ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2021, том 95, № 4, с. 529–533

_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 547.221:536.42

ПЛОТНОСТЬ ПЕРФТОРОКТАНА НА ЛИНИИ РАВНОВЕСИЯ ЖИДКОСТЬ–ПАР

© 2021 г. Р. А. Хайрулин^{*a*,*}, С. В. Станкус^{*a*,**}

^a Российская академия наук, Сибирское отделение, Институт теплофизики им. С.С. Кутателадзе, Hoвосибирск, Россия *e-mail: kra@itp.nsc.ru **e-mail: stankus@itp.nsc.ru Поступила в редакцию 09.09.2019 г. После доработки 27.08.2020 г. Принята к публикации 31.08.2020 г.

Методом гамма-просвечивания измерена плотность жидкого и газообразного перфтороктана C₈F₁₈ на линии насыщения в интервале температур 293–496 К. Определены координаты критической точки (критическая температура $T_{\rm C}$ = 496.97 ± 0.05 К, критическая плотность $\rho_{\rm C}$ = 596.6 ± 3.5 кг/м³) и критический показатель кривой сосуществования β = 0.35 ± 0.015. Проведено сопоставление полученных данных с результатами других авторов.

Ключевые слова: перфтороктан, плотность, жидкость, пар, критическая точка, гамма-метод **DOI:** 10.31857/S0044453721040117

Перфтороктан C_8F_{18} , как и многие другие фторорганические жидкости, обладает рядом уникальных физико-химических свойств. Он имеет высокую термическую стабильность, химическую и биологическую инертность, отличные диэлектрические характеристики, способен растворять в больших количествах легкие газы [1–3]. Перфтороктан используется как жидкий диэлектрик и теплоноситель в электротехнической промышленности, а также применяется в качестве газотранспортной жидкости в медицине [3, 4]. Ряд авторов предлагает использовать перфтороктан в качестве растворителя в процессах сверхкритической флюидной экстракции [5, 6].

Следует отметить, что многие термодинамические свойства перфтороктана, в том числе и плотность, исследованы недостаточно подробно и надежно [1, 2]. Мы нашли лишь две экспериментальные работы, где измерялась плотность жидкого перфтороктана [2, 5]. В обеих работах измерения проводились при атмосферном давлении и в очень узких температурных интервалах (295–353 и 288–313 К соответственно). Кроме того, в работе [4] методом герметичной ампулы (или, иначе, методом исчезновения мениска) [7] была оценена плотность перфтороктана в критической точке. Экспериментальных данных по плотности газообразного перфтороктана нами в литературе не обнаружено. Цель настоящей работы — измерение плотности жидкого и парообразного перфтороктана на линии насыщения, в интервале температур от 293 К до критической точки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Измерения плотности перфтороктана проводились на гамма-плотномере П-1М Института теплофизики СО РАН [8-10]. Схема гамма-плотномера представлена на рис. 1. В качестве источника излучения использовалась ампула с изотопом цезий-137 (энергия гамма-квантов 662 кэВ, активность ~50 ГБк). Узкий пучок гамма-квантов диаметром 4 мм, формируемый двумя соосными коллиматорами, проходит через ячейку, содержащую находящиеся в равновесии жидкость и ее насыщенный пар. Герметичная измерительная ячейка высокого давления изготовлена из нержавеющей стали и представляет собой полый толстостенный цилиндр с внутренним диаметром 40 мм и длиной 140 мм. Внутренний объем ячейки через вентиль связан с вакуумным насосом, системой заполнения и регулирования уровня жилкости. В ходе экспериментов жилкая фаза все время занимала примерно половину объема ячейки. Температура ячейки измеряется платиновым термометром сопротивления, отградуированным по шкале МТШ-90 в Сибирском НИИ метрологии. Максимальный перепад температуры по ячейке в статическом режиме не превышает 0.005 К. Погрешность измерения температуры, которая

Рис. 1. Схема гамма-плотномера: *I* – источник гамма-излучения (¹³⁷Cs), *2* и *8* – коллиматоры, *3* – корпус, *4* – теплоизоляция, *5* – термопара, *6* – нагреватель, *7* – измерительная ячейка, *9* – сцинтилляционный счетчик гамма-квантов, *10* и *12* – платиновые термометры сопротивления, *11* – подъемное устройство, *13* – термостатирующий блок, *14* – капилляр с вентилем.

включает погрешности калибровки термометра и перепады температуры по ячейке, оценивается в ± 0.02 К при 293 К и не более ± 0.05 К при 500 К. При измерениях плотности температура ячейки поддерживается постоянной в пределах 0.002 К. Подъемное устройство позволяет перемещать установку в вертикальном направлении относительно пучка гамма-квантов. Это дает возможность измерять ослабление излучения как в жидкой, так и в паровой фазе.

Для нахождения плотности равновесных фаз использовался относительный вариант гаммаметода [10]. Плотность жидкости и пара рассчитывалась по формуле:

$$\rho(T) = \rho_0 \frac{\ln[J_0(T)/J(T)]}{\ln[J_0(T_0)/J(T_0)]} \frac{[1 + \alpha(T_0)(T_0 - 293)]}{[1 + \alpha(T)(T - 293)]}.$$
 (1)

Здесь *T* – температура, К; ρ – плотность, кг/м³; $\alpha(T)$ – средний линейный коэффициент теплового расширения материала измерительной ячейки, K^{-1} ; $J_0(T)$ – интенсивность излучения, прошедшего через пустую ячейку, с⁻¹; J(T) – интенсивность излучения, прошедшего через жидкую или паровую фазу, с⁻¹; ρ_0 – опорное значение плотности жидкости при температуре T_0 . Подробное описание методики измерений и, в частности, вывод формулы (1) приведены в [8–10]. Погрешность измерения плотности, согласно проведенным ранее оценкам [10, 11], не превышает ±1.5 кг/м³. Эти оценки были подтверждены результатами исследования плотности дистиллированной воды вдоль линии насыщения, в интервале температур 290—530 К [11] и сопоставлением их со справочными данными [12].

Исследовался образец перфтороктана производства компании "ПиМ Инвест" (Россия) [13] с заявленной чистотой 99 мол. %. Перед экспериментами жидкость кипятилась на воздухе для удаления летучих примесей и растворенных газов. После этого одна часть образца использовалась для определения плотности жидкости при комнатной температуре методом гидростатического взвешивания, а вторая часть незамедлительно помещалась в измерительную ячейку, предварительно откачанную до 2×10^{-2} мм рт. ст. Согласно результатам гидростатического взвешивания, опорное значение плотности ρ_0 составило 1764.1 \pm 0.5 кг/м³ при атмосферном давлении и температуре $T_0 = 294.35$ К.

Измерения плотности жидкого и газообразного перфтороктана на линии насыщения проводились следующим образом. Термостатирующий блок нагревался до требуемой температуры. После этого проводилась длительная изотермическая выдержка измерительной ячейки для установления равновесия в образце. Время установления равновесия определялось по моменту, когда интенсивность проходящего через образец излучения в течение 10—15 мин оставалась постоянной в пределах случайной погрешности. После этого проводились измерения интенсивности проходящего излучения на различных высотах выше и ниже мениска (т.е. в жидкой и паровой фазах). Время измерения интенсивности на каж-

Рис. 2. Зависимость плотности от высоты в двухфазном образце перфтороктана при температуре, близкой к критической; темные точки – экспериментальные данные по плотности жидкости и пара; светлые точки – данные, полученные в области, где пучок гамма-излучения проходит через две фазы; $h_{\rm M}$ – высота мениска; линии – аппроксимация экспериментальных точек, полученных в однофазных областях и их экстраполяция к $h_{\rm M}$; $\rho_{\rm L}$ и $\rho_{\rm V}$ – значения плотности равновесных фаз.

дой высоте составляло 800—1000 с, случайные погрешности усредненных значений *J* не превышали 0.05%. По формуле (1) рассчитывались плотности находящихся в равновесии жидкости и пара.

При высоких температурах ($T_{\rm C} - T \le 3$ K, где *T*_C – критическая температура) измерения плотности осложнял эффект аномально высокой сжимаемости вещества [14]. В наших опытах этот эффект проявлялся в том, что плотность жидкости и пара начинала зависеть от высоты вследствие переменного гидростатического давления (см. рис. 2). Так как вблизи мениска пучок гамма-квантов проходит одновременно через две фазы, то измеренный скачок плотности при пересечении межфазной границы оказывается размытым на интервале, равном диаметру пучка. Поэтому процедура определения плотности находящихся в равновесии фаз выполнялась следующим образом. Сначала по максимальному градиенту измеренной плотности в области ее резкого изменения находилось местоположение межфазной границы *h*_M. Затем экспериментальные точки, полученные на расстояниях от мениска, больших, чем радиус пучка, аппроксимировались полиномами. Плотность жидкой и паровой фаз (р. и $\rho_{\rm V}$), находящихся в равновесии друг с другом,

Рис. 3. Температурные зависимости плотности жидкого и газообразного перфтороктана на линии насыщения.

находилась экстраполяцией полиномиальных зависимостей к $h_{\rm M}$. Чтобы оценить дополнительные погрешности, возникающие при такой процедуре нахождения равновесной плотности жидкости и пара, аппроксимация и экстраполяция проводилась полиномами разной степени (в основном — второй и третьей). Согласно оценкам, дополнительная погрешность составляет 1–2 кг/м³.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и на рис. 3 представлены экспериментальные значения плотности жидкости и насыщенного пара ($\rho_{\rm L}$ и $\rho_{\rm V}$) на линии равновесия. Кроме того, в табл. 1 приведена плотность пара ρ_{V}^{id} для интервала температур 293-373 К, рассчитанная по уравнению состояния для идеального газа (при расчетах мы использовали данные по давлению насыщенного пара C₈F₁₈ из работы [5]). Как видно, при температурах от 342 до 373 К экспериментальные данные по плотности газообразного перфтороктана отклоняются от расчетных значений ρ_V^{id} на 0.4–1.0 кг/м³, что меньше погрешности наших измерений. Очевидно, что при более низких температурах и соответственно более низких давлениях приближение идеального газа будет выполняться еще лучше, и его можно использовать для расчета термических свойств C₈F₁₈ в паровой фазе при T ~ 293 К. Точность этих расчетов, по-видимому, будет достаточна для большинства практических приложений.

Таблица 1. Экспериментальные значения плотности жидкого и газообразного перфтороктана на линии насыщения, кг/м³

<i>Т</i> , К	$ ho_L$	<i>Т</i> , К	$ ho_{V}$	ρ_V^{id}
293.347	1766.4	293.347	_	0.5
293.485	1766.6	293.485	_	0.5
303.066	1741.7	303.066	_	0.8
313.505	1714.5	313.505	_	1.4
322.529	1690.3	322.529	_	2.0
332.065	1663.6	332.065	_	3.0
342.351	1635.1	342.351	4.1	4.5
352.669	1605.1	352.668	6.1	6.6
363.019	1573.5	363.019	8.8	9.5
373.401	1541.8	373.402	12.4	13.4
383.221	1510.4	383.220	16.8	
393.116	1477.4	393.117	22.0	
403.596	1439.8	403.596	30.0	
413.584	1403.1	413.583	38.8	
423.071	1365.4	423.071	49.5	
432.709	1324.0	432.709	63.2	
443.314	1275.0	443.314	81.3	
448.629	1248.1	448.629	93.0	
453.942	1220.1	453.942	106.3	
458.735	1191.7	458.735	119.4	
463.551	1163.1	463.551	134.9	
468.364	1130.5	468.364	152.9	
473.186	1095.5	473.187	174.2	
477.472	1059.4	477.472	196.6	
481.237	1024.6	481.237	220.3	
485.005	983.5	485.007	249.4	
488.790	934.1	488.791	287.0	
491.997	879.0	491.997	331.3	
494.687	810.4	494.687	390.5	
495.779	765.1	495.779	430.5	
496.591	707.5	496.591	487.7	
496.865	667.1	496.865	527.1	

Примечание: данные по плотности равновесных фаз выше 492 К получены экстраполяцией (см. текст).

Чтобы найти критическую температуру линии равновесия жидкость—пар мы аппроксимировали полученные данные степенной зависимостью:

$$\rho_{\rm L} - \rho_{\rm V} = A \varepsilon^{\beta}. \tag{2}$$

Согласно современным представлениям о критических явлениях, эта зависимость описывает асимптотическое поведение линий равновесия вблизи критической точки [14]. Здесь $\varepsilon = (T_{\rm C} - T)/T_{\rm C} -$ относительная температура, β – критический индекс кривой сосуществования, А – критическая амплитуда. Как оказалось, асимптотическая зависимость (2) становится справедливой при ε < $< 2 \times 10^{-2}$ (см. рис. 4). Наилучшая аппроксимация достигается при следующих параметрах: критическая температура $T_{\rm C} = 496.97 \pm 0.05$ K; критический индекс $\beta = 0.35 \pm 0.015$. Полученная величина критического индекса близка к его теоретическому значению для модели Изинга: согласно различным методам расчета, теоретическое значение лежит в пределах 0.31-0.34 [14].

Среднее значение плотности ($\rho_L + \rho_V$)/2, в пределах погрешности измерений, линейно зависит от температуры при T > 450 К (см. рис. 3), т.е. подчиняется классическому "правилу прямолинейного диаметра" [14]. Экстраполяция линейной зависимости к T_C дает значение критической плотности $\rho_C = 596.6 \pm 3.5$ кг/м³.

Согласно работе [4], критическая плотность перфтороктана равна 611 ± 5 кг/м³ (чистота образца, как и в нашей работе, составляла 99 мол. %), а критическая температура лежит в интервале 497.9–498.5 К. Как видно, расхождения между значениями критических параметров, полученными в [4] и нашей работе, несколько превышают погрешности измерений. По нашему мнению, величины $\rho_{\rm C}$ и $T_{\rm C}$, измеренные в [4] методом исчезновения мениска, можно рассматривать лишь как оценочные. Фактически этот метод дает возможность определить только среднюю плотность образца с максимальной температурой исчезновения мениска. Реальная плотность сильно меняется по высоте образца из-за аномально высокой сжимаемости вещества вблизи критической точки. Кроме того, регистрация момента исчезновения и появления межфазной границы в образцах с околокритической плотностью затруднена вследствие явления критической опалесценции [7].

Сопоставление экспериментальных результатов по плотности жидкого перфтороктана с данными [2, 5] представлено на рис. 5. Наши данные очень хорошо согласуются с результатами измерений [2]: максимальное расхождение составляет всего лишь 0.2%. Значения плотности из работы [5] лежат в среднем на 0.6% выше зависимости $\rho_L(T)$, полученной нами. Отметим, что в [2] и нашей работе измерения плотности проводились на образцах перфтороктана примерно одинаковой

Рис. 4. Разность плотностей жидкого и газообразного перфтороктана на линии насыщения в зависимости от относительной температуры (в логарифмических координатах). Точки – результаты настоящей работы; линия – аппроксимация точек степенной зависимостью (2).

Рис. 5. Сопоставление экспериментальных результатов по плотности жидкого перфтороктана при умеренных температурах (*1*) с литературными данными [2] и [5] (2 и 3 соответственно).

чистоты (99.15 и 99 мол. % соответственно), тогда как в [5] исследовался образец чистотой 98 мол. %. По-видимому, расхождение данных по плотности жидкого перфтороктана при умеренных температурах, полученных разными авторами, связа-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 4 2021

но, в основном, с влиянием примесей, а не с погрешностями измерений.

Таким образом, в результате проведенного исследования получены надежные экспериментальные данные по плотности перфтороктана на линии насыщения в интервале температур 293–496 К. Измерения плотности пара и жидкости при температурах выше 353 К проведены, по-видимому, впервые. Анализ полученных результатов позволил уточнить координаты критической точки линии равновесия жидкость-пар перфтороктана.

Исследования выполнены в рамках государственного задания ИТ СО РАН (АААА-А17-117022850029-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Максимов Б.Н., Барабанов В.Г., Серушкин И.И. и др.* Промышленные фторорганические продукты: Справочник. Л.: Химия, 1990. 464 с.
- 2. Синицын Е.Н., Михалевич Л.А., Янковская О.П. и др. Теплофизические свойства фторорганических соединений. Экспериментальные данные и методы расчета: Справочник. Екатеринбург: Наука, 1995. 178 с.
- 3. *Nelson W.M., Tebbal Z., Naidoo P. et al.* // Fluid Phase Equilib. 2016. V. 408. P. 33.
- 4. Vandana V., Rosenthal D.J., Teja A.S. // Ibid. 1994. V. 99. P. 209.
- Dias A.M.A., Caço A.I., Coutinho J.A.P. et al. // Ibid. 2004. V. 225. P. 39.
- Dias A.M.A., Llovell F., Coutinho J.A.P. et al. // Ibid. 2009. V. 286. P. 134.
- 7. Experimental Thermodynamics. Volume 7: Measurement of the Thermodynamic Properties of Multiple Phases / R.D. Weir and T.W. de Loos (Editors). Amsterdam: Elsevier, 2005. 450 p.
- 8. Stankus S.V., Khairulin R.A. // Int. J. Thermophys. 2006. V. 27. P. 1110.
- 9. Хайрулин Р.А., Абдуллаев Р.Н., Станкус С.В. // Журн. физ. химии. 2017. Т. 91. № 10. С. 1719. (Khairulin R.A., Abdullaev R.N., Stankus S.V. // Russ. J. Phys. Chem. A. 2017. V. 91. Р. 1946.)
- Станкус С.В., Хайрулин Р.А., Попель П.С. Методика экспериментального определения плотности твердых и жидких материалов гамма-методом. Методика ГСССД МЭ 206–2013. М.: Стандартинформ, 2013. 54 с.
- Хайрулин Р.А., Груздев В.А., Станкус С.В., Верба О.И. // Теплофизика и аэромеханика. 2006. Т. 13. № 4. С. 623. (Khairulin R.A., Gruzdev V.A., Stankus S.V., Verba O.I. // Thermophysics and Aeromechanics. 2006. V. 13. P. 575).
- Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. М.: Изд-во МЭИ, 1999. 168 с.
- 13. http://en.fluorine1.ru
- 14. *Анисимов М.А.* Критические явления в жидкостях и жидких кристаллах. М.: Наука, 1987. 272 с.