_____ ХИМИЧЕСКАЯ КИНЕТИКА __ И КАТАЛИЗ ____

УДК 541. 572. 128

КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ МЕДЛЕННОГО ПЕРЕНОСА ПРОТОНОВ ОТ β-ЗАМЕЩЕННЫХ ПОРФИРАЗИНОВ К ОРГАНИЧЕСКИМ ОСНОВАНИЯМ

© 2021 г. О. А. Петров^{а,*}

^аИвановский государственный химико-технологический университет, Иваново, Россия

**e-mail: poa@isuct.ru* Поступила в редакцию 06.02.2020 г. После доработки 29.07.2020 г. Принята к публикации 06.10.2020 г.

Рассмотрены закономерности межмолекулярного переноса протонов от β-замещенных порфиразинов к диметилсульфоксиду, циклическим и ациклическим азотсодержащим основаниям в инертных растворителях. Установлены необычно низкие скорости процесса. Показано влияние кислотных свойств порфиразинового макроцикла, протоноакцепторной способности основания, а также диэлектрической проницаемости среды на кинетические параметры кислотно-основного взаимодействия. Обсуждены вопросы строения и устойчивости комплексов с переносом протонов порфиразинов.

Ключевые слова: порфиразины, кислотно-основное взаимодействие, перенос протона, комплексы с переносом протонов, реакционная способность, кинетика, азотсодержащие основания, диметилсульфоксид

DOI: 10.31857/S004445372104021X

Изучение физико-химических свойств порфиразиновых макроциклов (H₂PA) является предметом все более пристального внимания исследователей, поскольку наличие четких представлений о межмолекулярных взаимодействиях, протекающих с участием H₂PA, создает хорошую базу для использования результатов эксперимента в практических целях. В настоящее время порфиразины, благодаря разнообразным возможностям модификации их структуры, нашли применение в качестве жидкокристаллических, каталитических и сенсорных материалов, фотосенсибилизаторов синглетного кислорода, гасителей флуоресценции, нелинейной оптике и др. [1]. Расширить спектр полезных свойств этого класса соединений возможно при всестороннем изучении кислотно-основных взаимодействий, в которых Н₂РА проявляют ряд особенностей, не свойственных порфиринам [2].

Кислотные свойства β-замещенных порфиразинов

Под действием сильных оснований (гидроокись тетрабутиламмония) в среде диметилсульфоксида H_2PA подвергаются двухстадийной кислотной ионизации по внутрициклическим NH-связям, приводящей к образованию депротонированных дианионных форм [3]. При этом величины pK_{a1} и

pK_{a2} достаточно сильно зависят от сольватационных эффектов. Сравнение кислотных свойств порфиразинов в газовой фазе наиболее достоверно отражает взаимосвязь между протонодонорной способностью макроцикла и его строением, поскольку исключает влияние свойств среды [4].

Порфиразин (р $K_{a1} = 12.36$), благодаря наличию четырех мезо-атомов азота, обладает выраженными кислотными свойствами по NH-связям в отличие от порфина (р $K_{a1} = 22.35$). Введение в β-положения порфиразинового макроцикла электронодонорных заместителей приводит к увеличению р K_{a1} , а электроноакцепторных – к ее уменьшению. Для тетрабромпорфиразина (H₂PaBr₄) и тетрахлорпорфиразина (H₂PaCl₄) величины р*K*_{a1} равны 8.45 и 9.09 соответственно. Менее сильное влияние на кислотность молекулы оказывает фенильное замещение в порфиразине. Для октафенилпорфиразина ($H_2Pa(C_6H_5)_8$) величина р $K_{a1} = 10.36$. Дальнейший рост протонодонорной способности следует ожидать при введении в фенильные кольца H₂Pa(C₆H₅)₈ электроноакцепторных заместителей. Однако термодинамические данные кислотной ионизации для окта(*n*-бромфенил)порфиразина ($H_2Pa(C_6H_4Br)_8$), окта(*n*-нитрофенил)порфиразина $(H_2Pa(C_6H_4NO_2)_8),$ окта(м-трифторметилфенил)порфиразина

 $(H_2Pa(C_6H_4CF_3)_8),$ гекса(*м*-трифторметилфенил)бензопор-фиразина ($H_2Pa(C_6H_4CF_3)_6$)(C_4H_4))

и тетра(*м*-трифторметилфенил)дибензо-порфиразина $(H_2Pa(C_6H_4CF_3)_4)(C_4H_4)_2)$ отсутствуют.

 $\begin{aligned} R_1 &= H, R_2 = Br (H_2 PaBr_4); \\ R_1 &= H, R_2 = Cl (H_2 PaCl_4); \\ R_1 &= R_2 = C_6 H_4 Br (H_2 Pa(C_6 H_4 Br)_8); \\ R_1 &= R_2 = C_6 H_4 NO_2 (H_2 Pa(C_6 H_4 NO_2)_8); \\ R_1 &= R_2 = C_6 H_4 CF_3 (H_2 Pa(C_6 H_4 CF_3)_8) \end{aligned}$

 $(H_2Pa(C_6H_4CF_3)_4(C_4H_4)_2)$

Сведения о протонодонорной активности этих порфиразинов были получены при изучении их реакционной способности в процессах кислотноосновного взаимодействия с органическими основаниями, в качестве которых были взяты пиридин (Py), 2-метилпиридин (MePy), морфолин (Mor), бензиламин (BzNH₂), пиперидин (Pip), *н*-бутиламин (BuNH₂), *трет*-бутиламин (Bu'NH₂), диэтиламин (Et₂NH), триэтиламин (Et₃N), три-*н*-бутиламин (Bu₃N) и диметилсульфоксид (DMSO).

Спектральная картина кислотно-основного взаимодействия с участием β-замещенных порфиразинов

Взаимодействие порфиразинов с азотсодержащими основаниями и DMSO в инертном растворителе наблюдается только в условиях значительного избытка основания [5–15]. При этом спектральные изменения, сопровождающие реакцию, не зависят от его природы. Так, электронный спектр поглощения (ЭСП) H₂PaBr₄ в среде нейтрального бензола имеет в видимой области расщепленную Q-полосу с λ_{I} и λ_{II} при 643 и 577 нм соответственно (D_{2h} -симметрия π -хромофора молекулы). При введении в бензол добавок *трет*бутиламина с течением времени регистрируется уменьшение интенсивности Q_x - и Q_y -составляющих *Q*-полосы и одновременный рост интенсивности полосы поглощения с $\lambda = 607$ нм, характерной для D_{4h} -симметрии порфиразинового макроцикла (рис. 1, изменение *I*).

В системе бензол-DMSO спектральная картина не претерпевает существенных изменений. В ЭСП $H_2Pa(C_6H_4CF_3)_8$ в присутствии морфолина наблюдается уменьшение интенсивности Q_x - и Q_{v} -полос поглощения с $\lambda_{I} = 659$ и $\lambda_{II} = 594$ нм и одновременный рост полосы поглощения с $\lambda =$ = 632 нм (рис. 2, изменение 1). Аналогичная картина сохраняется для H_2PaCl_4 [9], $H_2Pa(C_6H_4Br)_8$ [8, 14] и H₂Pa(C₆H₄NO₂)₈ [8, 14]. Электронный спектр поглощения порфиразинов с различными заместителями в пиррольных кольцах как в бензоле, так и в системе бензол-DMSO также имеет в видимой области расщепленную Q-полосу с $\lambda_{I} = 690$, $\lambda_{II} = 636$, $\lambda_{III} = 585$ нм для $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ и $\lambda_{I} = 731$, $\lambda_{II} = 565$ нм для $H_2Pa(C_6H_4CF_3)_4(C_4H_4)_2$. В присутствии азотсодержащих оснований интенсивность расщепленной Q-полосы уменьшается на фоне роста полос поглощения с $\lambda_{I} = 664$, $\lambda_{II} = 619$ и $\lambda_{I} = 711$, $\lambda_{II} = 590$ нм для $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ и $H_2Pa(C_6H_4CF_3)_4(C_4H_4)_2$ соответственно (рис. 3, 4; изменение 1).

Происхождение Q-полосы и ее составляющих связано с $\pi \rightarrow \pi^*$ -электронными переходами меж-

Рис. 1. Изменение ЭСП H_2 Ра Br_4 в присутствии *трет*бутиламина в течение 10 мин при 313 К и $C_{Bu'NH_2} = 1.20$ моль/л в бензоле [9].

ду высшими заполненными и низшими вакантными молекулярными орбиталями [16], которые в ходе кислотно-основного взаимодействия изменяются по энергии. Это приводит к изменению симметрии порфиразинового макроцикла от D_{2h} до D_{4h} [17]. Наблюдаемые спектральные изменения (рис. 1–4), указывающие на повышение симметрии молекулы от D_{2h} до D_{4h} , как и при образовании металлокомплексов [18, 19], свидетельствуют о том, что исследованные порфиразины в присутствии органических оснований проявляют свойства двухосновных NH-кислот и образуют комплексы с переносом протонов – $H_2PA\cdot 2B$.

Строение и устойчивость комплексов с переносом протонов В-замещенных порфиразинов

В комплексах H₂PA·2В протоны NH-групп, связанные с молекулами оснований и двумя внутрициклическими атомами азота располагаются над и под плоскостью макроцикла [20, 21], что обеспечивает соблюдение D_{4h} -симметрии π -хромофора молекулы (рис. 1-4). При этом в малополярном бензоле (хлорбензоле) перенос протонов от NH-кислоты к основанию, приводящий к образованию разделенных растворителем ионных пар с последующей их диссоциацией представляется маловероятным [22]. Кислотно-основное взаимодействие, скорее всего, ограничивается либо стадией образования Н-комплекса (Н-ассоциата I), либо ионного комплекса (ион-ионного ассоциата), представляющего собой Н-связанную ионную пару (II). По мере увеличения кислотных свойств макроцикла, а также протоноакцепторной способности основания и диэлектрической проницаемости среды следует ожидать смещение кислотно-основного равновесия (1) в сторону образования более полярной структуры:

Комплексы $H_2PA \cdot 2B$ в бензоле и системе бензол—DMSO подвергаются достаточно быстрому распаду с течением времени. В ЭСП регистрируется уменьшение интенсивности *Q*-полосы с $\lambda = 607$ нм для H_2PaBr_4 , $\lambda = 632$ нм для

 $H_2Pa(C_6H_4CF_3)_8$, $\lambda_I = 664$ и $\lambda_{II} = 619$ нм для H_2 . Pa(C₆H₄CF₃)₆(C₄H₄), а также с $\lambda_I = 711$ и $\lambda_{II} = 590$ нм для $H_2Pa(C_6H_4CF_3)_4(C_4H_4)_2$ (рис. 1–4, изменение 2). В случае H_2PaBr_4 низкоинтенсивная полоса поглощения с $\lambda = 490$ нм, свидетель-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 4 2021

Рис. 2. Изменение ЭСП H_2 Ра(C_6H_4 CF₃)₈ в присутствии морфолина в течение 30 мин при 323 К и $C_{Mor} = 10.90$ моль/л в системе бензол—5% DMSO [13].

ствующая о наличии продуктов полураспада макроцикла—дипиррометенов, не претерпевает существенных изменений. В ЭСП раствора она исчезает только ~120 ч. При этом процесс деструкции сопровождается первоначальным изменением синей окраски раствора до желтой с последующим обесцвечиванием.

Аналогичная картина наблюдается для H_2Pa-Cl_4 [9]. Для октафенилзамещенных порфиразинов с β -замещением и β , β -бензоаннелированием промежуточные продукты полураспада спектрально не регистрируются. Наблюдается изменение ярко-зеленой окраски раствора до бесцветной. Напротив, комплексы $H_2PaBr_4 \cdot 2DMSO$ [5], $H_2PaCl_4 \cdot 2DMSO$ [5] и $H_2Pa(C_6H_4NO_2)_8 \cdot 2DMSO$ [6] в системе DMSOхлорбензол обладают высокой кинетической устойчивостью. Их ЭСП не претерпевают изменений в течение ~38 ч при T = 328 К. Они достаточно легко вступают в реакции образования металлокомплексов порфиразинов с ацетатами натрия, магния, цинка, меди, кобальта и никеля [5, 6].

Кинетические особенности межмолекулярного переноса протонов β-замещенных порфиразинов

В зависимости от особенностей геометрического строения взаимодействующих молекул перенос протонов от порфиразинов к основаниям в бензоле (хлорбензоле) и системе бензол–DMSO может осуществляться по различным альтернативным механизмам.

Кислотно-основное взаимодействие H_2PaBr_4 с DMSO, циклическими (Ру, МеРу, Мог, Рір) и тре-

Рис. 3. Изменение ЭСП $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ в присутствии *н*-бутиламина в течение 90 мин при 338 К и $C_{BuNH_2} = 2.53$ моль/л в бензоле [11].

тичными ациклическими аминами (Et_3N , Bu_3N) в бензоле (хлорбензоле) [7, 23] описывается уравнением

$$-dC_{\rm H,PaBr_4}/d\tau = kC_{\rm H,PaBr_4}C_{\rm B},$$
 (2)

$$k = k_{\rm H}/C_{\rm B},\tag{3}$$

Рис. 4. Изменение ЭСП $H_2Pa(C_6H_4CF_3)_6(C_4H_4)_2$ в присутствии пиперидина в течение 210 мин при 328 К и $C_{Pip} = 2.54$ моль/л в системе бензол-5% DMSO [12].

где $k_{\rm H}$ — наблюдаемая константа скорости реакции, полученная методом электронной абсорбционной спектроскопии в интервале T = 298 - 328 К, k — истинная константа скорости реакции кислотно-основного взаимодействия.

Кинетические данные указывают на бимолекулярный характер лимитирующей стадии процесса, а повышение симметрии π -хромофора молекулы от D_{2h} до D_{4h} (рис. 1, изменение *I*) свидетельствуют о том, что перенос протонов от кислоты к основанию осуществляется в две стадии в соответствие со следующей схемой:

$$H_2PaBr_4 + B \xrightarrow{k_1} (HPaBr_4)^{-} \cdots (HB^{+}), \qquad (4)$$

$$(\mathrm{HPaBr}_4)^- \cdots (\mathrm{HB}^+) + \mathrm{B} \xrightarrow{k_2} (\mathrm{PaBr}_4)^{2-} \cdots (\mathrm{HB}^+)_2.$$
 (5)

Молекула основания вступает во взаимодействие с одним из двух внутрициклических протонов NH-групп H₂PaBr₄ и осуществляет его вывод из плоскости макроцикла. При этом электронный спектр поглощения образующегося промежуточного комплекса – (HPaBr₄)^{-...}(HB⁺) должен иметь вид ЭСП H₂PaBr₄ по числу полос, но расшепление О-полосы должно уменьшаться за счет гипсохромного смещения ее длинноволновой компоненты Q_x [17]. Однако подобные спектральные изменения в условиях значительного избытка основания в ходе реакции не наблюдаются (рис. 1, изменение 1). Этот факт дает основание полагать, что образование спектрально не регистрируемого комплекса – (HPaBr₄)-...(HB⁺) происходит медленнее, чем $(PaBr_4)^{2-...}(HB^+)_2$, т.е. k_1 < k₂. Поскольку скорость кислотно-основного взаимодействия определяли по уменьшению оптической плотности раствора наиболее интенсивной полосы поглощения Q_x ($\lambda_1 = 643$ нм), то k_1 = *k*_н. Образующийся на стадии (5) комплекс с переносом протонов – $(PaBr_4)^{2-\dots}(HB^+)_2$ представляет собой H-связанную ионную пару (II). При этом не исключается, что она может находиться в равновесии (1) с Н-комплексом [22]. Аналогичный двухстадийный процесс реализуется при взаимодействии H₂PaCl₄ с DMSO, Ру, MePy, Mor, Pip, Et₃N и Bu₃N в бензоле (хлорбензоле) [7, 9, 23, 241.

Напротив, взаимодействие H_2PaBr_4 и H_2PaCl_4 с первичными и вторичными ациклическими аминами (BzNH₂, BuNH₂, Bu'NH₂, Et₂NH) в бензоле [7, 9, 24] описывается суммарным кинетическим уравнением третьего порядка

$$-dC_{\rm H_2PaBr_4}/d\tau = kC_{\rm H_2PaBr_4}C_{\rm B}^2,$$
 (6)

$$k = k_{\rm H}/C_{\rm B}^2. \tag{7}$$

В этом случае лимитирующей стадией является не тримолекулярный процесс, а бимолекулярное взаимодействие между галогензамещенными порфиразинами и Н-связанными димерными молекулами оснований, которые образуются за счет NH-связей одной и неподеленной электронной пары атома азота другой молекулы [25]:

$$\mathbf{B} + \mathbf{B} \xleftarrow{K_p} \mathbf{B} \cdots \mathbf{B},\tag{8}$$

$$H_2 PaBr_4 + B \cdots B \xrightarrow{k_1} (PaBr_4)^{2-} \cdots (HB^+)_2, \qquad (9)$$

где *K*_р – равновесная константа димеризации.

Из-за отсутствия значений K_p для первичных и вторичных ациклических аминов в бензоле нельзя полностью исключить возможность протекания процесса в две стадии с $k_1 \approx k_2$ в соответствии со схемой (4), (5). Представляется вполне вероятным, что этот процесс является наиболее предпочтительным для аминов (Bu^tNH₂, Et₂NH), имеющих в своем составе объемные алкильные заместители, которые противодействуют процессу межмолекулярной ассоциации [25].

Для H₂Pa(C₆H₄CF₃)₈ [10, 13], H₂Pa(C₆H₄NO₂)₈ [8, 14], $H_2Pa(C_6H_4Br)_8$ [8, 14], $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ [11, 15] и H₂Pa(C₆H₄CF₃)₄(C₄H₄)₂ [12] схема механизма переноса протонов, согласно (9), не реализуется вследствие пространственных помех, создаваемых объемными заместителями в β-положениях порфиразинового макроцикла с одной стороны и димерными молекулами оснований – с другой. Реакция кислотно-основного взаимодействия описывается суммарным кинетическим уравнением второго порядка (2), а перенос протонов от кислоты к основанию осуществляется двухстадийно, согласно (4), (5). Следует однако отметить, что детальный механизм переноса протонов NH-групп β-замещенных порфиразинов к основанию представляется чрезвычайно сложным и требует дальнейшего углубленного изучения.

Порфиразины в отличие от порфиринов [2] вступают в кинетически контролируемые взаимодействия с основаниями, которые характеризуются необычно низкими значениями констант скорости и достаточно высокими значениями Е_а процесса (табл. 1-4), не свойственными для подавляющего большинства относительно простых жидкофазных кислотно-основных систем [22, 261. Причина этого явления связана с действием геометрической и электронной (поляризационной) составляющей порфиразинового макроцикла. Последняя способствует увеличению полярности NH-связей Н₂РА за счет электроноакцепторного влияния четырех мезо-атомов азота и заместителей, находящихся в β-положениях макроцикла. В результате этого создаются благоприятные условия для переноса протонов от кислоты к основанию. Напротив, геометрическая составляющая изменяется несимбатно электронной. Высокая конформационная жесткость аромати-

ПЕТРОВ

Порфиразин (H ₂ PA)	Основание (В)	$k_{\rm H}^{298} \times 10^4$, c ⁻¹	<i>k</i> ²⁹⁸ × 10 ² , л ² /(моль ² с)	$E_{ m a},$ кДж/моль
H ₂ PaBr ₄	Бензиламин	2.05	0.78	29
	<i>н</i> -Бутиламин	16.10	6.60	11
H ₂ PaCl ₄	<i>трет</i> -Бутиламин	0.20	0.07	18
	Диэтиламин	8.80	4.00	15
	Бензиламин	1.40	0.65	31
	<i>н</i> -Бутиламин	8.40	3.80	23
	<i>трет-</i> Бутиламин	0.16	0.09	28
	Диэтиламин	3.60	1.10	30

Таблица 1. Кинетические параметры кислотно-основного взаимодействия галогензамещенных порфиразинов с первичными и вторичными ациклическими аминами в бензоле [7, 9, 23]

Таблица 2. Кинетические параметры кислотно-основного взаимодействия галогензамещенных порфиразинов с циклическими и третичными ациклическими аминами в бензоле [7–11, 13, 23] и диметилсульфоксидом в хлор-бензоле [5]

Порфиразин (H ₂ PA)	Основание (В)	$k_{\rm H}^{298} \times 10^4, {\rm c}^{-1}$	$k^{298} imes 10^4,$ л/(моль с)	$E_{ m a},$ кДж/моль
H ₂ PaBr ₄	Пиридин	2.00	0.23	69
H ₂ PaCl ₄	2-Метилпиридин	0.15	0.02	87
	Морфолин	9.00	72.00	26
	Пиперидин	21	2830	20
	Триэтиламин	3.22	0.24	46
	Три- <i>н</i> -Бутиламин	0.09	0.09	26
	Диметилсульфоксид	1.63	0.35	24
	Пиридин	2.55	0.36	40
	2-Метилпиридин	0.35	0.04	49
	Морфолин	6.20	80.00	28
	Пиперидин	17	2280	23
	Триэтиламин	5.90	1.10	30
	Три- <i>н</i> -Бутиламин	0.24	0.23	24
	Диметилсульфоксид	1.33	0.53	26

ческой π -системы 16-членного макроцикла (C₈N₈) и наличие объемных заместителей в β -положениях пиррольных колец порфиразина способствует экранированию атомами и π -электронами внутрициклических протонов NH-групп. Это противодействует благоприятному контакту реакционных центров молекул—партнеров и вносит основной вклад в кинетику взаимодействия порфиразинов с основаниями.

Достаточно сильное влияние на кинетические параметры переноса протонов оказывает пространственное строение основания и его протоноакцепторная способность. Так, с увеличением pK_a^{298} -оснований скорость переноса протонов H_2PaBr_4 возрастает, а E_a процесса значительно уменьшается. Среди циклических оснований максимальной реакционной способностью обла-

дает пиперидин (р $K_a^{298} = 11.23$ [27]), который является сильным акцептором протона и имеет стерически доступный атом азота в составе молекулы [28]. Введение в пиперидиновый цикл гетероатома кислорода не влияет на пространственное строение амина, однако приводит к понижению р K_a^{298} на ~2.5 единицы [29]. В результате этого при переходе от пиперидина к морфолину (р $K_a^{298} = 8.50$ [27]), величина k^{298} уменьшается в ~39 раз на фоне незначительного роста E_a -процесса (табл. 2). Уменьшение р K_a^{298} -оснований на ~6 единиц в ряду Рір \rightarrow Мог \rightarrow Ру приводит к дальнейшему ингибированию переноса протона.

Порфиразин (H ₂ PA)	Основание (В)	$k_{\rm H}^{298} \times 10^5, {\rm c}^{-1}$	$k^{298} imes 10^{6},$ л/(моль с)	$E_{ m a},$ кДж/моль
$H_2Pa(C_6H_4CF_3)_8$	Морфолин	0.12	0.11	55
	Бензиламин	0.09	0.23	56
	Пиперидин	1.50	6.15	32
	<i>н</i> -Бутиламин	0.20	4.20	32
	<i>трет-</i> Бутиламин	0.05	0.43	50
$H_2Pa(C_6H_4NO_2)_8$	Морфолин	0.04	0.04	94
	Бензиламин	0.18	0.045	85
	Пиперидин	0.24	1.20	78
	<i>н</i> -Бутиламин	0.18	1.80	86
	<i>трет-</i> Бутиламин	0.20	0.80	94
$H_2Pa(C_6H_4CF_3)_6(C_4H_4)$	Пиперидин	0.17	0.55	64
	<i>н</i> -Бутиламин	0.30	0.60	61
$H_2Pa(C_6H_4Br)_8$	н-Бутиламин	0.11	0.16	92

Таблица 3. Кинетические параметры кислотно-основного взаимодействия β-замещенных порфиразинов с азотсодержащими основаниями в бензоле [8, 10, 11]

Таблица 4. Кинетические параметры кислотно-основного взаимодействия β-замещенных порфиразинов с азотсодержащими основаниями в системе бензол–диметилсульфоксид [12–15]

Порфиразин (H ₂ PA)	Основание (В)	DMSO,%	$k_{\rm H}^{298} \times 10^5, {\rm c}^{-1}$	$k^{298} imes 10^6,$ л/(моль с)	$E_{ m a},$ кДж/ моль
$H_2Pa(C_6H_4CF_3)_8$	Морфолин	0.5	5.60	25.50	32
	Пиперидин	0.5	43	177	22
	<i>н</i> -Бутиламин	0.5	67	252	23
$H_2Pa(C_6H_4CF_3)_6(C_4H_4)$	Морфолин	0.5	0.70	2.70	45
	Пиперидин	0.5	4.00	16.00	28
	<i>н</i> -Бутиламин	0.5	8.00	30.00	21
$H_2Pa(C_6H_4CF_3)_6(C_4H_4)_2$	Морфолин	0.5		р-я не идет	
	Пиперидин	0.5	0.06	0.50	74
	<i>н</i> -Бутиламин	0.5	0.07	0.60	58
$H_2Pa(C_6H_4NO_2)_8$	н-Бутиламин	0.5	1.18	110	41
		1.25	848	54000	21
$H_2Pa(C_6H_4Br)_8$	н-Бутиламин	2.5	0.18	0.63	82
		7.5	0.70	3.16	80
		20	6.36	87.20	60
		30	120	31600	28
		40	370	99000	29
	Морфолин	50	0.20	6.00	24
	Бензиламин	50	0.25	15.30	35
	Диэтиламин	50	5.10	185	19
	Триэтиламин	50	0.37	18.90	32

Минимальная скорость наблюдаются при взаимодействии H_2PaBr_4 с 2-метилпиридином (р K_a^{298} =

= 6.00 [27]) вследствие более сильного, чем в пиридине (р $K_a^{298} = 5.23$ [27]) пространственного

экранирования неподеленной электронной пары азота метильной группой.

Аналогичная картина наблюдается при замене Et₃N (р K_{3}^{298} = 10.75 [27]) на близкий по основности Ви₃N (р K_a^{298} = 10.97 [27]) (табл. 2), а также BuNH₂ (р $K_a^{298} = 10.60$ [27]) на Et₂NH (р $K_a^{298} = 10.84$ [27]) (табл. 1). Необычно низкая реакционная способность три-*н*-бутиламина, как и 2-метилпиридина, связана с сильным экранированием алкильными группами атома азота, в результате чего контакт кислотного и основного центров молекул взаимодействующих оказывается затруднен. Наряду с увеличением числа и длины алкильных заместителей оптимальной пространственной ориентации кислотно-основных центров противодействует разветвление углеводородной цепи в амине. Так, скорости переноса протонов NH-групп от H₂PaBr₄ к BuNH₂ и Bu'NH₂ (р $K_a^{298} = 10.68$ [27]) различаются в ~94 раза (табл. 1). Диметилсульфоксид, несмотря на его менее выраженную протоноакцепторную способность по сравнению с азотсодержащими основаниями [29], по реакционной способности, судя по величинам k²⁹⁸ (табл. 2), близок к пиридину. Этот факт не является неожиданным, если принять во внимание, что атом кислорода в DMSO пространственно более доступен для протона [30], чем атом азота в Ру, который экранирован шестицентровой π -связью. В результате этого взаимодействие $H_2 PaBr_4$ с DMSO и Ру характеризуются близкими значениями k²⁹⁸, но сопровождается увеличением E_{a} процесса на 14 кДж/моль (табл. 2).

Замена атомов брома на хлор в порфиразине не оказывает значительного влияния на кинетические параметры переноса протонов (табл. 1, 2). Как известно, влияние атомов галогена на кислотные NH-центры передается с полуизолированных $C_{\beta} = C_{\beta}$ -связей по индуктивному (-I) эффекту и за счет эффекта n, π -сопряжения с макроциклом (+М-эффект). –І-Эффект при переходе от брома к хлору увеличивается, что способствует росту полярности NH-связей. Действие +М-эффекта, возрастая в том же порядке, напротив способствует уменьшению подвижности протонов NH-групп. В результате электронные эффекты атомов галогена нивелируют кислотность H_2PaBr_4 и H_2PaCl_4 и не проявляются в процессе кислотно-основного взаимодействия.

При переходе от H_2PaBr_4 и $H_2PaCl_4 \kappa \beta$ -фенилзамещенным порфиразинам перенос протонов существенно затрудняется. Так, $H_2Pa(C_6H_4CF_3)_8$ [10] и $H_2Pa(C_6H_4NO_2)_8$ [8] оказываются неактивными в реакции с основаниями, обладающими слабовыраженной протоноакцепторной способностью (Ру, MePy), а также с основаниями, име-

ющими сильно пространственно экранированный атом азота в амине (Et_2NH , Et_3N , Bu_3N). Heсмотря на структурную близость, $H_2Pa(C_6H_4CF_3)_8$ в отличие от $H_2Pa(C_6H_4NO_2)_8$ более легко вступает в кислотно-основное взаимодействие с Mor, $BzNH_2$, Pip и BuNH₂ в бензоле (табл. 3). Окта(nбромфенил)порфиразин в реакции с основаниями менее активен, чем $H_2Pa(C_6H_4CF_3)_8$ и H₂Pa(C₆H₄NO₂)₈. Из всех изученных оснований он вступает во взаимодействие только с н-бутиламином (табл. 3). При этом скорость переноса протонов NH-групп от $H_2Pa(C_6H_4Br)_8$ и $H_2Pa(C_6H_4CF_3)_8$ к BuNH₂, судя по величинам k^{298} , различается в ~26 раз, а в случае с $H_2Pa(C_6H_4NO_2)_8$ в ~10 раз (табл. 3). По реакционной способности $H_2Pa(C_6H_4CF_3)_6)(C_4H_4)$ занимает промежуточное положение между $H_2Pa(C_6H_4NO_2)_8$ И $H_2Pa(C_6H_4Br)_8$. При переходе от $H_2Pa(C_6H_4NO_2)_8$ $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ K И ОТ $H_2Pa(C_6H_4CF_3)_6(C_4H_4)$ к $H_2Pa(C_6H_4Br)_8$ скорость кислотно-основного взаимодействия с BuNH₂ в бензоле уменьшается в 3 и ~4 раза соответственно (табл. 3). Среди всех изученных порфиразинов минимальной реакционной способностью обладает $H_2Pa(C_6H_4CF_3)_4)(C_4H_4)_2$. В отличие от $H_2Pa(C_6H_4Br)_8$ он не вступает в реакцию переноса протонов к н-бутиламину и более сильному основанию – пиперидину в бензоле [12]. Следовательно, наряду с уменьшением протоноакцепторной способности азотсодержащего основания и/или с увеличением пространственного экранирования атома азота в амине перенос протонов NH-групп от Н₂РА в бензоле существенно затрудняется с увеличением пространственного экранирования реакционного центра в макроцикле и/или с уменьшением кислотных свойств порфиразинов в ряду: $H_2PaCl_4 \approx H_2PaBr_4 \rightarrow H_2Pa(C_6H_4CF_3)_8 \rightarrow$ $\rightarrow H_2 Pa(C_6H_4NO_2)_8 \rightarrow H_2 Pa(C_6H_4CF_3)_6(C_4H_4) \rightarrow H_2 Pa(C_6H_4Br)_8 \rightarrow H_2 Pa(C_6H_4CF_3)_4(C_4H_4)_2.$

Кроме протонодонорной и протоноакцепторной способности взаимодействующих молекул перенос протонов от кислоты к основанию сильно зависит от полярности среды, которая определяется его диэлектрической проницаемостью (ε). Среда с более высоким значением є способствует более быстрому образованию продукта кислотноосновного взаимодействия, увеличивая благодаря этому его концентрацию, а значит и скорость реакции [25]. При переходе от бензола к системе бензол – 5% DMSO скорость переноса протонов от $H_2Pa(C_6H_4CF_3)_8$ к морфолину, пиперидину и *н*-бутиламину, судя по величинам k^{298} , значительно возрастает на фоне уменьшения E_a -процесса (табл. 3, 4). При концентрации DMSO в бензоле в количестве более 0.5% реакция между $H_2Pa(C_6H_4CF_3)_8$ и Mor (BuNH₂, Pip) проходит практически мгновенно.

Аналогичное изменение величин k^{298} и E_{a} от полярности среды наблюдается при взаимодействии $H_2Pa(C_6H_4NO_2)_8$ и $H_2Pa(C_6H_4Br)_8$ с *н*-бутиламином (табл. 4). При концентрации DMSO в бензоле в количестве 2.5 и 50% для $H_2Pa(C_6H_4$ - NO_{2} [14] и $H_{2}Pa(C_{6}H_{4}Br)_{8}$ [14] соответственно константа скорости реакции резко возрастает причем так, что ее значение уже невозможно измерить обычными кинетическими методами. Напротив, в системе бензол – 50% DMSO реакция $H_2Pa(C_6H_4Br)_8$ с Mor (p $K_a^{298} = 8.50$ [27]) и BzNH₂ (р $K_{\rm a}^{298}$ = 9.34 [27]) характеризуется достаточно низкими значениями констант скорости вследствие их пониженной протоноакцепторной способности по сравнению с $BuNH_2$ (р $K_a^{298} = 10.60$ [27]). Как и следовало ожидать, увеличение р K_a^{298} оснований на ~2 единицы в ряду Mor \rightarrow BzNH₂ \rightarrow \rightarrow Et₂NH приводит к росту величин k^{298} в ~30 раз (табл. 4). При этом замена Et_2NH (р $K_a^{298} = 10.84$ [27]) на близкий по основности Et_3N (р K_a^{298} = = 10.75 [27]) существенно затрудняет кислотноосновное взаимодействие (табл. 4) вследствие менее благоприятной стерической доступности неподеленной электронной пары атома азота в амине. В системе бензол-5% DMSO перенос протонов H₂Pa(C₆H₄CF₃)₈ к основаниям, обладающим слабовыраженной протоноакцепторной способностью (Pv. MePv) или имеющим в своем составе пространственно экранированный атом азота (Et_2NH, Et_3N) не происходит [27].

Бензоаннелирование в порфиразиновом макроцикле также затрудняет перенос протона вследствие уменьшения кислотных свойств молекулы. В ряду $H_2Pa(C_6H_4CF_3)_8 \rightarrow H_2Pa(C_6H_4CF_3)_6(C_4H_4) \rightarrow$ $\rightarrow H_2Pa(C_6H_4CF_3)_4(C_4H_4)_2$ скорость переноса протонов к Рір и BuNH₂ в системе бензол-5% DMSO уменьшается в 354 и 420 раз соответственно, а E_a процесса возрастает (табл. 4).

Следовательно, если молекулы-партнеры обладают слабовыраженными протонодонорными и/или протоноакцепторными свойствами и имеют при этом пространственно-экранированный реакционный центр, то увеличение диэлектрической проницаемости среды не играет ключевой роли в процессе преноса протонов от β-замещенных порфиразинов к органическим основаниям.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Novakova V., Donzello P.A., Ercolani C. et al.* // Coord. Chem. Rev. 2018. V. 361. № 4. P. 1.
- 2. *Березин Д.Б.* Макроциклический эффект и структурная химия порфиринов. М.: Красанд, 2010. 424 с.

- 3. Успихи химии порфиринов / Под ред. О.А. Голубчикова. НИИ Химии СПбГУ, 2001. Т. 3. 359 с.
- Stuzhin P.A. // J. Porphyrins Phthalocyanines. 2003. V. 7. № 12. P. 813.
- 5. *Петров О.А., Хелевина О.Г., Чижова Н.В. //* Координац. химия. 1997. Т. 23. № 2. С. 143.
- 6. *Петров О.А., Чижова Н.В., Карасева Н.А.* // Там же. 1999. Т. 25. № 6. С. 415.
- 7. *Петров О.А., Чижова Н.В.* // Там же. 1999. Т. 25. № 5. С. 393.
- 8. *Петров О.А.* // Журн. физ. химии. 2002. Т. 76. № 9. С. 1577.
- 9. *Петров О.А. //* Координац. химия. 2003. Т. 29. № 2. С. 144.
- Петров О.А., Кузмина Е.Л., Хелевина О.Г., Майзлиш В.Е. // Журн. физ. химии. 2011. Т. 85. № 9. С. 1696.
- 11. *Петров О.А., Кузмина Е.Л. //* Там же. 2012. Т. 86. № 12. С. 1958.
- 12. Петров О.А. // Там же. 2015. Т. 89. № 2. С. 214.
- 13. *Петров О.А., Осипова Г.В., Аганичева К.А. //* Там же. 2020. Т. 94. № 1. С. 40.
- 14. *Петров О.А., Чижова Н.В., Осипова Г.В. //* Журн. общ. химии. 2009. Т. 79. Вып. 4. С. 676.
- 15. *Петров О.А.* // Журн. физ. химии. 2017. Т. 91. № 11. С. 1845.
- Toyota K., Hasegawa J., Nakatsuji H. // Chem. Phys. Lett. 1996. V. 250. № 5–6. P. 437.
- Stuzhin P., Khelevina O., Berezin B. // Phthalocyanines: Properties and Applications. N.Y.: VCH Publ. Inc., 1996. V. 4. P. 23.
- Stuzhin P.A., Ivanova S.S., Koifman O.I. et al. // Inorg. Chem. Com. 2014. V. 49. № 9. P. 72.
- Vagin S.I., Hanack M. // Eur. J. Org. Chem. 2002. № 16. P. 2859.
- 20. Kokareva E.A., Petrov O.A., Khelevina O.G. // Macroheterocycles. 2009. V. 2. № 2. P. 157.
- Петров О.А., Аганичева К.А., Гамов Г.А., Киселев А.Н. // Журн. физ. химии. 2020. Т. 94. № 9. С. 1379.
- Молекулярные взаимодействия / Под ред. Г. Ратайчака, У. Орвилл-Томаса. М.: Мир, 1984. 599 с.
- 23. *Петров О.А., Березин Б.Д. //* Журн. физ. химии. 1999. Т. 73. № 5. С. 830.
- 24. Петров О.А., Хелевина О.Г., Чижова Н.В., Березин Б.Д. // Координац. химия. 1994. Т. 20. № 11. С. 876.
- 25. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 764 с.
- 26. Базилевский М.В., Венер М.В. // Успехи химии. 2003. Т. 72. № 1. С. 3.
- 27. CHC Handbook of Chemistry and Physics / Ed. by *William M. Haynes.* 2013. 2668 p.
- Anet F.A.L., Yavari I. // J. Amer. Chem. Soc. 1977. V. 99. P. 2794.
- 29. Blackburne I.D., Katritzky A.R., Takeuchi. Y. // Accounts. Chem. Res. 1975. V. 8. № 9. P. 300.
- Получение и свойства органических соединений серы / Под ред. Л. И. Беленького. М.: Химия, 1999. 557 с.