ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 541.183:543.544

АДСОРБЦИЯ БЕНЗОЛА НА НАНОПОРИСТЫХ СИЛИКАГЕЛЯХ С ПРИВИТЫМИ ПОЛИФТОРАЛКИЛЬНЫМИ СЛОЯМИ И СМАЧИВАЕМОСТЬ

© 2021 г. Т. М. Рощина^{*a*,*}, Н. К. Шония^{*a*,**}, О. П. Ткаченко^{*b*}, Л. М. Кустов^{*a*,*b*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, 119991, Москва, Россия

^bРоссийская академия наук, Институт органической химии им. Н.Д. Зелинского, 119991, Москва, Россия *e-mail: 2474747@mail.ru

> **e-mail: natalyashonija@gmail.com Поступила в редакцию 24.05.2020 г. После доработки 24.05.2020 г. Принята к публикации 28.05.2020 г.

Методами газовой хроматографии (ГХ), статической адсорбции и ИК-спектроскопии диффузного отражения проведено комплексное исследование особенностей процесса адсорбции бензола в полифторалкильных слоях разного строения, привитых к поверхности силикагеля SG. После модифицирования константы Генри по данным ГХ и величины адсорбции бензола, полученные статическим методом, снижаются в ряду: SG > SG-F(III) > SG-F > SG-isoF(III), где для получения образцов SG-F(III), SG-F и SG-*iso*F(III) использованы силаны $nC_6F_{13}(CH_2)_2SiCl_3$, $nC_6F_{13}(CH_2)_2Si(CH_3)_2Cl u$ *iso* $C_3F_7(CH_2)_2SiCl_3$ соответственно. Обнаружено, что энергетические характеристики бензола и других углеводородов на образце SG-F(III) с линейным трифункциональным модификатором превосходят на 3–7 кДж/моль величины, полученные на исходном носителе. На основе десорбционных данных в области капиллярно-конденсационного гистерезиса изотерм адсорбции бензола рассчитаны углы смачивания на нанопористых силикагелях с полифторалкильными слоями.

Ключевые слова: химическое модифицирование, полифторалкилсиланы, силикагель, адсорбция, бензол

DOI: 10.31857/S0044453721040221

Известно, что материалы, в состав которых входят поверхностные перфторалкильные группы, могут обладать чрезвычайно высокими гидрофобными и олеофобными свойствами [1]. В связи с этим полифторорганические соединения применяются для создания покрытий с водоотталкивающими и незагрязняющимися, антикоррозионными и антибактериальными свойствами в мембранных технологиях [2–6], электронике [6, 7], автомобильной и текстильной промышленности [8–12], медицине [3, 13, 14], архитектуре [15] и других областях.

Выделяют два принципиально различных метода получения поверхностей с полифторорганическим покрытием — адсорбционное и химическое модифицирование. Адсорбционный метод наиболее простой и удобный [16]. Например, Фторопласт-42 в растворе ацетона предназначен для получения атмосферо-, радиационно- и химически стойких покрытий на самых разных поверхностях, включая металлы и стекла [17]. Однако адсорбционные модифицирующие слои часто оказываются недостаточно термически стабильными или нестойкими к воздействию растворителей и паров. Поэтому для получения материалов со стабильными свойствами, включая стационарные фазы для хроматографии [18, 19], а также для создания эффективных водо- и грязезащитных покрытий полифторорганический слой должен быть как можно более прочно связан с подложкой, и, следовательно, необходимо ковалентное связывание модификатора с поверхностью.

При исследовании физико-химических характеристик поверхностей с полифторорганическим покрытием используют разнообразные методы. Основной метод оценки лиофобности привитых слоев – определение краевых углов смачивания θ. По мнению авторов [1], "тест на смачиваемость является одним из самых быстрых и, вероятно, самым чувствительным методом контроля качества гидрофобных поверхностей и плотности упаковки привитых молекул". Установлено [1, 2,

20], что по степени гидрофобизации и олеофобизации поверхности полифторалкильные привитые слои существенно превосходят алкильные и полиметилсилоксановые. В [6] детально исследовано влияние длины перфторированного радикала в монослоях фторзамещенных гексадекантиолов на золоте на углы смачивания полярными протонными (вода и глицерин) и полярными апротонными (ДМФ и ацетонитрил) жидкостями. Показано, что при замене атомов водорода в метильной группе на атомы фтора наблюдается заметное снижение угла смачивания. Однако при увеличении длины полностью фторированной углеродной цепочки угол смачивания увеличивается и, начиная с числа атомов углерода 4, практически не изменяется. Важно отметить, что метод смачивания неинформативен для слоев, закрепленных на пористых И дисперсных материалах. Поскольку применение таких материалов на практике непосредственно связано с физико-химическими свойствами модифицированной поверхности, актуально изучение адсорбционных равновесий с их участием.

В работе [21], первой, по нашим сведениям, посвященной применению адсорбционно-статического метода для исследования кремнеземов с привитыми полифторалкильными группами, показано, что на октадецилкремнеземе наблюдается почти столь же высокая адсорбция бутана, выбранного авторами для оценки олеофобных свойств поверхности, как и на исходном носителе, в то время как на фторсодержащих поверхностях соответствующие величины в несколько раз меньше. Олеофобный характер тем больше, чем выше содержание фторалкильных групп на поверхности, т.е. в случае покрытия полимерного типа. Подобное уменьшение адсорбции гексана отмечено в [22] при переходе от алкил- к полифторалкилкремнеземам.

В работах [23, 24] исследованы свойства поверхности кремнеземов, модифицированных моно-, би- и трихлорсиланами с перфторгексильными группами с образованием плотных монослоев (концентрация привитых групп не менее 2 нм⁻²), методами статической адсорбции, газовой хроматографии и ИК-спектроскопии. В качестве исходного носителя выбран аэросилогель (коммерческое название Силохром), поскольку эта разновидность кремнезема обладает высокой химической однородностью поверхности, широкими порами (эффективный диаметр 40–50 нм) и достаточно развитой удельной поверхностью (100 м²/г), что способствует исследованиям методом ГХ [16]. Установлено, что такое модифицирование приводит к снижению констант Генри и величин адсорбции как н-алканов, так и ароматических углеводородов, при этом ключевую роль в описании адсорбционных процессов часто играет

энтропийный фактор. Предположительно при модифицировании би- и трифункциональными модификаторами появляются новые, более активные, по сравнению с исходным носителем, центры. В случае использования трихлорсилана привитые покрытия обладают наиболее высокими экранирующими свойствами по отношению к бензолу при давлении насыщенных паров, а в случае монохлорсилана получаются наиболее олеофобные и неполярные покрытия.

Согласно [25], чем выше концентрация и меньше длина привитой цепи, тем более резко (от 2 до 25 раз) снижаются величины адсорбции углеводородов в результате модифицирования кремнезема монофункциональными полифторалкилсиланами, в состав которых входило 3, 4 или 6 полностью фторированных атомов углерода. Это отражает увеличение степени олеофобизации поверхности при образовании полифторорганических покрытий в данном направлении.

Согласно ИК-спектроскопическим данным [23–25], к общим свойствам химически модифицированных аэросилогелей, независимо от концентрации привитых полифторалкильных групп, относится отсутствие полос поглощения свободных силанольных групп.

Следует отметить, что силикагели относятся к наиболее востребованным для практического применения разновидностям кремнезема [1, 16]. Поэтому наша работа [26] была посвящена изучению методами адсорбции и ГХ поверхностных свойств силикагелей, модифицированных триполифторалкилсиланами функциональными *n*C₆F₁₃(CH₂)₂SiCl₃ и *iso*C₃F₇(CH₂)₂SiCl₃, в сопоставлении с силикагелем с привитым монофункциональным силаном $nC_6F_{13}(CH_2)_2Si(CH_3)_2Cl$. Обнаружено существенное различие в ходе изотерм адсорбции-десорбции азота и гексана в области капиллярно-конденсационного гистерезиса, связанное с лиофобностью полифторалкильных слоев. Совокупность адсорбционностатических и ГХ данных указывает на то, что наиболее низкая адсорбционная активность в отношении алканов характерна для образца, в состав которого входит привитая группа разветвленного строения. Согласно термогравиметрическому анализу, термическая стабильность образцов достаточно высока - деструкция привитого слоя в токе сухого азота начинается при температуре выше 650 К.

В настоящей работе получены новые данные по исследованию силикагеля и химически модифицированных кремнеземов (XMK) с привитыми полифторалкильными группами на его основе методами газовой хроматографии, статической адсорбции и ИК-спектроскопии. Связь строения привитого слоя со свойствами поверхности XMK изучалась в основном на основе данных по ад-

	SG	SG-F	SG-F(III)	SG-isoF(III)	
Величина		$nC_6F_{13}(CH_2)_2Si(CH_3)_2Cl$	nC ₆ F ₁₃ (CH ₂) ₂ SiCl ₃	isoC ₃ F ₇ (CH ₂) ₂ SiCl ₃	
N	_	1.3 2.1		2.7	
т	_	0.205	5 0.291 0		
K_{Γ}	0.028	0.014	0.017	0.0093	
a	1.06	0.41	0.49	0.26	
V(по N ₂)	1.19	0.84	0.73	0.77	
V (по бензолу)	1.18	0.82	0.59	0.68	
<i>d</i> (по N ₂)	13.2	11.6	11.0	11.6	
<i>d</i> _m (по бензолу)	11.3	17.3	7.3 17.7		
<i>s</i> _{vл} (по N ₂)	297	249	246	239	
s _{уд} (расчет)		236	211	222	
<i>s</i> _{уд} (по бензолу)	282	59	74	39	

Таблица 1. Обозначения, модификатор и характеристики образцов

Обозначения: концентрация привитых групп (N, нм⁻²), массовая доля привитого соединения в образце (m), константа Генри (K_{Γ}) гексана при 403 K, величина адсорбции (a, мкмоль/м²) гексана при относительном давлении паров $p/p_0 = 0.2$ и 298 K, объем пор (V, мл/г), эффективный диаметр пор (d, нм), эффективный диаметр мениска (d, нм), удельная поверхность (s_{yg} , м²/г))

сорбции паров бензола — традиционного адсорбционного зонда.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сорбенты

Образцы XMK синтезированы по методикам, приведенным в работах [23, 25]. Обозначения, состав модификатора и отдельные характеристики образцов приведены в табл. 1.

Методы

Согласно [26], концентрацию привитых групп определяли по результатам элементного анализа на углерод (прибор Perkin Elmer 2400 CHN Analyzer, Schwarzkopf Microanalytical Lab., Woodside, NY) по формуле, приведенной в [1]. Погрешность определения ≤0.7%. Изотермы адсорбции азота измеряли на сорбтометре ASAP-2020 (Micromeritics, Norcross, GA, USA) при 77 К [26]. Перед измерениями образцы подвергали термообработке в вакууме при 423 K, 10⁻⁵ мм рт. ст. в течение 10-12 ч. Изотермы адсорбции паров бензола всеми изучаемыми образцами получали весовым статическим методом (пружинные весы Мак-Бэна-Бакра [27]) при 298 К. Перед измерениями образцы подвергали вакуумной термообработке при 423 К и давлении 10⁻⁵ мм рт. ст. Время установления адсорбционного равновесия составляло от 1530 мин в области до относительного давления p/p_0 → $\rightarrow 0.7-0.8$ и до 8-10 ч в области p/p_0 → 1.

Газохроматографические исследования XMK выполняли на хроматографе "Хром-5" с пламенно-ионизационным детектором, гелием в качестве газа-носителя (расход газа 15—25 мл/мин) и стеклянными колонками (длина 1 м, внутренний диаметр 2—2.5 мм). Перед проведением измерений образцы подвергали термообработке в токе гелия при температуре 450 К в течение 30 ч. Пробы веществ в виде разведенных в 2—30 раз паров вводили с помощью шприца в количестве 0.1—0.2 мл.

Константы Генри адсорбционного равновесия K_{Γ} рассчитывали из измеряемых ГХ параметров по формулам, приведенным в [16, 27]. В качестве стандартных состояний вещества использовали: 1 мкмоль/мл в газовой фазе и 1 мкмоль/м² в адсорбированном состоянии. Начальные (область Генри) теплоты адсорбции *q* и стандартные энтропии адсорбции ΔS° в приближении их независимости от температуры рассчитывали из температурных зависимостей K_{Γ} по уравнению [16, 27]:

$$\ln K_{\Gamma} = q/RT + \Delta S^{\circ}/R + 1,$$

где $q = -\Delta U$, $\Delta U - дифференциальное мольное изменение внутренней энергии при адсорбции. Погрешность определения <math>q$ и ΔS° составляла от 2

Рис. 1. Зависимости $\ln K_{\Gamma}$ от обратной температуры для бензола.

до 5%. Вклады специфического взаимодействия $\Delta G^{\rm sp}$ оценивали согласно уравнению [16]:

$$\Delta G^{\rm sp} = \Delta G^{\rm o} - \Delta G^{\rm d}$$

где ΔG° — энергия Гиббса адсорбции и ΔG^{d} — энергия дисперсионных сил исследуемого соединения, равная значению ΔG^{d} реального или гипотетического *н*-алкана с той же поляризуемостью.

ИК-спектры диффузного отражения (DRIFTS) регистрировали при комнатной температуре на спектрометре NICOLET "Protege" 460, оснащенном разработанной в ИОХ им. Н.Д. Зелинского приставкой [28], в интервале 6000–400 см⁻¹ с шагом 4 см⁻¹. Для удовлетворительного соотношения сигнал/шум число накоплений составляло 500 спектров. Перед измерением спектров образцы разбавляли порошком CaF₂, а затем подвергали термовакуумной обработке при 423 К и давлении 10^{-3} мм рт. ст. в течение 4 ч (скорость нагрева 5 К/мин). Адсорбцию C₆H₆ проводили

при комнатной температуре и давлении насыщенных паров 85 мм рт. ст. Интенсивность полос поглощения в спектрах выражали в единицах Кубелки—Мунка [27, 29]. Регистрацию и обработку спектров вели по программе OMNIC.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Газовая хроматография. Исследованы термодинамические характеристики адсорбции бензола, а также толуола и этилбензола, при введении проб адсорбата в количестве менее наномоля, т.е. в области предельно малых заполнений поверхности. Как следует из рис. 1, константы Генри K_{Γ} бензола, определенные в интервале температур 374-423 К, снижаются после модифицирования. В группе модифицированных образцов самые высокие значения K_{Γ} наблюдаются на SG-F(III), далее следуют K_{Γ} на SG-F, а затем величины K_{Γ} немного падают на SG-*iso*F(III). Подобные закономерности наблюдаются и в случае толуола и этилбензола, а также н-алканов, но степень снижения K_{Γ} последних относительно исходного носителя на SG-isoF(III) по сравнению с SG-F выражена заметнее, например, для гексана в 1.5 раза больше на SG-isoF(III) (табл. 1). В отличие от K_{Γ} энергетические характеристики на образце SG-F(III) превосходят на 3-7 кДж/моль величины, полученные на исходном носителе (табл. 2). Это относится к теплотам адсорбции q не только аренов, но и н-алканов [26], например, октана (табл. 2). На SG-F и SG-isoF(III) значение q меньше (за исключением бензола на SG-isoF(III)), чем на исходном носителе, но на SG-isoF(III) выше, чем на образце с монофункциональным модификатором SG-F, хотя концентрация привитых групп на SG-F наименьшая.

Эти факты можно объяснить, если учесть, что на силикагелях, синтезированных с помощью трифункциональных модификаторов, т.е. на SG-F(III) и SG-*iso*F(III), в отличие от кремнезема с привитым монофункциональным модификатором SG-F, существуют дополнительные активные адсорбционные центры в модифицирующем слое. Это, прежде всего, – доступные для адсорбции гидроксильные группы у якорного атома кремния, образовавшиеся в результате гидролиза

Таблица 2. Теплоты (q, кДж/моль) и стандартные энтропии (ΔS° , Дж/(моль K)) адсорбции

Сорбат -	SG		SG-F		SG-F(III)		SG-isoF(III)	
	q	$-\Delta S^{\circ}$	q	$-\Delta S^{\circ}$	q	$-\Delta S^{\circ}$	q	$-\Delta S^{\circ}$
Октан	38	124	33	118	41	136	35	128
Бензол	45	135	40	134	52	155	45	145
Толуол	51	144	45	141	56	160	49	152
Этилбензол	57	154	47	143	60	165	52	157

непрореагировавших атомов хлора в молекулах трифункциональных модификаторов. Тем не менее, следует учесть, что на аэросилогеле с привитым трифункциональным силаном с неполярными октильными радикалами величина q аренов ниже, чем на исходном носителе [30]. Следовательно, необходимо учесть дополнительное взаимодействие с полярными фрагментами —⁺⁶CH₂—⁻ ${}^{\delta}{
m CF}_2-$ или $-{}^{+\delta}{
m CH}_2-{}^{-\delta}{
m CF}$ - привитой цепи. Высокая концентрация и разветвленное строение привитых групп на SG-isoF(III) способствуют лучшему экранированию как лополнительных гилроксильных групп, образовавшихся при синтезе, так и остаточных силанолов носителя, что снижает теплоты адсорбции углеводородов в сравнении с образцом SG-F(III) (табл. 2).

Анализ данных по энтропиям адсорбции показывает, что наименьшие значения ΔS° характерны для образца SG-F(III). Следовательно, уменьшение значения K_{Γ} на SG-F(III) по сравнению с полученным на SG обусловлено понижением энтропии адсорбции, обычно на 10–20 Дж/(моль K) (табл. 2). Можно предположить, что это связано с формированием сравнительно структурированных привитых слоев на SG-F(III), образованных с помощью линейного трифункционального силана, снижающих подвижность адсорбированных молекул. Причина уменьшения констант Генри на SG-*iso*F(III) по сравнению с SG-F также лежит в снижении ΔS° на первом (табл. 2).

Таким образом, в системах с участием XMK особенно внимательно следует относиться к энтропийному фактору, который оказывает немаловажное, а часто и определяющее влияние на закономерности адсорбции соединений.

С целью оценки вклада специфических взаимодействий в адсорбцию бензола, π -связи молекулы которого способны к образованию водородных связей и электростатическому взаимодействию, результаты сопоставлены с полученными для гексана, адсорбирующегося преимущественно за счет универсальных дисперсионных взаимодействий. Как видно из рис. 2, на котором температурные представлены зависимости $\ln K_{\Gamma}^{\text{отн}}$, где $K_{\Gamma}^{\text{отн}}$ – отношения констант Генри бензола к гексану, величина $K_{\Gamma}^{\text{отн}}$ на исходном но-сителе ниже, чем на образце SG-F(III), но выше, чем на SG-*iso*F(III), а наименьшие значения $K_{\Gamma}^{\text{отн}}$ характерны для SG-F. В том же порядке изменяется наклон температурных зависимостей $\ln K_{\Gamma}^{\text{отн}}$, определяющий разности теплот адсорбции этих молекул Δq (кДж/моль), равные 19, 16, 15 и 13 на SG-F(III), SG, SG-isoF(III) и SG-F соответственно. Следовательно, так называемая полярность [16] поверхности снижается в ряду SG-F(III) > SG > > SG-*iso*F(III) > SG-F. Индексы удерживания

Рис. 2. Зависимости $\ln K_{\Gamma}^{\text{отн}}$ ($K_{\Gamma}^{\text{отн}} = K_{\Gamma}$ (бензол)/ K_{Γ} (гексан)) от обратной температуры.

Ковача, например, для бензола 984, 956 и 847 на SG-F(III), SG-isoF(III) и SG-F соответственно [26], и вклады специфических взаимодействий аренов в адсорбцию (табл. 3) изменяются на модифицированных образцах в том же направлении. Полученные данные связаны не только с наличием дополнительных гидроксилов у якорного атома кремния на SG-F(III) и SG-isoF(III). Следует также обратить внимание на возможно более активное участие в адсорбции полярного фрагпривитой полифторалкильной мента цепи $-{}^{+\delta}CH_2 - {}^{-\delta}CF_2 -$ или $-{}^{+\delta}CH_2 - {}^{-\delta}CF -$, сформированной с помощью трифункционального модификатора, присутствие которого способствует увеличению вклада специфического взаимодействия.

Адсорбция в статических условиях. В табл. 1 приведены текстурные характеристики образцов, рассчитанные из изотерм адсорбции азота [26] и бензола. Общий объем пор V уменьшается после модифицирования, причем тем в большей мере, чем выше массовая доля привитого слоя в образце. Для исходного носителя и образца SG-F значения V по азоту и по бензолу одинаковы, что со-

Таблица 3. Вклады энергии специфических взаимодействий ($-\Delta G^{\rm sp}$, кДж/моль) в энергию Гиббса адсорбции при 403 К

Адсорбат	SG	SG-F	SG-F(III)	SG-isoF(III)
Бензол	7	5	7	6
Толуол	8	5	8	7
Этилбензол	8	5	8	6

Рис. 3. Начальные области изотерм адсорбции бензола при 298 К.

ответствует правилу Гурвича [31], а для образцов с трифункциональными модификаторами значения V по азоту выше, чем по бензолу на $\approx 10\%$. Можно предположить, что плотность бензола, адсорбированного в порах SG-F(III) и SG-*iso*F(III), меньше плотности жидкого бензола.

Значения удельной поверхности s_{va} (по N₂), рассчитанные по уравнению Брунауэра-Эммета-Теллера (БЭТ) с использованием площадки молекулы азота 0.162 нм² [31], неплохо согласуются с рассчитанными s_{yg} (расчет) по уравнению, подобному приведенному в [1]: $s_{yg}(XMK) =$ $= s_{yg}(SG)(1 - m)$, где $s_{yg}(XMK)$ и $s_{yg}(SG)$ – удельные поверхности ХМК и исходного носителя соответственно, *т* – массовая доля привитого соединения в образце (табл. 1). Заметим, что именно это уравнение используют для определения величины концентрации привитых групп на ХМК [1]. Применение уравнения БЭТ к изотермам адсорбции бензола дает хорошие линейные зависимости на всех образцах в области относительных давлений 0.05-0.3 (коэффициент корреляции ≥ 0.998). С использованием площадки молекулы бензола 0.49 нм² [31] для исходного носителя SG величина s_{vд} (по бензолу) практически равна *s*_{vд} (по N₂) (табл. 1). Однако для модифицированных образцов это не так (табл. 1). Для согласия данных по азоту и бензолу требуется увеличить значение площадки молекулы бензола в 3-6 раз, что противоречит физическому смыслу и указывает на высокую степень разреженности монослоя молекул бензола. Таким образом, если при определении текстурных параметров кремнезема можно использовать как азот, так и бензол, то в случае ХМК целесообразно остановиться на азоте.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 4 2021

Величины адсорбции бензола *а*, полученные статическим методом при 298 К (рис. 3), снижаются после модифицирования в ряду SG > SG-F(III) > SG-F > SG-*iso*F(III). Как уже отмечено, аналогично меняются и константы Генри K_{Γ} бензола, определенные методом газовой хроматографии (рис. 1). Тенденции в изменении величин *а* для гексана от образца к образцу (табл. 1) такие же, как и для бензола (рис. 3). Однако степень снижения *а* для гексана, как и K_{Γ} , относительно исходного носителя на SG-*iso*F(III) по сравнению с SG-F выражена заметнее, чем для бензола, например, значение *а* для гексана при $p/p_0 = 0.2$ и 298 К падает в 1.6 раза сильнее на SG-*iso*F(III) (табл. 1).

Отношения величин адсорбции бензола и гексана (α), которые коррелируют с вкладом специфических взаимодействий в адсорбцию бензола, при $p/p_0 = 0.2$ и 298 К: α =2.6, 2.4 и 1.9 на SG-F(III), SG-*iso*F(III) и SG-F соответственно. Это также согласуется с ГХ-данными по $K_{\Gamma}^{\text{отн}}$ (рис. 2). Таким образом, возможно наличие двух метильных групп вместо дополнительных ОНгрупп у якорного атома кремния на SG-F приво-

дит к наименьшим значениям $K_{\Gamma}^{\text{отн}}$, Δq и α .

Полные изотермы адсорбции-десорбции бензола приведены на рис. 4. Вследствие уменьшения объема пор при модифицировании обе ветви петли капиллярно-конленсационного гистерезиса (ККГ) бензола на ХМК располагаются ниже, чем на исходном носителе. Однако, в отличие от азота [26], изотермы бензола на ХМК заметно смещаются в область более высоких, по сравнению с SG, величин p/p_0 . Заполнения монослоя a_m (ммоль/г), рассчитанного с учетом размера молекулы бензола с помощью *s*уд для исходного носителя ($a_{\rm m} = s_{\rm yg}/wN_{\rm A}$, где w – площадка молекулы бензола, принятая равной 0.49 нм², N_A – число Авогадро), на всех ХМК не происходило вплоть до $p/p_0 = 0.8-0.9$, что связано с существенным снижением поверхностной энергии и смачиваемости фторсодержащих покрытий углеводородами. Так, $\cos \theta$ (θ – краевой угол смачивания), измеренный для бензола на кремниевой пластинке, модифицированной монофункциональным перфторгексилсиланом, меньше 1 [32], причем, по данным для гексадекана [20], поверхностное натяжение которого (27.5 мН/м) близко к значению для бензола (28.2 MH/M), $\cos\theta$ уменьшается при переходе от пластинки с монофункциональным модификатором к пластинке с трифункциональным силаном, что согласуется с последовательностью смещения изотерм адсорбции бензола.

Оценка θ выполнена на основе кривых десорбции бензола, как и ранее в [26] для гексана, полученных на ХМК. Использовали простую модель

Рис. 4. Полные изотермы адсорбции–десорбции бензола (*a*_m (ммоль/г) – расчетная емкость монослоя). Темные точки – десорбция.

[31, 32], которая чаще всего служит основой расчетов распределения пор по размерам, - уравне-Кельвина для цилиндрических ние пор: $d_{\rm m} = \frac{4\sigma V_{\rm m}}{RT \ln(p_0/p)}$, где $d_{\rm m}$ – диаметр полусферического мениска, σ (для бензола 28.2, для гексана 17.9 мН/м) и V_m – поверхностное натяжение и мольный объем жидкого адсорбата соответственно при температуре опыта Т, R – газовая постоянная. Соотношение между диаметром мениска $d_{\rm m}$, диаметром коры d_C, толщиной адсорбционной пленки τ и диаметром пор $d_{\rm p}$ следует из рис. 5 [31]. При полном смачивании $\cos \theta = 1$, $d_{\rm m} = d_{\rm C}$ и $d_{\rm p} =$ $= d_{\rm C} + 2\tau$, что предполагается на исходном носителе. При неполном смачивании $0 < \cos \theta < 1$ и $d_{\rm C} = d_{\rm m} \cos \theta$. Поскольку в литературе отсутствуют сведения о величинах τ на поверхностях с полифторалкильными слоями, в качестве опорных данных мы использовали полные изотермы адсорбции N₂ и бензола на широкопористых аэросилогелях ASG и ASG-F. Выбор обусловлен тем, что эти образцы детально исследованы в наших работах [22, 25] с применением комплекса физико-химических методов, концентрация привитых групп, таких же, как у SG-F, ASG-F ($N = 1.1 \text{ нм}^{-2}$) близка к SG-F, широкие поры (по бензолу

≈50 нм) обеспечивают то, что основание ККГ для бензола и гексана находится при $p/p_{\rm S} \ge 0.8$ [32]. Поэтому для расчета средних значений τ использовали известное уравнение для непористых адсорбентов: $\tau = aV_{m}/s_{va}$, где *а* (ммоль/г) – величина адсорбции при измеряемом p/p_0 . Значения τ на ASG и ASG-F для N₂ лежат в области литературных данных, полученных на непористом гидроксилированном SiO₂, т.е. азот практически не чувствителен к влиянию природы поверхности [32]. Поскольку критическое поверхностное натяжение полифторсодержащих поверхностей лежит в интервале 10–15 мH/м [1], азот ($\sigma = 8.9$ мH/м), вероятнее всего, полностью смачивает ($\cos \theta = 1$) полифторалкильные слои на кремнеземе. Величины т для бензола и гексана на ASG очень близки и также соответствуют опубликованным данным для C₆H₆ на SiO₂. Это позволяет использовать традиционные в адсорбционных экспериментах уравнения при расчете т для азота на SG-F, а также т для углеводородов на SG.

Для углеводородов т на ASG-F много ниже, и в области, соответствующей ККГ на фторкремнеземах, составляют не более 0.33 нм [32]. Это – меньше толщины одного слоя для молекул бензола (0.37 нм) или гексана (0.4 нм). Учитывая близ-

Рис. 5. Сечение цилиндрической поры с адсорбатом; $d_{\rm C}$ – диаметр коры, $d_{\rm m}$ – диаметр мениска, $d_{\rm p}$ – диаметр поры, θ – краевой угол смачивания, τ – толщина адсорбционной пленки.

кие значения τ для углеводородов в области основания ККГ на SG-F и на ASG-F, можно предположить, что сплошная адсорбционная пленка на перфторгексильных слоях не образуется вследствие ухудшения смачивания (понижением $\cos \theta$) поверхности молекулами углеводородов. Результаты расчетов диаметров, характеризующих поры, в приближении, что объем заполненных пор равен объему адсорбированной жидкости (в мл/г) при данном значении p/p_0 , показывают, что эффективные (наиболее вероятные) кельвиновские диаметры мениска (*d*_m) для бензола на фторкремнеземах больше диаметра пор на исходном носителе (d = 12.6 нм) и, тем более, диаметра коры (табл. 1). Следовательно, можно оценить угол смачивания по уравнению: $\cos \theta = d_{\rm C}/d_{\rm m}$, для чего необходимо определить d_C. Использовали несколько вариантов расчета $d_{\rm C}$ (во всех случаях выбраны наиболее вероятные значения размеров) [32]. Например, для системы бензол и SG-F расчеты проводили следующим образом.

1) Принимали, что размер коры $d_{\rm C}$ SG-F по бензолу равен $d_{\rm C}$ SG по бензолу, так как полагали, что $d_{\rm p}$ (SG) > $d_{\rm p}$ (SG-F), τ (SG) > τ (SG-F).

2) Считали, что неизвестный диаметр пор SG-F по бензолу равен d_p SG-F по азоту, отсюда d_C SG-F (по C₆H₆) = d_p SG-F (по N₂) – 2 τ , (здесь и далее τ находили из данных для системы бензол и опорный адсорбент ASG-F).

3) Диаметр пор d_p^* оценивали по уравнению

 $\frac{V(SG)}{V(SG-F)} = \left(\frac{d_p(SG)}{d_p^*(SG-F)}\right)^2, \quad в \quad приближении, \quad что$

"длина" цилиндрического капилляра не меняется после модифицирования, а зависит только от эффективного (и постоянного для каждого образца) размера пор. При этом использовали экспе-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 4 2021

риментальные значения суммарных объемов *V* по бензолу (для SG рассчитан объем, соответствующий содержанию в 1 г образца SG-F [1]) и рассчитанные значения d_p (по бензолу на SG), следовательно, d_C SG-F (по C₆H₆) = $d_p^* - 2\tau$.

4) Диаметр пор $d_{\rm p}^{**}$ оценивали по уравнению $d_{\rm p}^{**} = 4V/s_{\rm yg}$, где V – по бензолу на SG-F, а $s_{\rm yg}$ для SG-F определяли по адсорбции азота, отсюда $d_{\rm C}$ SG-F (по C₆H₆) = $d_{\rm p}^{**} - 2\tau$.

Аналогичные варианты расчетов для определения $d_{\rm C}$ были использованы и для системы гексан и SG-F.

Результаты показывают, что рассчитанные из изотерм десорбции бензола на SG-F величины $\cos \theta$, равные 0.65, 0.63, 0.64 и 0.72 для вариантов 1, 2, 3 и 4 соответственно, неплохо согласуются со значением, полученным методом сидящей капли на модифицированной тем же силаном кремниевой пластинке (F/Si) $\cos \theta = 0.55$. Для гексана на SG-F получены $\cos \theta = 0.89$, 0.75, 0.77 и 0.84 для вариантов 1, 2, 3 и 4 соответственно, а на F/Si – 0.87. При этом в согласии с традиционными представлениями, чем больше поверхностное натяжение жидкости, тем хуже смачивание ($\cos \theta$ понижается).

Оценка краевых углов смачивания с помощью вариантов 1 и 2 показала, что на SG-F(III) значения $\cos \theta = 0.64$ и 0.58, а на SG-*iso*F(III) – 0.58 и 0.56, т.е. можно отметить рост олеофобности XMK, полученных с помощью трифункциональных силанов. Подобные тенденции были отмечены в [26] при сравнении значений $\cos \theta$, рассчитанных с помощью варианта 2 из изотерм десорбции гексана.

Таким образом, предложены подходы к оценке углов смачивания для углеводородов на полифторалкильных поверхностях, которые приводят к объяснению нетривиальных зависимостей, связанных с влиянием модифицирования на свойства кремнеземов в области капиллярноконденсационного процесса в лиофобных порах.

ИК-спектроскопия. На рис. 6 представлены ИК-спектры диффузного отражения образца SG в диапазоне $3900-2700 \text{ см}^{-1}$ до (а) и после (б) адсорбции C₆H₆. В спектре образца, обработанного в вакууме при 423 К, присутствует полоса при 3738 см⁻¹, характерная для валентных колебаний изолированных групп Si–OH. Полоса при 3672 см⁻¹ относится к колебаниям возмущенных водородной связью OH-групп [33, 34].

При адсорбции бензола на предварительно ваккумированном образце в спектре появляются три полосы поглощения, видные на вставке увеличенного масштаба. Полоса при 3096 см⁻¹ характеризует валентные колебания С–Н-связи,

Рис. 6. ИК-спектры образца SG до (1) и после (2) адсорбции C₆H₆ в области основных частот колебаний OH-групп и их разностный спектр (б).

полосы при 3072 и 3041 см⁻¹ являются составными тонами валентных колебаний С–Н- и С–Ссвязей и деформационных колебаний цепи С–С–С в плоскости бензольного кольца [33].

Адсорбция бензола на этом образце приводит к падению интенсивности полос валентных колебаний силанольных ОН-групп и увеличению интенсивности возмущенных водородной связью ОН-групп. Сдвиг полосы ОН-групп, найденный по разности спектров после и до адсорбции C_6H_6 (рис. 6б), составляет 138 см⁻¹, что свидетельствует о присутствии на поверхности исходного немодифицированного силикагеля SG гидроксильных групп, способных слабо взаимодействовать с бензолом.

На рис. 7 представлены ИК-спектры модифицированного монофункциональным силаном образца SG-F в диапазоне 3900-2700 см⁻¹ до (а) и после (б) адсорбции C₆H₆. В спектре образца, обработанного в вакууме при 423 К, отсутствует полоса, характерная для валентных колебаний изолированных Si-OH-групп [33, 34], присутствующая в спектре немодифицированного силикагеля SG (рис. 6а). В спектре вакуумированного образца SG-F в районе валентных колебаний OHгрупп наблюдаются полосы при 3695 и широкое плечо с центром при 3540 см⁻¹, характеризующие колебания возмущенных слабой водородной связью ОН-групп. Природа такой слабо возмущенной водородной связи, возникающей в результате модифицирования, была описана ранее [23]. Кроме того, в спектре наблюдаются полосы поглощения при 2963 и 2907 см⁻¹, характеризующие валентные колебания С–Н-связи в привитых группах [33].

При адсорбции бензола на образце SG-F в спектре появляются три полосы поглощения. Полоса при 3096 см⁻¹ характеризует валентные колебания С–Н-связи, полосы при 3073 и 3041 см⁻¹ являются составными тонами валентных колебаний С–Н- и С–С-связей и деформационных колебаний цепи С–С–С в плоскости бензольного кольца [33].

При адсорбции бензола полосы поглощения, относящиеся к колебаниям метильных и метиленовых групп привитой цепи, остались без изменения. В районе валентных колебаний ОН-групп заметно как общее уменьшение интенсивности полос, так и изменение отношения интенсивностей. Сдвиг полосы ОН-групп, найденный по разности спектров после и до адсорбции C_6H_6 (рис. 7б) составляет 461 см⁻¹, что свидетельствует о присутствии на поверхности образца SG-F гидроксильных групп, способных достаточно сильно взаимодействовать с бензолом.

На рис. 8 представлены ИК-спектры модифицированного трифункциональным силаном образца SG-F(III) в диапазоне $3900-2700 \text{ см}^{-1}$ до (а) и после (б) адсорбции C₆H₆. В спектре образца, обработанного в вакууме при 423 K, отсутствуют полосы валентных и составных колебаний изолированных поверхностных Si-OH-групп, присутствующих в спектре исходного силикагеля SG [33, 34]. В спектре вакуумированного образца

Рис. 7. ИК-спектры образца SG-F до (1) и после (2) адсорбции C₆H₆ в области основных частот колебаний OH-групп и их разностный спектр (б).

Рис. 8. ИК-спектры образца SG-F(III) до (1) и после (2) адсорбции C_6H_6 в области основных частот колебаний ОН-групп (а) и их разностный спектр (б).

SG-F(III) в районе валентных колебаний OHгрупп наблюдаются полосы при 3672 и ~3464 см⁻¹, относящиеся к колебаниям возмущенных водородной связью OH-групп. Кроме того, в спектре образца, обработанного в вакууме, наблюдаются полосы поглощения при 2978, 2955 и 2920 см⁻¹, характеризующие валентные колебания C–Hсвязи в привитых группах. При адсорбции бензола на предварительно ваккумированном образце SG-F(III) в спектре появляются три полосы поглощения: полоса при 3097 см⁻¹ характеризует валентные колебания С–H-связи, полосы при 3072 и 3041 см⁻¹ являются составными тонами валентных колебаний С–H- и С–С-связей и деформационных колебаний цепи С–С–С в плоскости бензольного кольца [33].

Рис. 9. ИК-спектры образца SG-*iso*F(III) до (1) и после (2) адсорбции C₆H₆ в области основных частот колебаний OH-групп (а) и их разностный спектр (б).

При адсорбции бензола полосы поглощения, относящиеся к колебаниям метиленовых групп привитой цепи, остались без изменения. В районе валентных колебаний ОН-групп (рис. 8а) заметно уменьшение интенсивности обеих полос. Сдвиг полосы ОН-групп, найденный по разности спектров после и до адсорбции C_6H_6 (рис. 8 б) составляет 80 см⁻¹, что свидетельствует о присутствии на поверхности обработанного трифункциональным модификатором силикагеля SG-F(III) гидроксильных групп, способных слабо взаимодействовать с бензолом.

На рис. 9 представлены ИК-спектры модифицированного трифункциональным силаном образца SG-isoF(III) в диапазоне 3900-2700 см⁻¹ до (а) и после (б) адсорбции С₆Н₆. В спектре образца, обработанного в вакууме при 423 К, отсутствуют полосы валентных и составных колебаний изолированных поверхностных Si-OH-групп, присутствующих в спектре исходного силикагеля SG [33, 34]. В спектре вакуумированного образца SG-isoF(III) в районе валентных колебаний ОНгрупп наблюдаются полосы при 3663 и плечо ~3487 см⁻¹, относящиеся к колебаниям возмущенных водородной связью ОН-групп. Кроме того, в спектре образца, обработанного в вакууме, наблюдаются полосы поглощения при 2974, 2944 и 2923 см⁻¹, характеризующие валентные и составные колебания С-Н-связи в привитых группах.

При адсорбции бензола на предварительно ваккумированном образце SG-*iso*F(III) в спектре появляется три полосы поглощения: полоса при 3096 см^{-1} , характеризует валентные колебания

С-H-связи, полосы при 3073 и 3040 см⁻¹ являются составными тонами валентных колебаний С-Н- и С-С-связей и деформационных колебаний цепи С-С-С в плоскости бензольного кольца [33]. При адсорбции бензола полосы поглощения, относящиеся к колебаниям метиленовых групп привитой цепи, остались без изменения. В районе валентных колебаний ОН-групп заметно небольшое снижение интенсивности полосы при 3663 см⁻¹. При этом интенсивность полосы при 3487 см⁻¹ остается неизменной и заметно уширение этой полосы со стороны меньших частот. Сдвиг полосы ОН-групп, найденный по разности спектров после и до адсорбции С₆Н₆ (рис. 9б) составляет 434 см⁻¹, что свидетельствует о присутствии на поверхности обработанного трифункциональным модификатором силикагеля SG-isoF(III) гидроксильных групп, способных сильно взаимодействовать с бензолом. По силе кислотности поверхностных ОН-групп можно составить ряд: SG-F > SG-isoF(III) > SG > SG-F(III).

Как показано выше, вклады специфических взаимодействий в адсорбцию бензола, оцененные с помощью разных подходов, изменяются на модифицированных образцах в противоположном направлении. Можно предположить, что основное влияние на рост специфических, в основном, диполь-квадрупольных взаимодействий, оказывает увеличение полярности модифицированных силикагелей, возможно, за счет перераспределения электронной плотности в привитых группах под влиянием дополнительных гидроксилов, что наиболее ярко выражено у образца с линейным трифункциональным силаном SG-F(III).

- 1986. 360 c.

11. Kessman A.J., Huckaby D.K., Snyder C.R. et al. // WEAR. 2009. V. 267. P. 614.

Результаты данной работы целесообразно ис-

пользовать для получения материалов с полифто-

ралкильными слоями с предсказуемыми адсорб-

ционными свойствами и объяснения малоизучен-

учного совета РАН по физической химии, реги-

СПИСОК ЛИТЕРАТУРЫ

1. Химия привитых поверхностных соединений /

2. Ma M., Hill R.M. // Curr. Opin. Colloid Interface Sci.

3. Trewy B., Victor S.Y. // Chem. Eng. J. 2007. V. 137.

4. Yang J.P., Yuan D.X., Zhou B. et al. // J. Coll. Interface

5. Steele A., Bayer I. Loth E. // Nano Lett. 2009. V. 9.

6. Barriet D., Randall L.T. // Curr. Opin. Colloid Inter-

8. Burunkaya E., Kiraz N., Kesmez O., Asilturk M. //

9. Hozumi A., Kim B., McCarthy T.J. // Langmuir. 2009.

10. Vilcnik A., Jerman I., Vuc A.S. et al. // Ibid.2009. V. 25.

7. Matsuo Y. // J. Fluorine Chem. 2007. V. 128. P. 336.

J. Sol-Gel Sci. Technol. 2010. V. 56. P. 99.

Под ред. Г.В. Лисичкина. М.: Физматлит, 2003.

Работа выполнена в соответствии с планом на-

ных капиллярных явлений в лиофобных порах.

страционный номер темы 18-03-460-15.

592 c.

P. 23.

№ 1. P. 501.

V. 25. P. 6834.

P. 5869.

2006. V. 11. P. 193.

Sci. 2011. V. 359. P. 269.

face Sci. 2003. V. 8. P. 236.

- 12. Cao L.L., Price T.P., Weiss M., Gao D. // Langmuir. 2008. V. 24. P. 1640.
- 13. Yoshino N., Yamauchi T., Kondo Y. et al. // Reactiv. Funct. Polym. 1998. V. 37. P. 271.
- 14. Sawada H., Koizumi M., Tojo T. et al. // Polym. Adv. Technol. 2005. V. 16. P. 459. 15. Ярош А.А., Круковский С.П., Сахаров А.С. и др. //
- Изв. АН. Сер. хим. 2014. № 2. С. 546. 16. Киселев А.В. Межмолекулярные взаимодействия в
- адсорбции и хроматографии. М.: Высш. школа,

- 17. Трофимов Д.Н., Колесниченко В.В., Логинова Н.Н. // Тез. докладов 9-й Всероссийской конференции "Химия фтора". М., 2012. P. 44.
- 18. Glatz H., Blay C., Engelhardt H. // Chromatographia. 2004. V. 59. P. 567.
- 19. Ashu-Arrah B.A., Glennon J.D., Albert K. // J. Chromatogr. A. 2013. V. 1273. P. 34.
- 20. Fadeev A.Y. Encyclopedia of Surface and Colloid Science / Ed. by P. Somasundaran. N.Y.: Taylor & Francis, 2006. P. 2854.
- 21. Monde T., Nakayama N., Yano K. et al. // J. Coll. Interface Sci. 1997. V. 185. P. 111.
- 22. Gurevich K.B., Roshchina T.M., Shonia N.K. et al. // Ibid. 2002. V. 254. P. 39.
- 23. Рощина Т.М., Шония Н.К., Лагутова М.С. и др. // Журн. физ. химии. 2007. Т. 81. № 7. С. 1282.
- 24. Рощина Т.М., Шония Н.К., Лагутова М.С. и др. // Там же. 2009. Т. 83. № 2. С. 361.
- 25. Рощина Т.М., Шония Н.К., Таякина О.Я. и др. // Там же. 2012. Т. 86. № 3. С. 508.
- 26. Рощина Т.М., Шония Н.К., Тегина О.Я. и др. // Физикохимия поверхности и защита материалов. 2016. T. 52. № 4. C. 354.
- 27. Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. Ю.С Никитина, Р.С. Петровой. М.: Изд-во МГУ, 1990. 318 с.
- 28. Kustov L.M. // Topics in Catalysis. 1995. V. 4. P. 131.
- 29. Боровков В.Ю. Природа и свойства кислотно-основных центров аморфных алюмосиликатов, высококремнеземных цеолитов и оксидов алюминия по данным ИК-спектроскопии в диффузно-рассеянном свете: Дис. ... докт. хим. наук: М.: Ин-т органической химии им. Н.Д. Зелинского РАН, 1988. 336 c.
- 30. Рощина Т.М., Шония Н.К., Таякина О.Я., Фадеев А.Ю. // Журн. физ. химии. 2011. Т. 85. № 2. С. 352.
- 31. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1970. 310 с.
- 32. Roshchina T.M., Shoniya N.K., Bernadoni F., Fadeev A.Y. // Langmuir. 2014. V. 30. P. 9355.
- 33. Киселев А.В., Лыгин В.И. Инфракрасные спектры поверхностных соединений и адсорбированных молекул. М.: Наука, 1972. С. 110-143, 179-246.
- 34. Гордон А., Форд Ф. Спутник химика, М.: Мир, 1976. 541 c.