ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 546.791.6+541.183

ИССЛЕДОВАНИЕ ПРОЦЕССА СОРБЦИИ УРАНИЛ-ИОНОВ ИЗ ВОДНЫХ РАСТВОРОВ СТРУКТУРИРОВАННЫМ СОПОЛИМЕРОМ 4-ИЗОПРОПЕНИЛФЕНОЛА, ФЕНОЛА И ФОРМАЛЬДЕГИДА

© 2021 г. Г. М. Мехтиева^{*a*,*}, М. Р. Байрамов^{*a*}, Дж. А. Нагиев^{*b*}, М. А. Агаева^{*a*}, Ш. Дж. Кулиева^{*a*}

^а Бакинский государственный университет, Баку, Азербайджан ^b ЗАО Национальный ядерный исследовательский центр, Баку, Азербайджан *e-mail: mehdiyeva_gm@mail.ru Поступила в редакцию 20.05.2020 г. После доработки 20.05.2020 г. Принята к публикации 29.07.2020 г.

Исследован процесс извлечения из водных систем урановых солей в статических условиях (при 25° C), сорбционным материалом на основе соолигомера 4-изопропенилфенола, фенола и малеинового ангидрида. Выявлено влияние различных факторов (pH среды, концентрации уранилионов, количества сополимера, продолжительности выдержки) на основные параметры процесса сорбции (степень извлечения уранил-ионов и сорбционная емкость). Установлено, что при pH 5–6 степень извлечения уранил ионов достигает максимума (~94%); сорбционная емкость составляет ~80 мг/г. При найденных оптимальных значениях pH (5–6) исследована зависимость статической сорбционной емкости от начальной концентрации (C_0) уранил-ионов. Показано, что стационарная область наблюдается при концентрации >200 мг/л, при этом сорбционная емкость составляет 101 мг/г. Построены изотермы Фрейндлиха и Ленгмюра и сделаны предположения относительно возможных взаимодействий уранил-ионов с активными фрагментами сополимера. Исследована также возможность регенерации сорбента в присутствии кислот и щелочей. Выявлено, что максимальная десорбция происходит в присутствии минеральных кислот и достигает ~96.2%.

Ключевые слова: уранил-ионы, сорбция, структурированные сополимеры, сорбционная емкость, степень извлечения

DOI: 10.31857/S0044453721040178

Одна из актуальных экологических проблем современной химической науки — разработка эффективных и безопасных способов очистки водных систем от тяжелых металлов, радионуклидов и др. вредных веществ [1–3]. Несмотря на то, что в этом направлении в последние годы проведены обширные исследования и предложены различные химические, электрохимические, сорбционные и др. способы очистки, многие задачи, связанные с изысканием доступного сырья, вспомогательных веществ и др. материалов, не решены в достаточной степени, что указывает на важность продолжения целенаправленных работ [4, 5].

Следует отметить, что в мировой практике предпочтение отдают применению сорбционных способов очистки с использованием как природных, так и гибридных и синтетических сорбционных материалов [1, 6]. Среди последних важное место занимают структурированные (сшитые) сополимеры, содержащие в структурах гидроксильные, аминные, амидные, нитрильные, карбоксильные и др. реакционноспособные фрагменты, за счет которых можно в "мягких" условиях проводить процессы улавливания тех или иных вредных веществ из водных систем, в том числе и промышленных и сточных вод [7-10]. Нами разработан синтетический сорбционный материал (4) на основе ранее полученного продукта (2) [11] – тройного соолигомера фенола, формальдегида и 4-изопропенилфенола (1), а также модифициирующего сомономера – малеинового ангидрида следующей структуры:

589

В настоящей работе приведены результаты исследований 4 в качестве сорбента для извлечения уранил-ионов из водной системы, содержащей NaCl.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тройной соолигомер (2) 4-изопропенилфенола (1), фенола и формальдегида получали по известной методике [11] конденсацией 1 с фенолом и формальдегидом при их мольном соотношении 1:1:2 соответственно, температуре 90°С, продолжительности 3 ч в присутствии 0.5 мол. % ацетата цинка. По окончании реакции полученную смесь несколько раз промывали кипяченой водой, полученный остаток сушили под глубоким вакуумом. Выход 92%.

Методика получения сшитого сополимера (3). Сополимер 3 получали сополимеризацией полученного тройного соолигомера 2 с малеиновым ангидридом при температуре 80°С, продолжительности 5 ч в присутствии 0.5 мол. % (на общую смесь мономеров при расчете на кратную связь) инициатора ДИНИЗ. Реакцию проводили при эквимолярных соотношениях взятых реагентов в расчете на кратную связь. Полученный сополимер экстрагировали в ацетоне с целью удаления исходных реагентов из смеси и высушивали до постоянной массы. Выход 89%.

Гидролиз сшитого сополимера 3 проводили кипячением в воде в колбе, снабженной обратным холодильником, в течение 2 ч. По окончании реакции продукт 4 сушили под вакуумом до постоянной массы. Выход 94%. Структура соединения 4 подтверждена данными ИК-спектроскопии. Полосы поглощения при 748, 671, 818, 880 см⁻¹ относятся к деформационным колебаниям ароматических СН-связей, характерных для ароматического кольца фенола и **1**, полосы поглощения при 1102, 1162, 1209 см⁻¹ относятся к деформационным и валентным колебаниям С–О-группы, полосы поглощения при 1361, 1454 см⁻¹ – к деформационным колебаниям связей С–Н при СН₂ и СН₃, полосы при 1600, 1700 см⁻¹ – к валентым колебаниям С=О-группы, полосы при 2921, 3188, 3283 см⁻¹ – к валентным колебаниям ОНгруппы

Используемые в реакции 4-изопропенилфенол (1) и фенол получали по известной методике [12] щелочным крекингом *бис*-фенола, полученного конденсацией фенола с ацетоном. Формальдегид в реакции брали в виде формалина (Carmalab) (36% водный раствор формальдегида). Малеиновый ангидрид (Carmalab) использовали в реактивном виде.

Подготовка сорбента 4 и приготовление растворов. Исследуемый сшитый сополимер 4 размельчали (до размера частиц <250 мкм) и сушили в термошкафу при 110°С. Для проведения лабораторных экспериментов использовали водный раствор урановой соли UO₂(NO₃)₂ · 6H₂O и 0.01M NaCl при различных pH. С целью регулирования pH среды использовали соляную кислоту (при pH 1–2), буферный раствор, состоящий из 0.1M CH₃COOH и 0.1M NH₄OH в различных соотношениях (при pH 3–11), а также NaOH (при pH 12–13).

Исследования проводили в статических условиях при 25°С и общей продолжительности 24 ч.

Рис. 1. Фотопики для определения радионуклидов ²³⁵U и ²³⁸U в гамма-спектрометре HP Ge.

Растворяли рассчитанное количество уранилнитрата в 50 мл водного раствора NaCl, далее в раствор погружали 50 мг сополимера **4** и выдерживали заданное время. Содержание 80 мг/л UO_2^{2-} ионов в растворе эквивалентно 18 Бк/л активности изотопа ²³⁵U. Исследование процесса улавливания уранил-ионов по времени показало, что процесс интенсивно протекает в первые три часа, далее происходит некоторая стабилизация. Поэтому все дальнейшие исследования проводили при продолжительности 24 ч.

Степень сорбции уранил-ионов (R) и сорбционную емкость (q_e) сорбента вычисляли по следующим формулам [13]:

$$R = \frac{C_0 - C}{C_0} \times 100\%,$$
 (1)

$$q_{\rm e} = \frac{C_0 - C}{m_{\rm sorb}} V_{\rm sorb},\tag{2}$$

где C_0 — начальная концентрация уранил ионов, C — равновесная концентрация уранил ионов, V_{sorb} — объем сорбционной среды, m_{sorb} — масса сорбента.

Аппаратура. ИК-спектры сополимеров регистрировали на ИК-фурье-спектрометре ALPHA (фирма BRUKER, Германия) в диапазоне волновых чисел 600–4000 см⁻¹. С целью исследования сорбционных свойств сополимера 4 использовали γ -спектрометр HP Ge (с германиевым детектором, производства фирмы Canberra, США) для определения активностей изотопов урана (для определения содержания изотопов ²³⁵U и ²³⁸U в водных растворах).

Методика определения сорбционных свойств. Содержание изотопа ²³⁵U определяли, исходя из его активности, равной 185.7 кэВ (энергетический выход пика 54%). Содержание изотопа ²³⁸U определяли по продукту его превращения в метастабильный изотоп ²³⁴Pa (активность 1001.03 кэВ, энергетический выход пика 0.59%). Следует отметить, что с помощью γ -спектрометра можно определить содержание изотопа ²³⁸U в исходном водном растворе. Однако вследствие различия химических свойств протактиния и урана и неодинаковых их сорбционных свойств, в фильтрате между ²³⁴Pa (*m*) и ²³⁵U наблюдается нарушение равновесия. Поэтому активность изотопа ²³⁸U определить исходя из активности изотопа ²³⁴Pa (*m*) невозможно (рис. 1). Поэтому для расчета концентрации ²³⁵U и ²³⁹U использовали формулы из [14]:

$$A_{\rm U_{235}} = \lambda_{\rm U_{235}} N_{\rm U_{235}} = \frac{\ln 2}{T_{1/2}^{\rm U_{235}}} N_{\rm A} \frac{m^{\rm U_{235}}}{M_{\rm U_{235}}}, \qquad (3)$$

$$A_{\rm U_{238}} = \lambda_{\rm U_{238}} N_{\rm U_{238}} = \frac{\ln 2}{T_{1/2}^{\rm U_{238}}} N_{\rm A} \frac{m^{\rm U_{238}}}{M_{\rm U_{238}}}, \tag{4}$$

где $A_{U_{235}}$ и $A_{U_{238}}$ – активности радионуклидов ²³⁵U и ²³⁸U соответственно, $\lambda_{U_{235}}$ и $\lambda_{U_{238}}$ – констаты полураспада радионуклидов ²³⁵U и ²³⁸U соответственно, $N_{\rm A}$ – число Авогадро, $m^{U_{235}}$ и $m^{U_{238}}$ – массы радионуклидов ²³⁵U и ²³⁸U соответственно, $M^{U_{235}}$ и $M^{U_{238}}$ – атомные массы радионуклидов ²³⁵U и ²³⁸U соответственно, $T_{1/2}^{U_{235}}$ и $T_{1/2}^{U_{238}}$ – периоды полураспада радионуклидов ²³⁵U и ²³⁸U соответственно.

Рис. 2. Зависимости степени сорбции (*R*) и статической сорбционной емкости (*q*) сорбции урана от pH раствора сорбентом **4**.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Известно [15], что в зависимости от pH водного раствора урановые ионы могут находиться в различных формах: помимо уранил- и ураноилионов, также и в их гидратированных состояниях. Поэтому очень важно исследование влияния pH среды на процесс сорбции. Нами исследована зависимость степени сорбции и сорбционной емкости сорбента **4** от pH раствора в статических условиях при m = 50 мг, T = 300 K, $C_0 = 80$ мг/л. Основная цель экспериментов — определение влияния pH среды на сорбционную способность урана сорбентом **4**.

На рис. 2 приведена зависимость степени сорбции (R) и статической сорбционной емкости (q) сорбента 4 от pH раствора в указанных услови-

Рис. 3. Зависимость статической сорбционной емкости (q) сорбента **4** от начальной концентрации уранил-ионов в растворе.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 4 2021

ях. Как видно, кривые носят экстремальный характер. Максимальное значение степени сорбции наблюдается при pH 5–6.

На рис. 3 приводится зависимость сорбционной емкости от начальной концентрации уранилионов в растворе. Из данных рис. 2 и 3 можно заключить, что при малых значениях pH (т.е. в кислых растворах) в водном растворе присутствуют уранил-ионы UO_2^{2+} . С увеличением pH среды количество указанных ионов уменьшается, и в растворе превалирует ионы UO_2OH^+ , $(UO_2)_3(OH)_5^+$, т.е. происходит увеличение содержания гидрокси-катионов.

Приведенная на рис. 3 зависимость $q = f(C_0)$ показывает, что стационарная область наблюдается при C₀ > 200 мг/л. Результаты проведенных исследований показали, что сорбционная емкость достигает максимального значения 101 мг/г по уранил-ионам. Очевидно, протоны двух -СО-ОН-групп в структуре исследованного сополимера замещаются гидроксил-катионами. При pH 5-6 в среде в основном образуются катионы UO₂OH⁺, которые взаимодействуют с поверхностными карбоксильными группами сополимера [15]. Ионы UO_2^{2+} и UO_2OH^+ , видимо, реагируют и с OHгруппами, имеющимися в структуре фенольного звена. Эти взаимодействия могут быть достаточно сильными. Указанные ионные формы в основном реализуются при рН 5-6. Поэтому на зависимости R от pH (рис. 2) максимальная степень сорбции и получена при этих значениях рН.

<i>A</i> ₀ , Бk/л	<i>А</i> , Бk/л	<i>C</i> ₀ , мг/л	<i>C</i> _e , мг/л	$\lg C_{\rm e}$	$q_{ m e},$ мг/г	$\lg q_{ m e}$	$C_{\rm e}/q_{\rm e}$
1.2	0.06	2.4	0.12	-0.92	2.28	0.36	0.053
2.4	0.21	4.8	0.42	-0.38	4.38	0.64	0.096
3.6	0.4	7.2	0.8	-0.10	6.4	0.81	0.125
14.4	3.2	28.8	6.4	0.81	22.4	1.35	0.286
28.8	6.9	57.6	13.8	1.14	43.8	1.64	0.315
43.2	12.6	86.4	25.2	1.40	61.2	1.79	0.412
57.6	19.5	115.2	39	1.59	76.2	1.88	0.512
86.4	39.4	172.8	78.8	1.90	94	1.97	0.838
115.2	64.7	230.4	129.4	2.11	101	2.00	1.281

Таблица 1. Результаты расчетов параметров изотермы по Фрейндлиху

Обнаруженное равновесие между урановыми ионами и сорбентом хорошо иллюстрируется изотермой Фрейндлиха [16]:

$$\lg q_{\rm e} = \lg K_{\rm F} + \frac{1}{n} \lg C_{\rm e},\tag{5}$$

где $C_{\rm e}$ — концентрация урана в растворе после сорбции, мг/л; $q_{\rm e}$ — количество урана, сорбированного в единице массы сорбента 4, мг/г; $K_{\rm F}$ — константа сорбционной емкости (рассчитана экспериментально), n — фактор неоднородности сорбента 4. Результаты расчетов приведены в табл. 1.

При рН 7 на зависимостях R = f(pH) и $q_c = f(pH)$ наблюдаются неболышие максимумы или стационарные области, что указывает на процесс сорбции на поверхности сополимера ионов и в виде $(UO_2)_3(OH)_5^+$, $(UO_2)_3(OH)_7^+$, т.е. в виде гидрокси-катионов. В сильнощелочной среде (при pH ≥ 10), как показали эксперименты, на поверхности сорбента обнаруживаются электроноакцепторные центры, так как при этих значениях pH в растворе имеются гидрокси-анионы $UO_2(OH)_3^-$ и $(UO_2)_3(OH)_7^-$. Изотерма Фрейндлиха приводится на рис. 4.

Рис. 4. Изотерма сорбции катиона урана сорбентом 4 по Фрейндлиху.

Была построена также изотерма Ленгмюра (рис. 5). Приведенную зависимость србционной емкости (q_e) от C_e можно объяснить исходя из изотермы Ленгмюра [17]:

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{K_{\rm L}} + \frac{a_{\rm L}}{K_{\rm L}} C_{\rm e},\tag{6}$$

$$q_{\rm e} = \frac{Q_{\rm max} a_{\rm L} C_{\rm e}}{1 + a_{\rm L} C_{\rm e}},\tag{7}$$

где $K_{\rm L}$ — константа сорбции сорбента **4**, л/г; $a_{\rm L}$ — постоянная в зависимости от энергии сорбции, л/мг; $Q_{\rm max}$ — максимальная сорбционная емкость сорбента, мг/г.

С целью выявления выгодности процесса сорбции была вычислена постоянная рассеивания (*R*_L) по формуле:

$$R_{\rm L} = \frac{1}{1 + bC_0},\tag{8}$$

где $b(a_L)$ — постоянная Ленгмюра, C_0 — начальная концентрация уранил ионов в растворе, мг/л [17].

В табл. 2 приводятся константы изотерм Фрейндлиха и Ленгмюра.

Рис. 5. Изотерма сорбции катиона урана сорбентом 4 по Ленгмюру.

Φ	рейндл	ИХ	Ленгмюр					
N	K _F	R^2	<i>К</i> _L , л/г	а _L , л/мг	R _L	<i>Q</i> _{max} , мг/г		
1.72	7.8	0.989	6.96	0.06	0.07	101		

Таблица 2. Константы изотерм Фрейндлиха и Ленгмюра для сорбента 4

Как видно из табл. 2, значение R_L находится в интервале 0–1, что указывает на возможность процесса сорбции. Также видно, что на основе изотермы Фрейндлиха вычислен коэффициент неоднородности поверхности сорбента (1/n = 0.5829). Поскольку эта величина оценивается в диапазоне 0–1, было определено, что поверхность сорбента достаточно неоднородна.

С целью установления возможности максимального извлечения уранил-ионов были проведены эксперименты и при высокой концентрации урановой соли (300 мг/л) и различных количествах сорбента (0.2–10 г/л) (при рН 6, комнатной температуре, в общем объеме раствора 50 мл, в присутствии 10 мл буфера ацетата аммония). При увеличении концентрации сорбента в жидкой фазе от 0.2 до 10 г/л скорость сорбции уранил-ионов увеличивается. В диапазоне 5–10 г/л скорость сорбции начинает стабилизироваться.

С целью изучения возможности регенерации сорбента 4 исследована десорбция 100 мг/г уранил-иона из сорбента 4 растворами азотной, соляной кислот. гидроксида натрия и хлорида натрия [18]. По мере увеличения концентрации обекислот десорбция урана из сорбента ИХ увеличивается. Максимальная десорбция происходит при концентрации минеральных кислот, равной 0.5 М и составляет 95.3% в случае десорбции азотной кислотой и 96.2% – при десорбции соляной кислотой. Обе минеральные кислоты показывают почти одинаковую степень десорбции в растворах в одинаковой концентрации, следовательно, десорбция урана из сорбента происходит только за счет протона. Как было отмечено, десорбция уранила из сорбента осуществлялась также растворами NaOH и NaNO3. Выявлено, что степень десорбции уранил-ионов в присутствии 0.05 М раствора NaOH составляет всего 25%.

Таким образом, проведенные исследования позволяют сделать вывод о возможности использования структурированного сополимера **4** в качестве эффективного сорбента для очистки водных систем от урановых соединений.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Modi M.K., Pattanaik P., Nishad Dash et al.* // Intern. J. Pharmac. Sci. Rev.and Res. 2015. V. 34. № 1. P. 122.
- 2. Akpomieab K.G., Dawodua F.A., Adebowale K.O. // Alexandria Engineering Journal. 2015. V. 54. № 3. P. 757. https://doi.org/10.1016/j.aej.2015.03.025
- Бунина З.Ю., Брылева Е.Ю., Юрченко О.И., Беликов К.Н. // Хімія, фізика та технологія поверхні. 2018. Т. 9. № 1. С. 80.
- 4. Полякова И.В., Грошикова А.Р., Лещинская А.П. и др. // Сорбционные и хроматографические процессы. 2008. Т. 8. № 4. С. 694.
- 5. Шилина А.С., Милинчук В.К. // Там же. 2010. Т. 10. № 2. С. 237.
- Jun Qian, Suya Cai, Sen Yang, Daoben Hua // J. Materials Chem. A. 2017. V. 5. P. 22380. https://doi.org/10.1039/C7TA08025E
- 7. James A.M., Harding S., Robshaw Th. et al. // ACS Applied Materials Interfaces. 2019. V. 11. № 25. P. 22464. https://doi.org/10.1021/acsami.9b06295
- 8. Ферапонтов Н.Б., Гагарин А.Н., Токмачёв М.Г. // Сорбционные и хроматографические процессы. 2016. Т. 16. № 3. С. 368.
- 9. Zemskova L., Egorin A., Tokar E., Ivanov V. // Biomimetics. 2018. V. 39. № 3. https://doi.org/10.3390/biomimetics3040039
- Zakharchenko E., Mokhodoeva O., Malikov D. et al. // Procedia Chemistry. 2012. 7. P. 268. https://doi.org/10.1016/j.proche.2012.10.043
- 11. Магеррамов А.М., Байрамов М.Р. Химия алкенилфенолов. М.: Техносфера, 2018. 362 с.
- 12. Магеррамов А.М., Байрамов М.Р., Агаева М.А. и др. // Успехи химии. 2015. Т. 84. № 12. С. 1258.
- 13. *Магеррамов А.М., Байрамов М.Р., Гарибов А.А. и др. //* Журн. прикл. химии. 2011. Т. 84. № 1. С. 151.
- 14. 3-rd ed, Ann Arboar, Michigan, 1999. P.806.
- Annick Froideval. Chimie de l'uranium(VI) à l'interface solution/minéraux (quartz et hydroxyde d'aluminium): expériences et caractérisations spectroscopiques. Chimie. Université Louis Pasteur – Strasbourg I, 2004. Français.
- Ho Y.S., Porter J.F., Kay Mc. // Water, Air, and Soil Pollution. 2002. V. 141. P. 1.
- Ng J.C.Y., Cheung W.H., McKay G. // Chemosphere. 2003. V. 52. P. 1021. https://doi.org/10.1016/S0045-6535(03)00223-6
- Nakajima A., Sakaguchi T. // Journal of Chemical Technology and Biotechnology. 1986. V. 36. № 1. P. 281. https://doi.org/10.1002/jctb.280400205