_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.49

ТЕРМОДИНАМИКА РЕАКЦИЙ КОМПЛЕКСООБРАЗОВАНИЯ ИОНОВ Er³⁺ И Yb³⁺ С L-ГИСТИДИНОМ В ВОДНОМ РАСТВОРЕ

© 2021 г. А. И. Лыткин^{*a*}, О. Н. Крутова^{*a*,*}, В. В. Черников^{*a*}, Н. В. Чернявская^{*a*}, Е. Д. Крутова^{*a*}

^а Ивановский государственный химико-технологический университет, 153000, г. Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 10.06.2020 г. После доработки 01.08.2020 г. Принята к публикации 12.09.2020 г.

Калориметрическим методом определены энтальпии комплексообразования L-гистидина с ионами Er^{3+} , Yb³⁺ при 298.15 K и значении ионной силы 0.5 (KNO₃). Рассчитаны термодинамические характеристики реакций образования комплексов аминокислоты с ионами лантаноидов. Потенциометрическим методом определены константы устойчивости комплексов эрбия и иттербия с гистидин-ионом при 298.15 K и значении ионной силы 0.5 (KNO₃). Рассчитаны термодинамические характеристики реакций образования комплексов аминокислоты с ионами Er^{3+} , Yb³⁺ состава LnL, при мольных соотношениях [металл]:[лиганд], равном 1 : 1.

Ключевые слова: калориметрия, аминокислота, энтальпии комплексообразования, эрбий, иттербий **DOI:** 10.31857/S0044453721050204

Интерес к комплексным соединениям лантаноидов возрос за последнее десятилетие в связи с их применением в супрамолекулярной химии, а выявленная биологическая активность этих соединений (противомикробная, противораковая) позволяет использовать их в качестве химико-терапевтических препаратов [1]. Высокая комплексообразующая способность определяет каталитическую активность комплексов лантаноидов во многих процессах, что служит основой для проведения селективного органического синтеза и получения новых материалов и сенсоров. Комплексонаты лантаноидов используются в качестве жидкостных сред в лазерах, применяются как парамагнитные сдвигающие реагенты в спектроскопии ЯМР, а также в мессбауэровской спектроскопии [2, 3].

Данная работа является продолжением исследования процессов комплексообразования различных биолигандов с лантаноидами [4, 5]. В качестве объектов исследования выбран L-гистидин. В литературе отсутствуют данные об определении энтальпий образования комплексов ионов Er^{3+} , Yb³⁺ с L-гистидином в водном растворе. Цель настоящей работы — прямое калориметрическое определение энтальпий процессов комплексообразования Er^{3+} , Yb³⁺ с L-гистидином при температуре 298.15 К и значениях ионной силы раствора 0.5 (на фоне нитрата калия) при мольном соотношении [металл]: [лиганд], равном 1:1. Рассчитаны термодинамические характеристики изучаемых процессов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали кристаллический препарат L-гистидина ($C_6H_9N_3O_2$) фирмы "Sigma" чистоты ≥99% без дополнительной очистки. Исходное значение pH раствора создавали путем добавления к раствору аминокислоты рассчитанного количества бескарбонатного гидроксида калия, приготовленного по обычной методике [6]. Растворы нитратов Er^{3+} и Yb³⁺ готовили из перекристаллизованных препаратов марки "х.ч.". Концентрацию Er^{3+} и Yb³⁺ в растворе определяли комплексонометрическим методом. Для поддержания заданного значения ионной силы использовали перекристаллизованный нитрат калия марки "х.ч.".

Потенциометрическое титрование проходило по стандартной методике. Измерения ЭДС цепи:

Ag, AgCl, KCl_{нас} |H₂L, KNO₃, Ni(NO₃)₂ |стеклян. эл-д

проводили с помощью прибора "Мультитест" ИПЛ-311. Абсолютная погрешность измерения потенциала составляла не более 0.5 мВ. Равновесие считали установившимся, если измеряемое значение ЭДС не изменялось в пределах 0.1 мВ в течение 5 мин. Температуру 298.15 К потенцио-

Таблица 1. Экспериментальные данные потенциометрического титрования в системе $Er^{3+} - L$ -гистидин при I = 0.5 (KNO₃), T = 298.15 K

	$C^0(\text{Er}) \times$	C^0 (His) ×	$C^0(\mathrm{H^+}) \times$	
рН(эксп)	$\times 10^{3}$,	$\times 10^{3}$,	$\times 10^{2}$,	рН(расч)
	моль/л	моль/л	моль/л	
2.322	9.691	9.691	2.562	2.315
2.328	9.678	9.678	2.544	2.330
2.350	9.656	9.656	2.514	2.347
2.358	9.634	9.634	2.484	2.366
2.384	9.613	9.613	2.455	2.385
2.402	9.593	9.593	2.426	2.410
2.410	9.579	9.579	2.407	2.420
2.440	9.567	9.567	2.390	2.438
2.473	9.545	9.545	2.360	2.469
2.488	9.524	9.524	2.332	2.485
2.517	9.501	9.501	2.299	2.517
2.567	9.474	9.474	2.262	2.551
2.586	9.446	9.446	2.223	2.590
2.605	9.432	9.432	2.204	2.612
2.654	9.406	9.406	2.168	2.661
2.687	9.386	9.386	2.140	2.704
2.754	9.357	9.357	2.100	2.765
2.811	9.327	9.327	2.059	2.834
2.903	9.298	9.298	2.018	2.926
3.075	9.249	9.249	1.950	3.111
3.458	9.198	9.198	1.881	3.480
4.078	9.165	9.165	1.834	4.093
4.887	9.114	9.114	1.763	4.910
5.256	9.061	9.061	1.691	5.237

Обозначения: $C^0(Er)$, $C^0(His)$, $C^0(H^+)$ — общие концентрации частиц в растворе, рассчитанные без учета реакций вза-имодействия между частицами.

метрической ячейки, титранта и электрода поддерживали с точностью ± 0.1 К с помощью воздушного и водяного термостатов. Градуировку стеклянного электрода проводили по стандартным растворам соляной кислоты при I = 0.25(KNO₃). Полученная при обработке этих данных по методу наименьших квадратов величина tg α составляла 0.05833 В/ед рН. Проводили по три– четыре параллельных опыта. Расчет констант выполняли по программе PHMETR [7], в основу работы которой положен принцип поиска минимума критериальной функции *F* путем варьирования в каждой итерации подлежащих определению значений р*К* с использованием модифицированного алгоритма Хука—Дживса. Критериальная функция имеет вид:

$$F = \Sigma (\lg[\mathrm{H}^+]_{j, \mathrm{pacu}} - \lg[\mathrm{H}^+]_{j, \mathrm{pacu}})^2, \qquad (1)$$

где $\lg[H^+]_{j, яксп}$, $\lg[H^+]_{j, расч}$ – логарифмы равновесных концентраций H^+ , измеренные экспериментально и рассчитанные при текущих значениях *рК*. Расчет равновесных концентраций осуществляли по методу Бринкли. Экспериментальные данные потенциометрического титрования в системе Er^{3+} – L-гистидин при при I = 0.5 (фоновый электролит KNO₃), T = 298.15 К представлены в табл. 1.

Измерения тепловых эффектов проводили в ампульном калориметре с изотермической оболочкой, термисторным датчиком температуры и автоматической записью кривой "температуравремя" [8]. Работу калориметрической установки проверяли по общепринятым калориметрическим стандартам – теплоте растворения кристаллического хлорида калия в воде. Препарат KCl очищали двукратной перекристаллизацией реактива марки "х.ч." из бидистиллята. Перед взятием навесок хлорид калия высушивали в сушильном шкафу при 393.15 К до постоянной массы. Согласование экспериментально полученных теплот растворения KCl(кр.) в воде $\Delta_{sol}H(\infty H_2 O) = 17.25 \pm$ ± 0.06 кДж/моль с наиболее надежными литературными данными [9] свидетельствует об отсутствии заметной систематической погрешности в работе калориметрической установки. Навески взвешивали на весах ВЛР-200 с точностью 2×10^{-4} г.

Экспериментально измеряли энтальпии процессов образования комплексных частиц в системе Er³⁺ и Yb³⁺ с гистидином при температуре 298.15 К и значениях ионной силы 0.5(KNO₃). Величины pH контролировали с помощью прибора "Мультитест" ИПЛ-311. Совпадение расчетных и экспериментальных значений pH свидетельствовало о правильности выбора концентрационных условий проведения калориметрического эксперимента.

Расчет энтальпий образования комплексов Er^{3+} и Yb³⁺ с L-гистидином выполняли по программе "HEAT", алгоритм которой описан в работе [7].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В изучаемой системе возможен учет протекания следующих реакций:

$$\mathrm{Er}^{3+} + \mathrm{L}^{-} = \mathrm{Er}\mathrm{L}^{2+},$$
 (2)

$$Er^{3+} + H_2O = ErOH^{2+} + H^+,$$
 (3)

$$L^{-} + H^{+} = HL^{\pm}, \qquad (4)$$

$$L^{-} + 2H^{+} = H_2L^{+},$$
 (5)

$$L^{-} + 3H^{+} = H_3 L^{2+},$$
 (6)

$$H^{+} + OH^{-} = H_2O.$$
 (7)

Аналогичные процессы происходят в системе: ион Yb³⁺-аминокислота.

Для того чтобы подобрать необходимые условия проведения калориметрического опыта проводили предварительный расчет по программе "RRSU" [7] с учетом всех протекающих процессов в системе (2)-(7). На основании результатов расчета строили зависимости равновесной концентрации частиц в растворе от рН при различных соотношениях [металл]:[лиганд]. Измеряли суммарный тепловой эффект. Условия подбирали таким образом, что бы вклад процесса (3) составлял ≈ 8%, его учитывали поправкой на тепловой эффект этого процесса. Молярную энтальпию изучаемого процесса определяли ИЗ соотношения:

$$\Delta_{\min}H - \Delta_{\dim}H = \alpha_r \Delta_r H + \sum_{i=1}^n \alpha_i \Delta H_i,$$

где $\Delta_r H$ – энтальпия изучаемого процесса, α_r – полнота протекания исследуемого процесса, ΔH_i – тепловой эффект *i*-й побочной реакции в расчете на моль добавленного металла, α_i – поправка на тепловой эффект *i*-й побочной реакции (3)–(7). Проводили оптимизацию по полноте протекания изучаемых реакций. Варианты с участием высокоэнтальпийных и трудноучитываемых побочных процессов по возможности отвергали. В ходе опыта контролировали значения pH растворов. Измеренные и рассчитанные концентрации ионов водорода совпадали в пределах допустимых ошибок.

С целью определения энтальпий реакций комплексообразования использовали следующую методику. В калориметрический стакан помещали раствор нитрата Er^{3+} и Yb³⁺, объемом 43.26 мл с заданным значением ионной силы 0.5 (нитрат калия). В ампуле находился раствор К-*L*-His. Измеряли также теплоты разведения раствора К-*L*-His в растворах фонового электролита. Расчет энтальпий реакций образования выполняли по программе "HEAT" [7]. Расчет $\Delta_r H$ изучаемых реакций осуществляли путем минимизации функции вида:

$$F = \sum \left(\Delta H^{,\mathsf{\tiny \mathsf{PKCII}}} - \Delta H^{,\mathsf{Pacy}}\right)_1^2 \omega_1,$$

где $\Delta H'$ — изменение энтальпии системы, обусловленное протеканием изучаемых реакций. Для нескольких параллельно протекающих реакций минимизируемая функция F — остаточная сумма квадратов отклонений при решении системы линейных уравнений:

$$\Delta H^{\rm secu} = \Delta H_1 / n_{\rm Bk} - (1/C_{\rm Bk}^0) \sum \Delta [A_n]_1 \Delta_{\rm r} H_n =$$

= $(1/C_{\rm Bk}^0) \sum \Delta [A_m]_1 \Delta_{\rm r} H_m,$ (8)

где индексы *n* и *m* относятся соответственно к реакциям с известными и неизвестными величинами мольных тепловых эффектов $\Delta_r H_i$, по весовому МНК. В итерационной процедуре поиска минимума функции *F*, осуществляемой также модифицированным методом Хука–Дживса, участвуют в явном виде только lg *K* изучаемых реакций; $\Delta_r H_i^{\text{эксп}}$ – экспериментально измеренные энтальпии; $\Delta_r H_i^{\text{расч}}$ – энтальпии, рассчитанные по уравнению:

$$\Delta_{\rm r} H_{\rm i}^{\rm pacq} = (\Delta[{\rm HL}^{\pm}]\Delta_{\rm r} H_4 + \Delta[{\rm ErL}^{2+}]\Delta_{\rm r} H_2 + + \Delta[{\rm ErOH}^{+2}]\Delta_{\rm r} H_3 + \Delta[{\rm OH}^{-}]\Delta_{\rm r} H_{\rm w}), \qquad (9)$$

где $\Delta[\text{ErL}^{2+}]$, $\Delta[\text{ErOH}^{+2}]$ и $\Delta[\text{HL}^{\pm}]$ – разности конечных и начальных равновесных концентраций соответствующих частиц; $\Delta_r H_4$, $\Delta_r H_2$, $\Delta_r H_3$ – энтальпи (кДж/моль) процессов (2)–(4); *n* – число опытов; ω_i – весовой множитель, определяемый по соотношению:

$$\omega_i = A/\sigma_i^2, \qquad (10)$$

где A – произвольное число, позволяющее выбрать удобное для расчета значение ω_i ; σ_i^2 – дисперсия.

По экспериментальным данным рассчитывали среднеарифметические значения тепловых эффектов по результатам трех-четырех опытов. Для расчета доверительного интервала среднего значения ΔH критерий Стьюдента $t_{\alpha} = 3.18$ брали при доверительной вероятности 0.95.

Наиболее вероятные значения констант ступенчатой диссоциации L-гистидина представлены в работах [10–13], гидролиз ионов Er^{3+} и Yb³⁺ и энтальпии процесса (3) учитывали по данным [14], энтальпии процессов кислотно-основного взаимодействия в растворах L-гистидином — по данным [15], термодинамические параметры диссоциации воды брали из работы [16].

Энтропии процессов комплексообразования Er^{3+} и Yb³⁺ с гистидином в водном растворе определяли при совместном использовании результатов термохимических измерений и данных по константам комплексообразования (табл. 2).

Строение аминокислот обусловливает возможность образования самых различных форм комплексных соединений с ионами металлов [17–24]. Так, по данным рентгеноструктурного анализа, только карбоксильная группа может давать девять форм связывания молекулы с ионом

Процесс	lgβ	$-\Delta_{ m r} H$, кДж/моль	$-\Delta_{ m r}G$, кДж/моль	$\Delta_{\rm r}S$, Дж/(моль К)
$Er^{3+} + L^- = ErL^{2+}$	4.63 ± 0.05	15.51 ± 0.33	26.43 ± 0.56	36.6 ± 2.3
$Yb^{3+} + L^{-} = YbL^{2+}$	5.11 ± 0.05	16.92 ± 0.33	29.17 ± 0.56	42.5 ± 2.3

Таблица 2. Термодинамические характеристики образования комплексов Er^{3+} и Yb³⁺ с L-гистидином при I = 0.5 (нитрат калия) и T = 298.15 K

металла. Наличие аминогруппы дает возможность образовать хелатные комплексы, а при наличии дополнительных донорных групп в боковой цепи количество возможных форм возрастает. Гистидин имеет в своем составе четыре донорные группы (карбоксильная и аминогруппы, пиридиновый и пиррольный атомы азота), т.е. является потенциально тетрадентатным лигандом. Наибольшее разнообразие в способах коорлинации с L-гистилином проявляется в комплексах меди (II), которые благодаря большому биологическому значению наиболее изучены. Вследствие эффекта Яна-Теллера и значительного различия экваториальных и аксиальных положений по энергии связи основное влияние на свойства комплекса оказывает расположение донорных групп в экваториальной плоскости. Поэтому, не имея структурных данных, отрицать возможное участие аминогруппы или тридентатную координацию комплексов лантаноидов с Lгистидином нельзя.

Как видно из данных табл. 2, реакции комплексообразования всех изученных комплексов сопровождаются экзоэффектом и положительным изменением энтропии. Экзотермичность реакций указывает на то, что образование связей между лантаноидами и лигандом (L) – энтальпийно выгодный процесс, величина $\Delta_r H$ которого компенсирует затраты тепла, связанные с дегидратацией центрального иона и лиганда. Тепловой эффект образования комплексов LnL складывается, в основном, из вкладов процессов разрыва связей центрального иона с двумя или тремя молекулами воды, вытеснения некоторого количества молекул воды из гидратных оболочек лигандов, образования связей между центральным ионом и лигандами. Значительные положительные величины изменения энтропии в процессах образования комплексонатов соответствующих лантаноидов связаны с высвобождением большого количества молекул воды из гидратных оболочек исходных ионов, что существенно перекрывает эффект уменьшения числа частиц за счет собственно комплекообразования и приводит к увеличению энтропии.

Работа выполнена в рамках НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках Государственного задания (базовая часть), проект № FZZW-2020-0009.

СПИСОК ЛИТЕРАТУРЫ

- Kremera C., Torresa J., Dom'inguezb S., Medero A. // Coordination Chemistry Reviews 2005. V. 249. P. 567. https://doi.org/10.1016/j.ccr.2004.07.004
- Woods M., Kovacs Z., Sherr A.D. // J. Supramolecular Chem. 2002. V. 2. P. 1. https://doi.org/10.1016/S1472-7862(02)00072-2
- Bianchi A., Calabi L., Corana F. et al. // Coord. Chem. Rev. 2000. V. 204. P. 309. https://doi.org/10.1016/S0010-8545(99)00237-4
- Лыткин А.И., Черников В.В., Крутова О.Н., Смирнова Д.К. //Журн. общ. химии. 2018. Т. 88. Вып. 5. С. 811.
- 5. Лыткин А.И., Черников В.В., Крутова О.Н., Скворцов И.А. // Журн. физ. химии. 2017. Т. 91. № 6. С. 986.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. С. 398.
- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. С. 81.
- Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Thermal Analysis and Calorimetry. 2017. V. 130 (1). P. 457. https://doi.org/10.1007/s10973-017-6134-
- 9. *Kilday M.V.* // J. Reseach N.B.S. 1980. V. 85. № 6. P. 467.
- Valenti L.E., De Pauli C.P., Giacomelli C.E. // J. Inorg. Biochem. 2006. V. 100 (2). P. 192. https://doi.org/10.1016/j.jinorgbio.2005.11.003
- Altun Y., Köseoglu F. // J. Sol. Chem. 2005. V. 34 (2). P. 213. https://doi.org/10.1007/s10953-005-2763-7
- Kaczmarek P., Jeżowska-Bojczuk M., Bal W., Kasprzak K.S. // J. Inorg Biochem. 2005. V. 99 (3). P. 737. https://doi.org/10.1016/j.jinorgbio.2004.12.006
- Hayati Sari, Covington A. // J. Chem. Eng. Data. 2005.
 V. 50 (4). P. 1425. https://doi.org/10.1021/je0500911
- Назаренко В.А., Антонович В.П., Невская Е.М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1978. С. 46.
- 15. Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1986. Т. 55. № 12. С. 2780.
- 16. Васильев В.П., Шеханова Л.Д. // Журн. неорган. химии. 1974. Т. 19. № 11. С. 2969.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 5 2021

- 17. Горболетова Г.Г., Метлин А.А., Бычкова С.А. // Журн. физ. химии. 2018. Т. 92. № 5. С. 684.
- 18. Горболетова Г.Г., Метлин А.А. // Там же. 2018. Т. 92. № 11. С. 1720.
- Cisnetti F, Lebrun C., Delangle P. // Dalton Trans. 2010. V. 39. Is. 15. P. 3560. https://doi.org/10.1039/c003060k
- Prell J.S., Flick T.G., Oomens J. et al. // J. Phys. Chem. A. 2010. V. 114. № 1. P. 854. https://doi.org/10.1021/jp909366a
- 21. Илакин В.С., Штырлин В.Г., Захаров А.В., Конькин А.Л. // Журн. общ. химии. 2002. Т. 72. Вып. 3. С. 377.
- 22. *Nagy N.V., Szabo-planka T., Rockenbauer A.* // J. Am. Chem. Soc. 2003. V. 125. P. 5227. https://doi.org/10.1021/ja021245+
- 23. *Ciunik Z., Clowaiak T.* // Inorg. Chim. Acta. V. 44. № 1. P. 249. https://doi.org/10.1016/S0020-1693(00)91023-5
- 24. Davies H.O., Cillard R.D., Hursthouse M.B., Lehman A. // Chem. Soc. Chem. Comm. 1993. № 9. P. 1137. https://doi.org/10.1039/c39930001137