– ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 544.723.23 + 544.723.21

ГАЗОХРОМАТОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ КОМПОЗИЦИОННОГО СОРБЕНТА НА ОСНОВЕ МЕТАЛЛООРГАНИЧЕСКОГО КАРКАСНОГО ПОЛИМЕРА MIL-53(AI)

© 2021 г. М. Ю. Парийчук^а, К. А. Копытин^а, Л. А. Онучак^{а,*}, Ю. В. Мартина^а

^а Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

*e-mail: onuchakla@mail.ru Поступила в редакцию 28.04.2020 г. После доработки 27.05.2020 г. Принята к публикации 10.06.2020 г.

Исследованы закономерности удерживания и определены термодинамические характеристики сорбции летучих органических соединений из газовой фазы на колонках с композиционными сорбентами на основе металлоорганического каркаса MIL-53(Al) и полидифенилдиметилсилоксана (ПФМС). Показано, что при увеличении содержания MIL-53(Al) в бинарном сорбенте до 73 мас. % удерживание преимущественно связано с адсорбцией в микропористой структуре MIL-53(Al), а не растворением в пленке ПФМС. Показано, что взаимодействие адсорбат – адсорбент в ромбических каналах MIL-53(Al) в большей степени зависит от дисперсионных сил притяжения, чем диполь-дипольных и специфических взаимодействий.

Ключевые слова: металлоорганические каркасные полимеры, MIL-53(Al), композиционный сорбент, газовая хроматография, механизм удерживания

DOI: 10.31857/S0044453721040208

Металлоорганические каркасные соединения (Metal Organic Frameworks, MOFs) или металлоорганические координационные полимеры (МОКП) представляют собой класс микро- и мезопористых материалов, получаемых за счет самосборки различных металл-содержащих структурных групп и органических линкеров. Большое разнообразие строительных единиц МОКП обеспечивает возможность широкого варьирования пористой структуры, а сравнительно высокая термостабильность и устойчивость в различных жидких средах делает МОКП перспективными материалами для технологии хранения газов [1], экстракции [2, 3], катализа [4, 5], хроматографии [6-10]. Описано применение как наполненных, так и капиллярных колонок с различными МОКП для разделения легких газов, алканов, аренов, полярных соединений в газовой хроматографии [11]. Необходимо отметить, что использование МОКП в качестве сорбентов для газовой хроматографии (ГХ) сопряжено с некоторыми трудностями, такими как неоднородность размеров частиц синтезированных кристаллов, их небольшая механическая прочность, что затрудняет получение высокоэффективных колонок с хорошими эксплуатационными свойствами. Поэтому более перспективным направлением в области практического применения МОКП в ГХ является

получение композиционных сорбентов различного типа. Так, в работе [12] МОКП на основе меди (Си-ВТС) наносили на широкопористый кремнеземный носитель Хромосорб W, поверхность которого деактивировали с помощью 3% полиметилсилоксановой фазы SE-30. В работе [13] осуществляли направленный синтез (кристаллизацию) MOF-5 на микросферах из полидиметилсилоксана, получая частицы с морфологией "полимерное ядро – оболочка МОКП". Возможность получения композиционного сорбента на основе углеродного материала (графена) и МОКП ZIF-8 продемонстрирована в работе [14]. Следует, однако, отметить, что большинство этих работ посвящено исследованию разделительных свойств колонок с сорбентами на основе МОКП. Отсутствуют работы, в которых анализируется влияние полимерной фазы и степени доступности внутренних пор МОКП в композите на его сорбционные свойства. В связи с этим, цель работы – изучение сорбции органических соединений из газовой фазы композиционным сорбентом на основе металлоорганического соединения MIL-53(Al) и полидифенилдиметилсилоксана при различных соотношениях МОКП и полимера для установления вклада адсорбции в пористой структуре МОКП в газохроматографическое удерживание и термодинамику сорбционного перераспределения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходный MIL-53(Al) (Sigma-Aldrich) диспергировали с помощью ультразвука в ацетоне для получения фракции с размерами частиц ≤1 мкм. Композиционный сорбент получали нанесением микрочастиц MIL-53(Al) на широкопористый кремнеземный носитель Хроматон N AW ($s_{y\pi}$ = $= 1 \, \text{м}^2/\Gamma$), предварительно модифицированный 5.5% полидифенилдиметилсилоксановой фазой SP-2250 (50% фенил). Были изготовлены две наполненные колонки с разным содержанием MIL-53(Al) в бинарном сорбенте "МОКП – полимер". В колонке № 1 (1.2 м × 2.5 мм) композиционный сорбент содержал 6.7% MIL-53(Al) и 5.5 мас. % полидифенилдиметилсилоксана (ПФМС) по отношению к массе Хроматона N AW, а в колонке № 2 (0.9 м × 2 мм) – 15% и 5.5 мас. % соответственно. Колонки кондиционировали в токе азота при температуре 280°С в течение 10 часов.

Эксперимент проводили на газовом хроматографе Кристалл-5000.2 с пламенно-ионизационным детектором. Избыточное давление на входе в колонку ΔP варьировали в интервале 80–120 кПа, что соответствовало скорости газового потока (азот) на выходе из колонки $F_{P_a,T_c} = 20-30$ мл/мин.

Фактор удерживания *k* рассчитывали по формуле:

$$k = \frac{t_R - t_M}{t_M},$$

где *t_R*, *t_M* — время удерживания сорбата и несорбирующегося вещества (метан) соответственно.

Удельный объем удерживания сорбатов V_g^T определяли в расчете на единицу массы бинарного сорбента по уравнению:

$$V_g^T = rac{(t_R - t_M)F_{P_aT_c}j_3^2}{W_S} = rac{(t_R - t_M)F_{\overline{P},T_c}}{W_S},$$

где W_S — масса неподвижной фазы ($W_S = W_{\text{MIL-53}} + W_{\text{SP-2250}}$); F_{P_a,T_c} — объемная скорость газа-носителя на выходе из колонки при температуре колонки T_c и атмосферном давлении P_a ; j_3^2 — коэффициент Джеймса и Мартина; $F_{\overline{P},T_c}$ — объемная скорость, приведенная к температуре колонки T_c и усредненному по длине колонки давлению $\overline{P_x}$.

Для расчета $F_{\overline{P},T_c}$ применяли как традиционный метод с использованием мыльно-пленочного расходомера, так и предложенный в работе [15] метод "холодной" градуировки колонки. Оба метода показывали близкие значения объемной скорости газового потока внутри колонки $F_{\bar{P},T_c}$. Ввиду меньшей трудоемкости, особенно при работе в широком диапазоне температур, использовали преимущественно метод "холодной" граду-

ировки колонки. Погрешность определения V_g^T не превышала в среднем 5%, а фактора удерживания k - 8%.

Сорбционные характеристики (удельный объем удерживания V_g^T , фактор удерживания k) определяли для каждого из исследованных соединений в том интервале скоростей газового потока, в котором они сохраняются практически постоянными для малых проб сорбатов.

Изменение внутренней энергии $\Delta \overline{U}$ (теплоты) сорбции и величину, пропорциональную стандартному изменению энтропии ΔS^* , определяли из экспериментальных данных по температурным зависимостям удельных объемов удерживания сорбатов по уравнению:

$$\ln V_g^T = -\frac{\Delta \overline{U}}{RT} + \frac{\Delta S^*}{R}$$

Общий массив экспериментальных данных по удерживанию 21 исследованного соединения был получен в интервале температур от 110 до 230°С. Однако, для каждого вещества зависимости $\ln V_g^T - 1/T$ были определены в более узком интервале ΔT , в котором хроматографические пики были не слишком размыты и имели симметричную форму.

Исследованными сорбатами являлись *н*-алканы (C_5-C_7), изомеры октана, арены (бензол, *о*- и *м*-ксилолы), циклогексан, алканолы и изоалканолы (C_3-C_5), хлорпроизводные метана и нитрометан. С использованием программного комплекса Spartan для них были рассчитаны некоторые молекулярные параметры — длина *l*, объем V_m , поляризуемость α и дипольный момент молекулы μ .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Металлоорганический каркасный полимер MIL-53(Al) (Al—OH-бензол-1,4-дикарбоксилат) имеет систему каналов ромбической формы. После синтеза получается каркас с сечением каналов 7.3×7.7 Å, в котором содержатся остатки линкера (молекулы терефталевой кислоты). Температурная активация приводит к освобождению каналов и увеличению размеров их сечения до 8.5×8.5 Å [16] (рис. 1).

Для задач практической ГХ необходимо получить такой сорбент на основе МОКП, который бы обеспечивал быстрый массообмен между газовой фазой и его микропористой структурой, а также обладал хорошими эксплуатационными

Рис. 1. Канальная структура металлорганического каркасного полимера MIL-53(Al).

свойствами (механическая прочность, термостабильность). Использование широкопористого (диаметр пор ~10 мкм) кремнеземного носителя, а также послойное нанесение тонкой пленки (0.055 мкм) среднеполярного полимера ПФМС и слоя агрегированных микрокристаллитов MIL-53(Al) способствует не только облегчению переноса вещества в поры, но и лучшей адгезии и закреплению частиц на дезактивированной поверхности носителя.

Таким образом, на исследованных сорбентах одновременно происходят и адсорбция в порах. и растворение в пленке полимера (адсорбционноабсорбционный вариант ГХ) [17]. В процессе кондиционирования колонки при достаточно высокой температуре (280°С) часть полимерной фазы из полимерного слоя может проникать в пространство между микрокристаллитами и тем самым экранировать их поверхность. Этот эффект должен уменьшаться при увеличении количества МОКП в сорбенте и приводить к существенному росту удерживания. Представленные на рис. 2 зависимости $\ln V_g^T - 1/T$, полученные на колонках с различным содержанием МОКП в композиционном сорбенте, подтверждают вышеизложенное предположение.

Из рис. 2 следует, что увеличение массовой доли МОКП в композиционном сорбенте от 0.55 (колонка № 1) до 0.73 (колонка № 2) приводит к росту удерживания ксилолов примерно в 6–7 раз. Такое многократное увеличение удельного объема удерживания V_g^T наблюдается и для других исследованных углеводородов, и этот рост, как правило, сопровождается увеличением теплоты сорбции $|\Delta \vec{U}|$ на 3–10 кДж/моль. Для полярных соединений (спирты, дихлорметан) рост удерживания существенно меньше, причем величина $|\Delta \vec{U}|$ для них либо изменяется мало, либо даже уменьшается (пропанол-1, бутанол-1).

Рис. 2. Зависимости $\ln V_g^T - 1/T$ изомеров ксилола, полученные на колонках с композиционным сорбентом "MIL-53(Al) – ПФМС": *1*, 2 – колонка № 1 (55% MIL-53(Al)); *3*, 4 – колонка № 2 (73% MIL-53(Al)); *1*, 3 – о-ксилол; 2, 4 – м-ксилол.

№ п/п	Сорбаты	V_m , Å ³	α , Å ³	μ, D	V_g^T , 170°С, см ³ /г	<i>k</i> , 170°C	$-\Delta \overline{U},$ кДж/моль	–∆ <i>S</i> *, Дж/(моль К)
1	Пентан	106.5	9.95	0	57.5	2.1	54.1	88.3
2	Гексан	124.8	11.78	0	160.5	6.1	57.6	87.7
3	Гептан	143.1	13.62	0	1254.9	37.5	66.2	90.0
4	2,2-Диметилгексан	160.7	15.45	0	2063.1	71.7	73.4	102.3
5	2,3-Диметилгексан	160.8	15.45	0	1796.2	61.7	67.3	89.5
6	2,3,4-Триметилпентан	160.6	15.45	0	2284.9	60.3	72.7	99.8
7	2,2,4-Триметилпентан	160.3	15.45	0	1897.9	60.9	73.2	102.3
8	Циклогексан	111.5	11.01	0	215.3	8.1	49.7	67.5
9	Бензол	99.2	10.43	0	463.2	13.2	52.1	66.5
10	о-Ксилол	135.3	14.10	0.46	1283.2	41.3	62.5	81.5
11	м-Ксилол	135.6	14.10	0.27	2052.2	60.9	78.4	113.6
12	Пропанол-1	77.4	6.92	1.68	267.4	7.7	37.3	37.8
13	Пропанол-2	77.4	6.92	1.63	56.2	1.3	49.6	78.3
14	Бутанол-1	95.7	8.75	1.68	660.1	25.9	41.8	40.3
15	2-Метилпропанол-1	93.7	8.75	1.62	239.9	6.0	61.7	93.6
16	2-Метилпропанол-2	93.6	8.75	1.63	69.4	2.0	53.4	85.3
17	3-Метилбутанол-1	113.8	10.59	1.51	810.0	22.5	64.0	88.7
18	Дихлорметан	60.9	6.47	1.36	80.2	2.5	44.6	64.1
19	Трихлорметан	74.9	8.39	1.02	82.5	2.7	53.2	83.8
20	Тетрахлорметан	89.1	10.32	0	255.0	9.4	57.0	82.8
21	Нитрометан	55.4	4.45	3.98	84.7	2.6	42.2	58.3

Таблица 1. Молекулярные параметры и термодинамические характеристики сорбции исследованных соединений

Найденные закономерности свидетельствуют о превалирующем вкладе адсорбции в удерживание на колонке № 2 с композиционным сорбентом, содержащем 73% MIL-53(Al) и 27% ПФМС, а также о том, что поверхность стенок пор этого МОКП имеет большую склонность к неспецифическим взаимодействиям с адсорбатами, чем к специфическим, что обнаружено в работах [18, 19]. Именно поэтому удерживание *о*-ксилола меньше, чем *м*-ксилола, так как длина молекулы последнего (6.5 Å) больше, чем у *о*-ксилола (5.9 Å), что приводит к увеличению дисперсионных сил притяжения *м*-ксилола гидрофобными стенками пор MIL-53(Al).

Увеличение количества МОКП в сорбенте влияет на последовательность элюирования из колонки хлорпроизводных метана. На сорбенте с меньшим содержанием MIL-53(Al) (колонка 1) удерживание возрастает с увеличением дипольного момента μ молекул в ряду тетрахлорметан (0 D) \rightarrow трихлорметан (1.02 D) \rightarrow дихлорметан (1.36 D). Такая последовательность удерживания, очевидно, связана с влиянием ПФМС. На колонке № 2 удерживание этих соединений возрастает с увеличением объема V_m и поляризуемости α молекул в ряду дихлорметан \rightarrow трихлорметан \rightarrow тетрахлорметан (табл. 1).

Таким образом, влияние полимерного слоя на сорбцию в колонке № 2 очень мало и характеристики удерживания исследованных соединений на этой колонке, в основном, обусловлены адсорбцией в пористой структуре MIL-53(Al), поэтому детальные исследования термодинамики сорбции были проведены с использованием этой колонки.

На рис. 3 представлены зависимости $\ln V_g^T - 1/T$, полученные на колонке № 2 для *н*-алканов C₅-C₇, 2,2,3-триметилментана, циклогексана и бензола. Из представленного рисунка видно, что диапазон температур элюирования существенно зависит от объема молекулы V_m . С увеличением V_m этот диапазон смещается в область более высоких температур.

Адсорбция на MIL-53(Al) чувствительна к строению углеродного скелета молекулы. Так, в случае соединений, имеющих в своей структуре шесть атомов углерода, удерживание увеличивается в ряду *н*-гексан \rightarrow циклогексан \rightarrow бензол. Вместе с тем, на основе сопоставления теплот адсорбции $|\Delta \vec{U}|$ (таблица 1) можно утверждать, что

Рис. 3. Зависимости $\ln V_g^T - 1/T$ углеводородов на колонке с композиционным сорбентом "MIL-53(Al) – ПФМС" (73% MIL-53(Al)): *1* – *н*-пентан, *2* – *н*-гексан, *3* – циклогексан, *4* – бензол, *5* – *н*-гептан, *6* – 2,2,3-триметилпентан.

линейные молекулы н-гексана сильнее взаимодействуют со стенками пор каркаса, чем циклические молекулы циклогексана и бензола. Следовательно, большее удерживание циклических углеводородов по сравнению с н-гексаном связано с меньшим падением энтропии при переходе их жестких (бензол) и полужестких (шиклогексан) молекул из газовой фазы в пористую структуру каркаса. н-Октан элюировался из колонки только при $t > 250^{\circ}$ С, образуя сильно размытые и ассиметричные пики, что затрудняло определение характеристик удерживания. Линейные размеры изомерных октанов (l = 6.8 - 8.1 Å) лучше соответствуют размерам ромбических каналов MIL-53(Al) и они элюировались из колонки в интервале температур 200-230°С.

Наличие метильных заместителей в основном скелете молекулы спирта приводит к усилению дисперсионных взаимодействий со стенками канала MIL-53(Al), и, как следствие, к увеличению теплоты адсорбции $|\Delta \overline{U}|$ изоалканолов по сравнению с их линейными аналогами. Это приводит к сильному увеличению наклона зависимости $\ln V_g^T - 1/T$ изоалканолов по сравнению с соответствующими *н*-алканолами (рис. 4).

Однако, несмотря на более высокие значения $|\Delta \overline{U}|$ для изоалканолов, их удерживание существенно меньше. Из сопоставления величин падения энтропии при адсорбции (таблица 1) можно сделать вывод о том, что меньшее удерживание изомерных спиртов обусловлено меньшей подвижностью их молекул в пористой структуре каркаса по сравнению с поведением спиртов линейного строения.

Рис. 4. Зависимости $\ln V_g^T - 1/T$ спиртов на колонке с композиционным сорбентом "MIL-53(Al) – ПФМС" (73% MIL-53(Al)): *I* – бутанол-1, *2* – пропанол-1, *3* – 2-метилпропанол-1, *4* – 2-метилпропанол-2, *5* – пропанол-2.

Нами проанализировано влияние дипольного момента μ , линейного размера l и объема V_m молекул исследованных сорбатов на теплоту адсорбции $|\Delta \overline{U}|$. Так, наименьшие значения $|\Delta \overline{U}|$ найдены для нитрометана ($\mu = 3.98$ D), пропанола-1 и бутанола-1 ($\mu = 1.68$ D), полярные молекулы которых имеют линейное строение. Максимальные значения $|\Delta \overline{U}|$ получены для *м*-ксилола и изомеров октана (~70–78 кДж/моль).

Для исследованного набора соединений, линейные размеры которых изменяются от l = 2.84 Å (дихлорметан) до l = 9.33 Å (*н*-гептан) не установлено корреляции между l и $|\Delta \overline{U}|$. Так, для хлорпроизводных метана ($l \approx 2.85$ Å) величина $|\Delta \overline{U}|$ возрастает в ряду дихлорметан \rightarrow трихлорметан \rightarrow тетрахлорметан. При близких значениях l для *н*-бутанола и 3-метилбутанола-1 (l = 6.55 Å) теплоты адсорбции составляют 41.8 и 64.0 кДж/моль, соответственно. В большей степени выражена тенденция роста $|\Delta \overline{U}|$ с увеличением объема V_m (рис. 5) и поляризуемости молекул.

Следует отметить, что полученные значения $|\Delta \overline{U}|$ для исследованных соединений на колонке № 2 выше на (на 10–20 кДж/моль), чем при адсорбции на плоской поверхности графитированных саж [20] и сорбции на ПФМС. Так, для *н*-гексана и *н*-гептана величины $|\Delta \overline{U}|$ на "чистом" ПФМС составили, соответственно, 24.6 и 38.2 кДж/моль; для ароматических соединений они изменяются в пределах от 25.5 (бензол) до 42.8 (*о*-ксилол). Это подтверждает предположение о том, что удерживание на колонке № 2 в ос-

Рис. 5. Изменение внутренней энергии при сорбции композиционным сорбентом "MIL-53(Al) – ПФМС" (73% MIL-53(Al)), представленное в координатах $|\Delta U|$ – объем молекулы V_m (нумерация точек соответствует табл. 1).

новном связано с адсорбцией в микропористой структуре MIL-53(Al), а не с растворением в пленке ПФМС.

Таким образом, при адсорбции в ромбических каналах MIL-53(Al) проявление диполь-дипольных взаимодействий, π - π -стекинга и специфических взаимодействий (водородная связь, донорно-акцепторные взаимодействия) затруднено. Взаимодействие адсорбат—адсорбент, характеризующееся величиной $|\Delta \vec{U}|$, в большей степени зависит от неспецифических дисперсионных сил притяжения, вклад которых при адсорбции в узких полостях МОКП повышается при увеличении объема молекулы, разветвлении углеводородной цепи и при повышении степени сферичности формы молекул (например, в ряду дихлорметан—тетрахлорметан).

Авторы выражают благодарность в.н.с. лаборатории физико-химических основ хроматографии и хромато-масс-спектрометрии ИФХЭ РАН к.х.н. Сайфутдинову Б.Р. за предоставленные образцы МОКП MIL-53(Al) и директору МНИЦ-ТМ д.х.н., проф. Блатову В.А. за консультации и техническую помощь.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-29-04010 мк.

СПИСОК ЛИТЕРАТУРЫ

- 1. Alkordi M.H., Belmabkhout Y., Cairns A. et al. // IUCrJ. 2017. V. 4. P. 131.
- https://doi.org/10.1107/S2052252516019060
- Wang X., Ye N. // Electrophoresis. 2017. V. 38. P. 3059. https://doi.org/10.1002/elps.201700248
- Rocio-Bautista P., Pacheco-Fernandez I., Pasan J. et al. // Anal Chim Acta. 2016. V. 939. P. 26. https://doi.org/10.1016/j.aca.2016.07.047
- 4. Zhang T., Lin W. // Chem. Soc. Rev. 2014. V. 43. P. 5982. https://doi.org/10.1039/C4CS00103F
- Kornienko N., Zhao Y., Kley C.S. et al. // J. Am. Chem. Soc. 2015. V. 137. P. 14129. https://doi.org/10.1021/jacs.5b08212
- Yusuf K., Agel A., Al-Othman Z. // J. Chromatogr. A. 2014. V. 1348. P. 1. https://doi.org/10.1016/j.chroma.2014.04.095
- Li J.-R., Kuppler R.J., Zhou H.-C. // Chem. Soc. Rev. 2009. V. 38. P. 1477. https://doi.org/10.1039/b802426j
- Li J.-R., Sculley J., Zhou H.-C. // Chem. Rev. 2012. V. 112. P. 869. https://doi.org/10.1021/cr200190s
- Yu Y., Ren Y., Shen W. et al. // Trend. Anal. Chem. 2013. V. 50. P. 33. https://doi.org/10.1016/j.trac.2013.04.014
- Zhang J., Chen Z. // J. Chromatogr. A. 2017. V. 1530. P. 1. https://doi.org/10.1016/j.chroma.2017.10.065
- Tang W.-Q., Xu J.-Y., Gu Z.-Y. // Chem. Asian J. 2019. V. 14. P. 3462. https://doi.org/10.1002/asia.201900738
- Harvey S.D., Eckberg A.D., Thallapally P.K. // J. Sep. Sci. 2011. V. 34. P. 2418. https://doi.org/10.1002/jssc.201100317
- Prasun M., Roy K., Ramanan A. et al. // RSC Adv. 2014.
 V. 4. P. 17429. https://doi.org/10.1039/C4RA00894D
- Yang X., Li C., Qi M. et al. // J Chromatogr A. 2016. V. 1460. P. 173. https://doi.org/10.1016/j.chroma.2016.07.029
- 15. *Кудряшов С.Ю., Арутюнов Ю.И., Онучак Л.А. //* Журн. физ. химии. 2007. Т. 81. С. 107.
- Loiseau T., Serre C., Huguenard C. et al. // Chem. Eur. J. 2004. V. 10. P. 1373. https://doi.org/10.1002/chem.200305413
- 17. Яшин Я.И., Яшин Е.Я., Яшин А.Я. Газовая хроматография. М.: Издательство "ТрансЛит", 2009. 528 с.
- 18. Сайфутдинов Б.Р., Исаева В.И., Александров Е.В. и др. // Изв. АН. Сер. хим. 2015. № 5. С. 1039.
- 19. Сайфутдинов Б.Р., Коннова М.Е., Исаева В.И. и др. // Там же. 2017. № 1. С. 16.
- 20. *Онучак Л.А., Лапшин С.В., Кудряшов С.Ю. и др. //* Изв. вуз. Хим. хим. техн. 2003. Т. 46. № 4. С. 62.