализаторов в реакционных смесях, содержащих ингибиторы: a-1500 ppm N_2O , 3.6% O_2 в He; 6-1500 ppm N_2O , 3% H_2O в He.

15

Время, ч

20

25

10

лизатор. Поэтому все нанесенные образцы были исследованы в реакции разложения закиси азота на стабильность в присутствии этих ингибиторов при 300° С в течение 30 ч. В присутствии O_2 (рис. 4a) нанесенные катализаторы демонстрируют стабильную работу лишь с незначительной потерей активности. В присутствии H_2O (рис. 46) скорость дезактивации зависела не только от природы носителя, но и от природы активного компонента. Более активные катализаторы были менее стабильны, чем менее активные. Ряд потери активности для Ni-содержащих образцов: α - Al_2O_3 (63%) > TiO_2 (52%) > $Mg_2Al_4Si_5O_{18}$ (47%) > CeO_2

0

5

(22%) и для Mg-содержащих образцов: TiO_2 (61%) > CeO_2 (40%) $\ge Mg_2Al_4Si_5O_{18}$ (39%) > α - Al_2O_3 (36%), в скобках указан процент потери активности по истечении 30 ч.

30

Активные компоненты без носителя, как и нанесенные катализаторы, значительно сильнее подвержены дезактивации в присутствии паров H_2O , нежели кислорода. При этом нанесение активного компонента на любой из носителей увеличивает его устойчивость и снижает скорость дезактивации. Так, активный компонент $1\%Cs/Mg_{0.1}Co_{2.9}O_4$ теряет 80% активности уже в

Таблица 1. Текстурные и структурные характеристики приготовленных образцов, количество десорбирующегося кислорода (по данным ТПД) и температура достижения 50% степени конверсии закиси азота

№	Образцы	$S_{ ext{БЭТ}},$ м $^2/\Gamma$	<i>T</i> _{50%,} °C	${ m O_2\text{-}T\PiД},$ моль ${ m O_2} imes 10^5$ (монослой)			OKP, Å		Параметры ячейки, Å	
				1 пик 70—250°C	2 пик 300—500°C	N	Co ₃ O ₄	Носи- тель	Co_3O_4 $(a=b=$ $=c)$	Носитель (a) (b) (c)
1	Cs/Ni-Co	32	226	48.9 (4.6)	0	4.6	260	_	8.083	_
2	Cs/Ni–Co/Mg ₂ Al ₄ Si ₅ O ₁₈	5	320	0	1.57 (0.8)	0.8	270	400	8.081	16.998 9.766 9.323
3	Cs/Ni–Co/CeO ₂	53	298	2.45 (0.1)	14.5 (0.8)	0.9	220	100	8.082	5.411
4	Cs/Ni–Co/α-Al ₂ O ₃	11	258	0	2.71 (0.7)	0.7	245	640	8.077	4.758 12.990
5	Cs/Ni–Co/TiO ₂	17	367	0.72 (0.13)	2. 85 (0.5)	0.7	250	470	8.079	4.593 2.959
6	Cs/Mg-Co	36	210	68.2 (5.7)	0	5.7	210	_	8.084	_
7	Cs/Mg–Co/Mg ₂ Al ₄ Si ₅ O ₁₈	6	332	0	2.85 (1.7)	1.7	340	445	8.083	17.005 9.780 9.330
8	Cs/Mg-Co/CeO ₂	45	317	2.99 (0.20)	13.9 (0.9)	1.1	300	90	8.086	5.411
9	$Cs/Mg-Co/\alpha-Al_2O_3$	15	252	0	8.55 (1.7)	1.7	220	515	8.080	4.758 12.990
10	Cs/Mg–Co/TiO ₂	18	366	1.19 (0.20)	2.85 (0.5)	0.7	240	530	8.082	4.593 2.959
11	1%Cs/Co ₃ O ₄	28	275	0	2.15 (0.2)	0.2	380	_	8.083	_

Примечание: N — общее количество монослоев; прочерки означают, что данные отсутствуют.

первые 5 ч работы в присутствии паров H_2O в реакционной смеси [37], в то время как нанесенные катализаторы работают гораздо стабильнее (рис. 4).

Таким образом, катализатор $Cs/Mg-Co/\alpha-Al_2O_3$ является не только наиболее активным среди приготовленных нанесенных катализаторов, но и сохраняющим свою более высокую активность после 30-часовых испытаний в присутствии паров воды.

ЗАКЛЮЧЕНИЕ

Осаждением активных компонентов на носители CeO_2 , TiO_2 , $Mg_2Al_4Si_5O_{18}$, α - Al_2O_3 приготовлены катализаторы $1\%Cs/Me_{0.1}Co_{2.9}O_4$ (Me = Ni, Mg)/носитель, содержащие ~50% активного компонента, представляющего собой твердый раствор со структурой шпинели на основе Co_3O_4 .

Показано, что при нанесении наблюдаемое ранее различие в активности активных компонентов нивелируется, при этом максимальной активностью (температура достижения 50%-й степени превращения, скорость реакции, норми-

рованная на величину удельной поверхности) характеризуются образцы, приготовленные на корундовом носителе, вероятно, вследствие меньшего модифицирования активного компонента носителем.

Обнаруженное отсутствие корреляции активности нанесенных катализаторов в реакции низкотемпературного разложения закиси азота и температурой начала десорбции кислорода или количеством десорбирующегося кислорода, вероятно, обусловлено изменением скорость-определяющей стадии процесса десорбции, вызванным модифицированием, что требует дополнительных исследований.

Показано, что ингибирующий эффект O_2 и H_2O на каталитическую активность зависит как от природы носителя, так и от состава активного компонента. Наиболее активным и сохраняющим более высокую активность в присутствии ингибиторов является катализатор 1%Cs/Mg_{0.1} $Co_{2.9}O_4$ /корунд.

Данная работа выполнена в рамках государственного задания ФГБУН ИК СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pérez-Ramirez J., Kapteijn F., Schöffel K., Moulijn J.A. // Applied Catalysis. 2003. V. 44. P. 117.
- Isupova L.A., Ivanova Y.A. // Kinetics and Catalysis. 2019. V. 60. № 6. P. 744.
- 3. Sadykov V.A., Isupova L.A., Zolotarskii I.A. et al. // Applied Catalysis A: General. 2000. V. 204. P. 59.
- Исупова Л.А., Садыков В.А., Снегуренко О.И. и др. // Патент. 1998. № RU2117528C1.
- Isupova L.A., Sadykov V.A., Snegurenko O.I. et al. / Патент. 1992. № US6489264B.
- Isupova L.A., Sadykov V.A., Snegurenko O.I. et al. // Патент. 1997. № WO9840160A1.
- 7. Isupova L.A., Sadykov V.A., Tikhov S.F. et al. // Proc. of the 8 th Int. Symp. On Heterog. Catalysis, Varna, Bulgaria, 1996. V. 1. P. 479.
- Isupova L.A., Sadykov V.A., Tikhov S.F. et al. // Catalysis Today. 1996. V. 27(1-2). P. 249.
- Isupova L.A., Sadykov V.A., Tikhov S.F. et al. // Proc. 1st World Congress on Envir. Catal. Pisa. Italy: Environmental Catalysis for a better World and Life. 1995. P. 167.
- Садыков В.А., Бруштейн Е.А., Исупова Л.А. и др. // Хим. пром-сть. 1997. № 12. С. 33.
- Sadykov V.A., Isupova L.A., Tikhov S.F. et al. // Prep. of 16th World Petroleum Congress. Calgary. 2000. № 4. P. 9.
- 12. *Носков А.С., Золотарский И.А., Кузьмин В.А. и др.* Способ конверсии аммиака // Патент. 2000. № RU2145936C1.
- 13. *Neumann J., Isupova L., Pinaeva L et al.* // Patent. 2007. № WO2007/104403 (A1).
- 14. *Jantzen S., Neumann J., Novel A.* // Uhde Fertiliser Symposium, Dortmund, Germany. 2006. P. 17.
- 15. Pinaeva L.G., Prosvirin I.P., Dovlitova L.S. et al. // Catal. Sci. Technol. 2016. V. 6. P. 2150.
- 16. *Пинаева Л.Г., Довлитова Л.С., Исупова Л.А.* // Кинетика и катализ. 2017. Т. 58. № 2. С. 183.
- 17. Пинаева Л.Г., Исупова Л.А., Куликовская Н.А., Марчук А.А. Катализатор, способ его приготовления и способ разложения закиси азота // Патент. 2011. № РФ 2430781.
- 18. Пинаева Л.Г., Сутормина Е.Ф., Исупова Л.А. и др. Катализатор, способ его приготовления и способ окисления аммиака // Патент. 2011. № РФ2430782.
- Чумаченко В.А., Исупова Л.А., Иванова Ю.А. и др. // Химия в интересах устойчивого развития. 2020. № 28. С. 210.
- Grzybek T., Papp H. // Applied Catalysis. 1992. V. 1. P. 1271.
- 21. Groves M.C.E., Sasonow A. // Journal of Integrative Environmental Sciences. 2010. V. 7. № S1. P. 211.
- 22. *Shen Q., Wang M., Wu H. et al.* // Applied Surface Science. 2018. V. 441. P. 474.
- Obalová L., Jiratova K., Karaskova K., Chromcakova Z. // Catalysis Today. 2012. V. 191. P. 116.

- 24. *Wójcik S., Ercolino G., Gajewska M. et al.* // Chemical Engineering Journal. 2019. V. 377. P. 120088.
- 25. Klegova A., Inayat A., Indyka P. et al. // Applied Catalysis B: Environmental. 2019. V. 255. P. 117745.
- 26. *Исупова Л.А.*, *Иванова Ю.А.* // Кинетика и катализ. 2019. Т. 60. № 6. С. 725.
- 27. *Konsolakis M.* //ACS Catalysis_Revised MS. 2015. V. 5. № 11. P. 6397.
- Ohnishi C., Asano K., Iwamoto S. et al. // Applied Catalysis B: Invironmental. 2007. V. 120. P. 145.
- 29. Dou Z., Zhang H., Pan Y., Xu X. / Journal of Fuel Chemistry and Technology. 2014. V. 42(2). P. 238.
- 30. *Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A.* // Appl. Catal. B. Environ. 1996. V. 9. P. 25.
- 31. *Ivanov D.V., Sadovskaya E.M., Pinaeva L.G., Isupova L.A.* // J. Catalysis. 2009. V. 267. P. 5.
- 32. Pacultova K., Karaskova K., Strakosova J. et al. // C. R. Chimie. 2015. V. 18. P. 1114.
- 33. Grzybek G., Wójcik S., Ciura K. et al. // Applied Catalysis B: Environmental. 2017. V. 210. P. 34.
- Pietrogiacomi D., Campa M.C., Carbone L.R. et al. // Applied Catalysis B: Environmental. 2016. V. 187. P. 218.
- 35. *Wójcik S., Ercolino G., Gajewska M. et al.* // Chemical Engineering Journal. 2019. V. 377. P. 120088.
- 36. *Shen Q., Li L., Li J. et al.* // Journal of Hazardous Materials. 2009. V. 163. P. 1332.
- 37. *Иванова Ю.А., Сутормина Е.Ф., Исупова Л.А., Рогов В.А.* // Кинетика и катализ. 2020. Т. 61. № 4. С. 577.
- 38. *Иванова Ю.А., Сутормина Е.Ф., Исупова Л.А., Рогов В.А.* // Кинетика и катализ. 2018. Т. 59. № 3. С. 365.
- 39. Исупова Л.А., Сутормина Е.Ф., Марчук А.А. и др. Носитель для катализаторов на основе оксида алюминия и способ его приготовления // Патент. 2016. № РФ 2623436.
- 40. *Исупова Л.А., Куликовская Н.А., Марчук А.А. и др.* Каталитический э*лемент* для гетерогенных высокотемпературных реакций // Патент. 2018. № РФ 2693454.
- 41. *Shaheen W.M.*, *Ali A.A.* // Materials Research Bulletin. 2001. V. 36. P. 1703.
- 42. *Lu S.*, *Wang F.*, *Chen C. et al.* // Journal of Rare Earths 2017. V. 35. № 9. P. 867.
- 43. *Yan L., Ren T., Wang X. et al.* // Catalysis Comm. 2003. V. 4. P. 505.
- Liraa E., Huoa P., Hansena J.Ø. et al. // Catalysis Today. 2012. V. 182. P. 25.
- Martin D., Duprez D. // J. Phys. Chem. B. 1997. V. 101. P. 4428.
- 46. *Zhang A.-Y., He Y.-Y., Chen Y.-P. et al.* // Chemical Engineering Journal. 2018. V. 334. P. 1430.
- 47. Balducci G., Fornasiero P., Di Monte R. et al. Kagpar J., Meriani S. // Catalysis Letters. 1995. V. 33. P. 193.
- 48. *Ivanov D.V., Pinaeva L.G., Isupova L.A. et al.* // Applied Catalysis A: General. 2013. V. 457. P. 42.
- 49. *Ivanov D.V., Pinaeva L.G., Sadovskaya E.M., Isupova L.A.* // Journal of Molecular Catalysis A: Chemical 2016. V. 412. P. 34.